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Precision measurements and quantum-information processing with cold atoms may benefit from trapping
atoms with specially engineered, “magic” optical fields. At the magic trapping conditions, the relevant atomic
properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of
magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved
mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map
out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a
common error in evaluating Stark shifts of hyperfine manifolds.
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A recurring theme in modern precision measurements
and quantum-information processing with cold atoms and
molecules are the so-called magic traps [1]. At the magic
trapping conditions, the relevant atomic properties remain
immune to strong perturbations by optical trapping fields.
For example, in optical lattice clocks, the atoms are held
using laser fields operating at magic wavelengths [2]. The
clock levels are shifted due to the dynamic Stark effect that
depends on the trapping laser wavelength. At the specially
chosen, magic wavelength, both clock levels are perturbed
identically; therefore the differential effect of trapping fields
simply vanishes for the clock transition. This turned out to be a
powerful idea: lattice clocks based on the alkaline-earth-metal
atom Sr have recently outperformed the primary frequency
standards [3].

Finding similar magic conditions for ubiquitous alkali-
metal atoms employed in a majority of cold-atom experiments
remains an open challenge. Especially valuable are the
microwave transitions in the ground-state hyperfine manifold.
Finding magic conditions here, for example, would enable
developing micromagic clocks [4]: microwave clocks with the
active clockwork area of a few micrometers across. In addition,
the hyperfine manifolds are used to store quantum information
in a large fraction of quantum-computing proposals with
ultracold alkalis. Here the strong perturbation due to trapping
fields is detrimental. Namely, the dynamic differential Stark
shift is the limiting experimental factor for realizing long-lived
quantum memory [5]. Qualitatively, as an atom moves in
the trap, it randomly samples various intensities of the laser
field; this leads to an accumulation of uncontrolled phase
difference between the two qubit states. For very cold samples,
the accumulation of uncontrolled phases may arise because
the interrogation by the microwaves is an ensemble average
over the spatial distribution of atoms across the trap. Magic
conditions rectify these problems, as both qubit states see the
very same optical potential and do not accumulate differential
phase at all. In other words, we engineer a decoherence-free
trap.

*andrei@unr.edu

Initial steps in identifying magic conditions for hyper-
fine transitions in alkali-metal atoms have been made in
Refs. [6–8]. The proposals [7,8] identified magic-wavelength
conditions for MF �= 0 states. Due to nonvanishing mag-
netic moments, these states, however, are sensitive to stray
magnetic fields which would lead to clock inaccuracies and
decoherences (except for special cases of relatively large
bias fields, see below). Recently, it has been realized by
Lundblad et al. [9] that magic conditions may be attained
for the Zeeman-insensitive MF = 0 states as well. Here the
bias magnetic field is tuned to make the conditions magic
for a given trapping laser wavelength. These authors exper-
imentally demonstrated these conditions for lattice-confined
Rb atoms at a single wavelength. As demonstrated below,
mapping out values of magic bias B fields for a wide
range of wavelengths requires full-scale structure calculations.
Below, I carry out such calculations and point out common
pitfalls in evaluating differential polarizabilities of hyperfine
manifolds.

In this work, we are interested in the clock transition
of frequency ν0 between two hyperfine states |F ′ = I +
1/2,M ′

F = 0〉 and |F = I − 1/2,MF = 0〉 attached to the
ground electronic nS1/2 state of an alkali-metal atom (I
is the nuclear spin). Here and below we denote the upper
clock state as |F ′〉 and the lower state as |F 〉. The magic-
wavelength conditions are defined as the clock frequency being
independent of the perturbing trapping optical field.

We start by reviewing the Zeeman effect for the clock
states. The Zeeman Hamiltonian reads HZ = −µzB, µ being
the magnetic moment operator. The permanent magnetic
moments of the MF = 0 states vanish, so the effect arises
in the second order. We need to diagonalize the following
Hamiltonian

HZ
eff =

(
hν0 HZ

F ′F

HZ
FF ′ 0

)
. (1)

The leading effect is due to off-diagonal coupling HZ
FF ′ =

〈F ′,M ′
F = 0|HZ|F,MF = 0〉. In the case of alkalis, (µz)FF ′ ≈

µB , where µB is the Bohr magneton. The resulting Zeeman
substates repeal each other, and in sufficiently weak B fields,
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µBB � hν0, the shift of the transition frequency is quadratic
in magnetic field,

δνZ (B)

ν0
≈ 2

(
µB

hν0
B

)2

. (2)

Since atoms are trapped by a laser field, the atomic levels are
shifted due to the dynamic Stark effect (see, e.g., a review [10]).
The relevant energy-shift operator reads

Û (ωL) = −α̂ (ωL)

(
EL

2

)2

,

where EL is the amplitude of the laser field and α̂ (ωL) is
the operator of dynamic atomic polarizability; it depends on
the laser frequency. Notice that Û may have both diagonal
and off-diagonal matrix elements between atomic states of the
same parity.

Now we add the Stark shift couplings to the Hamilto-
nian (1). The Stark shift operator has both the diagonal
and off-diagonal matrix elements in the clock basis. To find
the perturbed energy levels, we diagonalize the effective
Hamiltonian

Heff =
⎛
⎝ hν0 + UF ′F ′ UF ′F + HZ

F ′F

UFF ′ + HZ
FF ′ UFF

⎞
⎠ . (3)

For sufficiently weak fields, the resulting shift of the clock
frequency reads

δνclock (ωL,B,EL) = δνZ (B) + δνS (ωL,B,EL) , (4)

with the Stark shift

δνS (ωL,B,EL) = 1

h

{
αF ′F ′ (ωL) − αFF (ωL)

−
(

4µFF ′B

hν0

)
αF ′F (ωL)

}(
EL

2

)2

. (5)

The magic conditions are attained when δνS (ωL,B,EL) = 0
for any value of the laser amplitude, i.e., simply when the
combination inside the curly brackets vanishes.

At this point one may evaluate the dynamic polarizabilities
and deduce the magic B field. Before proceeding with the
analysis, I would like to address common pitfalls in evaluating
polarizabilities of hyperfine-manifold states, so the reader
appreciates the necessity of full-scale calculations. A generic
expression for the polarizability of the |nFMF 〉 state reads

α
(0)
FF (ω) =

∑
i=|niFiMi 〉

〈nFMF |Dz|i〉〈i|Dz|nFMF 〉
EnFMF

− Ei + ω
+ · · · ,

(6)

where the omitted term differs by ω → −ω, and D is the dipole
operator. All the involved states are the hyperfine states. While
this requires that the energies include hyperfine splittings, it
also means that the wave functions incorporate hyperfine inter-
action (HFI) to all orders of perturbation theory. Including the
experimentally known hyperfine splittings in the summations
is straightforward, and unsophisticated practitioners stop at
that, completely neglecting the HFI corrections to the wave
functions. This is hardly justified, as both contributions are of
the same order.

FIG. 1. (Color online) Importance of full-scale calculations.
Dependence of magic B field (in G) on laser frequency (in atomic
units) for 87Rb. Full-scale calculations (solid blue line) are compared
with approximate “experimentalist” computations which neglect the
HFI contribution to atomic wave functions (dashed red line).

I would like to remind the reader of a recent controversy:
neglecting the HFI correction to wave functions has already
led to a (even qualitatively) wrong identification of magic
conditions. The authors of Ref. [11] employed the simpli-
fied approach and (for B = 0) found a multitude of magic
wavelengths for clock transitions in Cs. The prediction was in
contradiction with a subsequent fountain clock measurement;
the full-scale calculations have found that in fact there are no
magic wavelengths at B = 0, Ref. [6]. To reinforce this point
in the context of this paper, in Fig. 1, I compare the results
of two calculations of magic B fields for 87Rb as a function
of laser frequency. In the first calculation, I neglected the HFI
correction to the wave functions (while including the hyperfine
corrections to the energies), and the second result comes from
the full-scale calculation described below. We clearly see that
the simplified approach is off by as much as a factor of 2. Only
near the resonance do the two approaches produce similar
results.

These two examples should convince the reader that the full-
scale calculations are indeed required for reliably predicting
magic fields. A consistent approach to evaluating dynamic
polarizabilities of hyperfine states was developed in Ref. [6].
The HFI correction to wave functions and energies was
included to the leading order; this leads to a third-order analysis
quadratic in dipole couplings and linear in the HFI. Below I
simplify the magic field conditions using the formalism of
Ref. [6].

We may decompose the polarizability into a sum over 0-,
1-, and 2-rank tensors:

α̂ (ωL) = α̂(0) (ωL) + Aα̂(1) (ωL) + α̂(2) (ωL) . (7)

These terms are conventionally referred to as the scalar, vector
(axial), and tensor contributions. We also explicitly factored
out the degree of circular polarization A of the wave (A = ±1
for pure σ± light). The direction of the bias B field defines
the quantization axis. We also fixed the direction of the wave
propagation k̂ to be parallel to the B field. Notice that the
circular polarization of the optical field is defined with respect
to the quantization axis (not k̂).
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Below we show that the magic value of the magnetic field
may be represented as

Bm (ωL) ≈ − 1

µB

2I + 1

2I

α
(0),HFI
FF (ωL)

Aαa
nS1/2

(ωL)
hν0. (8)

It depends on the laser frequency and the degree of circular
polarization A, |A| � 1. α

(0),HFI
FF (ωL) is the scalar HFI-

mediated third-order polarizability of the lower clock state,
F = I − 1/2.

Indeed, the nonvanishing contribution to the differen-
tial polarizability �α (ωL) = αF ′F ′ (ωL) − αFF (ωL), entering
Eq. (5), comes only through the hyperfine-mediated inter-
actions: �α(ωL) = αHFI

F ′F ′ (ωL) − αHFI
FF (ωL). This reflects the

fact that both hyperfine levels belong to the same electronic
configuration—the symmetry in responding to fields is only
broken when the HFI is included. Moreover, for alkali metals,
αFF and αF ′F ′ are dominated by the scalar part of polar-
izability: �α (ωL) ≈ α

(0),HFI
F ′F ′ (ωL) − α

(0),HFI
FF (ωL). These two

polarizabilities never intersect; they are strictly proportional
to each other: α

(0),HFI
F ′F ′ (ωL) = −(I + 1)/Iα

(0),HFI
FF (ωL).

Now we turn to simplifying the off-diagonal matrix element
αF ′F (ωL) entering Eq. (5). It is dominated by the vector part
of polarizability. Indeed, 〈F ′,M ′

F |α̂(0)|F,MF 〉 = 0 due to the
angular selection rules (F ′ �= F ). While the tensor contribution
〈F ′,M ′

F |α̂(2)|F,MF 〉 does not vanish, the electronic momen-
tum of the ground state nS1/2 is J = 1/2; therefore (since
〈J = 1/2|α̂(2)|J = 1/2〉 ≡ 0) this matrix element requires the
HFI admixture and becomes strongly suppressed. By contrast,
the vector contribution 〈F ′,M ′

F |α̂(1)|F,MF 〉 does not vanish
even if the hyperfine couplings are neglected. It is worth
mentioning that it arises only due to relativistic effects, since
the orbital angular momentum L = 0 for the ground state;
e.g., vector polarizability is much smaller in Li than in Cs. The
off-diagonal matrix element of the rank-1 polarizability may
be expressed as α

(1)
F ′F (ωL) = 1

2αa
nS1/2

(ωL), where αa
J (ωL) is

the conventionally defined second-order vector polarizability
of the ground nS1/2 state.

To evaluate the polarizabilities, we used a blend of
relativistic many-body techniques of atomic structure, as de-
scribed in [12]. To improve upon the accuracy, high-precision
experimental data were used where available. To ensure the
quality of the calculations, a comparison with the experimental
literature data on static Stark shifts of the clock transitions was
made. Overall, we expect the theoretical errors to not exceed
1% for Cs and to be at the level of a few 0.1% for lighter alkalis.
If required, better accuracies may be reached with many-body
methods developed for analyzing atomic parity violation [13].

Our computed dependence of the magic B field on laser
frequency for representative alkalis (23Na,87Rb, and 133Cs) is
shown in Fig. 2. We also carried out similar calculations for 39K
and 7Li. Results for several laser wavelengths are presented in
Table I.

From Fig. 2, we observe that below the resonances,
magic-wavelength B fields grow smaller with increasing laser
frequency. This is a reflection of the fact that at small ωL,
the HFI-mediated polarizability approaches a constant value,
while the vector polarizability ∝ ωL. Thus, Bm ∝ 1/ωL in
accord with Fig. 2. As the frequency is increased, the Bm(ωL)
increases near the atomic resonance (fine-structure doublet).

FIG. 2. (Color online) Dependence of magic B field (in G) on
laser frequency (in atomic units) for 23Na (dashed green line), 87Rb
(solid blue line), and 133Cs (dot-dashed red line). Magic B fields for
other isotopes of the same element may be obtained using the scaling
law, Eq. (9).

This leads to a prominent elbow-like minimum in the Bm(ωL)
curves.

The magic B field has been recently measured for optical
lattice-confined 87Rb at 811.5 nm, Ref. [9]. At this wavelength
and degree of circular polarization A = 0.77(4), the measured
Bm = 4.314(3)G. For a purely circularly polarized light, this
translates into Bm = 3.32(17)G. The computed magic B field,
3.62G, is 1.8σ larger than the measured value.

A quick glance through the Table I reveals that the required
B fields for 39K are much weaker than for other alkali metals;
this is related to the fact that the nuclear moment of this isotope
is almost an order of magnitude smaller than that of other
species. An additional suppression is due to the magic B fields
being quadratic in hyperfine splitting (clock frequency).

Notice that if the B field and the direction of laser
propagation are set at an angle θ , then A → A cos θ in Eq. (8)
(see Ref. [7]). This angle provides an additional experimental
handle on reaching the magic-wavelength conditions. Increas-
ing the angle and reducing the degree of circular polarization
raise the values of the magic B field.

Generically, the ratio α
(0),HFI
FF (ωL) /αa

nS1/2
(ωL) is on the

order of a ratio of the hyperfine splitting to the fine-structure

TABLE I. Values of magic B fields for representative laser
wavelengths. The optical field is assumed to be purely circularly
polarized. Values of the clock transition frequencies ν0 and the
second-order Zeeman frequency shift coefficients δνZ/B2 are listed
in the second and the third columns, respectively. Magic B fields for
other isotopes of the same element may be obtained with the scaling
law, Eq. (9).

Magic B (G)
ν0 δνZ/B2

(GHz) (kHz/G2) 10.6 µm 1.065 µm 811.5 nm

7Li 0.80 4.9 – 144 64.9
23Na 1.77 2.2 47.4 5.07 4.05
39K 0.46 8.5 0.782 0.0848 0.0672
87Rb 6.83 0.57 41.0 4.39 3.62
133Cs 9.19 0.43 27.3 3.00 3.81
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splitting in the nearest P -state manifold, i.e., it is much
smaller than unity. This reinforces the validity of the weak-field
approximation used to derive Eqs. (5) and (8). Notice, however,
that limωL→0 αa

nS1/2
(ωL) → 0; this may lead to unreasonably

large magic B fields for very low-frequency fields. Such a
breakdown occurs for 7Li at 10.6 µm in Table I.

It is worth pointing out that the results of Fig. 2 and
Table I may be extended to other, e.g., unstable, isotopes. An
analysis of the third-order expressions for the HFI-mediated
polarizabilities shows that the magic B fields scale with the
nuclear spin and g factor as

Bm ∝ g2
I

2I (2I + 1)2

(2I + 2)3/2 . (9)

Finally, I would like to comment on the magic conditions
for the MF �= 0 states discussed in our earlier work [7]. The
idea there was to rotate the bias B field with respect to
the laser propagation. At a certain laser-frequency-dependent
magic “angle”, θ ≈ 90◦, contributions of the HFI-meditated
scalar polarizability and the rotationally suppressed vector
polarizability were compensating each other. Notice that we
may attain the Zeeman insensitivity even in this case. Indeed,
in a magnetic field, two hyperfine levels |F = I + 1/2,MF 〉

and |F = I − 1/2,MF 〉 repel each other through off-diagonal
Zeeman coupling. In addition, the g factors of the two
levels have opposite signs. This leads to a minimum in the
clock-frequency dependence on B fields. These minima occur
at relatively large magnetic fields, e.g., about 2 kG for 87Rb.
This dν(B)/dB = 0 condition fixes magic B field values for
the proposal [7].

It is anticipated that a variety of applications could take
advantage of the magic conditions computed in this paper. For
example, the dynamic Stark shift is the primary factor limiting
lifetime of quantum memory [5]; here an advance may be made
by switching to the magic B fields. It remains to be seen if the
micromagic lattice clock can be developed; here one needs to
investigate the feasibility of stabilizing bias magnetic fields
at the magic values. In this regard, notice that we still have
a choice of fixing laser wavelength, polarization, and rotation
angle to optimize clock accuracy with respect to drifts in the
B field.
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