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Probing the Kondo lattice model with alkaline-earth-metal atoms
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We study transport properties of alkaline-earth-metal atoms governed by the Kondo lattice Hamiltonian plus
a harmonic confining potential, and suggest simple dynamical probes of several different regimes of the phase
diagram that can be implemented with current experimental techniques. In particular, we show how Kondo
physics at strong coupling, at low density, and in the heavy fermion phase is manifest in the dipole oscillations
of the conduction band upon displacement of the trap center.
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To date, most cold atom simulations of condensed-matter
systems have focused on the single-band Bose and Fermi
Hubbard models, both because they are relatively simple to
simulate and because they are believed to capture a great deal
of important physics. However, there are many real materials
in which the relevance of both internal (spin) and external
(orbital) electronic degrees of freedom preclude description by
the single-band Hubbard model. Recently it has been shown
that fermionic alkaline-earth-metal atoms (AEMAs) have
unique properties that allow for the simulation of Hamiltonians
with both spin and orbital degrees of freedom [1], without
recourse to superlattice structures [2] or population of excited
bands [3]. There has also been substantial recent progress in
cooling these atoms to quantum degeneracy [4–8]. Here we
discuss avenues thereby opened into optical lattice simulations
of the Kondo lattice model (KLM).

As is generally the case, the necessity to perform a cold
atom simulation in a trap complicates the analogy with the
translationally invariant KLM. However, in this Rapid Com-
munication we emphasize how a trap can help reveal hallmarks
of the KLM, including heavy fermion mass enhancement
(through dynamics induced by trap displacement) and the
Kondo insulator gap (through formation of a density plateau).
The proposed experimental probing methods (center-of-mass
oscillations [9–11] and shell-structure density profiles [12,13])
have been demonstrated to be successful diagnostic tools in
alkali-metal atoms and, therefore, we expect that our analysis
will have direct applicability in experiments done in the near
future with AEMAs.

In its standard form, the KLM consists of a band of
conduction electrons interacting via a contact Heisenberg
exchange with a lattice of immobile spins. We focus on the
case of antiferromagnetic (AF) exchange, relevant to so-called
heavy fermion materials, which are known for radically
enhanced quasiparticle masses [14]. Simulation of the KLM
Hamiltonian with AEMAs was described in [1]; here we only
summarize the basic idea.

The 1S0 (g) and 3P0 (e) clock states of an AEMA can
be trapped independently in two different optical lattice
potentials whose periodicities could be engineered to be the
same [15]. We can therefore consider a Mott insulator of
e atoms (immobile spins) trapped in the vibrational ground
state of a deep optical lattice that coexists with mobile
g atoms (conduction electrons) trapped in the vibrational

ground state of a shallow lattice with the same periodicity.
At low temperatures the interactions are determined by four
s-wave scattering lengths aee, agg , and a±

eg for the states
|ee〉, |gg〉, and 1√

2
(|eg〉 ± |ge〉), respectively. We choose

the e atoms to be localized because they would otherwise
suffer lossy collisions. Collisions between g and e atoms, on
the other hand, are expected to be mostly elastic [1]. The
independence of the scattering lengths on the nuclear spin
state guarantees that there will not be spin-changing collisions,
and so we are justified in considering an ensemble with
only two nuclear spin states σ = ± (the electron spin in the
KLM).

If the g atoms have negligible interactions with each other
(which is true to a very good approximation in 171Yb) and
the strong repulsion between e atoms is taken into account by
a unit-filling constraint, the low-energy Hamiltonian contains
only two interaction parameters U±

eg ∝ a±
eg

∫
d3rw2

e (r)w2
g(r)

(where wα is the lowest Wannier orbital for the lattice
containing the α atoms). By defining Vex = (U+

eg − U−
eg)/2,

dropping constant terms, and including a harmonic trap of
curvature �, the Hamiltonian reduces to [1]

HK = −Jg

∑

〈i,j〉,σ
c
†
igσ cjgσ + Vex

∑

iσσ ′
c
†
igσ c

†
ieσ ′cigσ ′cieσ

+�
∑

i

i2nig. (1)

Here c
†
iασ creates an atom at site i in the electronic state α ∈

{e,g} and (nuclear) spin state σ , niα ≡ ∑
σ c

†
iασ ciασ , and Jg is

the tunneling energy for the g atoms. The dimensionless ratios
v = −2Vex/Jg and q = 4Jg/�, together with the number
of g atoms Ng , characterize the various parameter regimes
of the model. Unlike in previous proposals [2,3], here the
parameters Uee, Ugg , and v are mutually independent, and
the entire KLM phase diagram is in principle accessible. For
instance, both the sign and magnitude of Vex will depend on
the atomic isotope used, and the magnitude can be further
adjusted by offsetting one lattice from the other (to decrease the
overlap between Wannier orbitals) [1]. Therefore, in principle
both ferromagnetic (FM) and AF exchange are relevant.
Nevertheless, in this paper we exclusively consider the AF
case (v > 0).

In this regime the phase diagram of the translationally
invariant KLM in one dimension (Fig. 1) has been relatively
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FIG. 1. (Color online) Schematic zero temperature phase diagram
for the 1D KLM [16]. FM is a ferromagnetic phase, and PM is
a paramagnetic phase closely related to heavy fermions in higher
dimensions.

well established, and can be drawn consistently from a variety
of numerical studies and several exact results [16]. At strong
coupling ferromagnetism prevails, but the weak-coupling limit
is paramagnetic (PM). The boundary ng = 1 is insulating,
having spin and charge gaps for arbitrarily small nonzero
coupling. To our knowledge, the one-dimensional (1D) model
is not realized in condensed-matter systems, but it could be
explored with AEMAs in a three-dimensional (3D) optical
lattice if both the e and g lattices were made deep in two of
the dimensions (an array of 1D tubes).

Heavy fermions. We begin our analysis in the PM phase,
which is closely related to heavy fermion behavior in higher
dimensions [16]. The mass enhancement can be understood
qualitatively through a hybridization mean-field decoupling
[17] in which the quasiparticles near the Fermi surface have
a strongly localized character. While the mean-field theory
(MFT) does not capture the Luttinger liquid nature of the PM
phase at low energies, we believe it nonetheless provides a
reasonable guide to the phenomena discussed here; effects
beyond MFT are left for future study. Moreover, in work to
be presented elsewhere, the calculations to follow have been
extended to a two-dimensional geometry where MFT is more
reliable, with no qualitative change to the results.

The MFT can be obtained by a (nonunique) decoupling of
the interaction term in HK , leading to

HMFT = −Jg

∑

〈i,j〉σ
c
†
igσ cjgσ +

∑

iσ

[�i2nig + µi(nie − 1)]

+Vex

∑

iσ

Ṽi(c
†
igσ cieσ + H.c.) − Vex

∑

i

Ṽ 2
i . (2)

In Eq. (2) we have defined Ṽi = 1
2

∑
σ 〈c†ieσ cigσ + H.c.〉, where

the expectation value is taken in the Slater determinant of the
(Ne + Ng)/2 lowest-energy single-particle states (and the 1/2
accounts for spin degeneracy). We have also introduced chem-
ical potentials µi to enforce the local constraints 〈nie〉 = 1.
This decoupling is paramagnetic and therefore cannot capture
any magnetism, but it does describe the tendency toward
singlet formation at strong coupling. In addition, it turns out to
be the exact N → ∞ solution of the SU(N ) generalization
of the KLM [which can be implemented with AEMAs
having nuclear spin I = (N − 1)/2] [18,19]. Because HMFT is
quadratic it can be diagonalized, but it is necessary to choose
the Ṽi self-consistently.
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FIG. 2. (Color online) The hybridization gap �H induces a
plateau in the g atom density distribution (ng , red solid line) and
the hybridization (Ṽ , blue dotted line). Lines are from self-consistent
MFT and open shapes from LDA. The parameters used for this plot
were Ng = 25, q = 40, v = 8.

In the translationally invariant problem it is customary to
assume Ṽi = Ṽ and µi = µ, in which case analytic progress is
possible. With the trap we retain the site-dependent Ṽi and µi ,
and self-consistent solutions must be obtained numerically.
The procedure involves an initial guess for the Ṽi based on
the local-density approximation (LDA): We treat the trap as a
site-dependent chemical potential and infer the energy on each
site from a translationally invariant problem. LDA results are
obtained by minimization of the energy thus obtained, while
obeying a constraint on the total particle number. We then
solve for the µi that satisfy the local constraints [20], diago-
nalize HMFT, and recalculate the Ṽi using the definition. By
iterating this procedure we arrive at a self-consistent solution.

From the MFT ground states we can easily compute the
〈nig〉, which give us density profiles in the trap. For Ng or
� sufficiently large, these show plateaus (Fig. 2) similar to
what is observed for the repulsive Hubbard model, although
here they reflect the gap of a Kondo insulator, not a Mott
insulator. The Kondo insulator is often understood within the
MFT: Unit filling of g atoms corresponds to completely filling
a hybridized band, and there is a charge gap of �H . LDA
considerations then imply that �(j 2

2 − j 2
1 ) = �H (Fig. 2).

Exact results for the v = ∞ KLM give �(j 2
2 − j 2

1 ) = 3|Vex|;
in this limit �H tends to 2|Vex|, so the MFT underestimates
the plateau size. For the bosonic Hubbard model, where the
relevant gap is the on-site interaction U , such plateau struc-
tures have already been imaged via microwave spectroscopy
[12,13]. We therefore expect that for large v the plateau can
be observable experimentally.

At lower fillings, where the plateau does not form, we
are everywhere in the heavy fermion metallic state. Under
these conditions we consider an experiment where the trap
center is suddenly displaced, causing dipole oscillations of
the g atom center of mass (COM). This type of experiment
has been implemented in alkali-metal atoms to study 1D and
3D transport of interacting bosons and fermions [9–11], and
used to probe different quantum many-body regimes in these
systems. We calculate these dynamics self-consistently, start-
ing with the MFT ground states and shifting the Hamiltonian.
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If α
†
qσ = ∑

j (uq

j c
†
jgσ + v

q

j c
†
jeσ ) create the eigenstates ofHMFT,

then the following set of discrete Schrödinger equations
governs the evolution of the u

q

j (t) and v
q

j (t) after displacing
the trap by δ lattice sites:

−iu̇
q

j = Jg

(
u

q

j−1 + u
q

j+1

) − � (j − δ)2 u
q

j − VexṼj v
q

j ,
(3)−iv̇

q

j = −� (j − δ)2 v
q

j − µjv
q

j − VexṼju
q

j .

These are simply the Heisenberg equations of motion for the
quasiparticles dα

†
qσ /dt = i[Hδ

MFT,α
†
qσ ] (where Hδ

MFT is the
translation of HMFT by δ lattice sites). When integrating these
equations the Ṽj are updated self-consistently and the µj

are evolved in time by ensuring that d2〈nje〉/dt2 = 0 (the
first time derivative has no dependence on the µj ). Such
time dependence of the µj preserves the one e atom per site
constraint, and its necessity has a simple origin: HMFT breaks
the local U(1) symmetry of HK associated with conservation
of the e atom density.

The g atom COM oscillations ensuing from displacement
of the trap by one lattice site have been obtained at several
values of v for fixed q. We find a strong enhancement
of the oscillation period τ (and hence of the quasiparticle
mass m ∼ τ 2) for decreasing |Vex| (Fig. 3). Once v ∼ 1, the
comparably fast noninteracting oscillations emerge on top of
the slow oscillations of the heavy quasiparticles, converging to
the noninteracting result as v → 0 (which cuts off the apparent
trend toward diverging τ in Fig. 3).

Strong coupling. We now turn to the FM part of the
phase diagram, which exists for all fillings at sufficiently strong
coupling. When v = ∞ the ground state is formed by pairing
each g atom into a spin singlet with one e atom. To first order in
Jg the singlets become mobile, and there is an exact mapping
of the unpaired e atoms to the fermions of a U = ∞ Hubbard
model (with the singlets being the holes) [21]. Because nearest-
neighbor hopping cannot exchange up and down spins, we can
think of the fermions as spinless [22], perform a particle hole

v = 3
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FIG. 3. (Color online) Enhancement of the g atom COM oscil-
lation period (τ/τ0) reveals the mass enhancement (m/m0 ∼ τ 2/τ 2

0 ,
with m0 and τ0 the values at v = 0). The red circles are from MFT
dynamics, the blue solid curve is a guide to the eye, and the black
dotted line at (τ/τ0)2 = 2 marks the doubled effective mass expected
from Eq. (4) at strong coupling. Inset: COM motion for v = 3 (red
solid line) and v = 0 (black dotted line). In all cases the parameters
used were Ng = 5 and q ≈ 235.
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FIG. 4. (Color online) (a) The dotted blue line shows the
noninteracting dynamics of 16 g atoms after displacement of the trap
by five lattice sites. The solid red line shows the same dynamics except
now with v = ∞ (calculated using H∞). In both cases q = 400.
(b) The polaron COM (gray dotted line) is shown oscillating after
trap displacement by two lattice sites. The parameters used here
were q = 800 and v = 2. For comparison we plot cos(Vext) (blue
solid line), showing that the energy gap determines the time scale
of amplitude modulation (red dashed line). The overall decay is a
finite-size effect and eventually revives.

transformation (now the singlets are spinless fermions), and
thereby arrive at a simple Hamiltonian that describes the g

atoms,

H∞ = −Jg

2

∑

〈i,j〉
c
†
igcjg + �

∑

i

i2nig. (4)

The reduction of the hopping energy is the result of projecting
out the high-energy triplet states. To highlight this strong-
coupling behavior, we again consider dynamics ensuing from a
sudden displacement of the trap center. If the system is strongly
interacting, Eq. (4) avails a simple treatment of these dynamics
based on the noninteracting solutions in Ref. [23]. There the
authors found that for q � 1 and Ng <∼ 4

√
2Jg/� the dynam-

ics involved delocalized, free-space harmonic-oscillator-like
states with level spacing ω∗ = �

√
q. At v = ∞ we effectively

have Ng → 2Ng (because the fermions become spinless) and
Jg → Jg/2. Therefore, the inequality can be violated at strong
coupling even when satisfied for the noninteracting system;
localized states become populated and transport is strongly
inhibited [Fig. 4(a)].

Weak coupling. Another limit which is well understood in
the FM phase of the translationally invariant model is Ng = 1.
Sigrist et al. [24] proved that the ground state of the KLM
with L sites and one conduction electron has total spin S =
1
2 (L − 1), even in the absence of translational symmetry, and
they described the excitations for the homogenous case as
bound states between the g atom and a flipped spin in the
deep lattice (spin polaron). For a weak trap (q � 1) and at
sufficiently small coupling (|Vex| � ω∗), we characterize the
polaron spectrum to lowest order in degenerate perturbation
theory and find that one eigenvalue separates from the rest
by a gap of approximately |Vex|. As we see in Fig. 4(b), this
energy scale manifests itself in the COM oscillations of a single
g atom as a strong modulation of the oscillation amplitude
with periodicity τ ≈ 2π

|Vex| . This is verified by the dynamics
calculated from the exact eigenstates of HK .

For the finite system under consideration, we expect this
behavior will persist for Ng > 1 whenever Ng is odd. This
can be understood by noting that a single unpaired g atom
at the Fermi level gains energy at first order in perturbation
theory when coupling to the e atoms is turned on, whereas the
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doubly occupied levels below it do so only at second order. It
is also worth noting that the condition Vex � ω∗ is equivalent
to demanding the perturbation stay smaller than the finite-
size gap. For fixed lattice depth and peak g atom density, the
gap scaling is ω∗ ∼ 1/R, with R the Thomas-Fermi radius
of the g atom cloud (R ∝ √

NgJg/ω∗). This means that the
demonstrated modulations will be washed out with increasing
|Vex| or with increasing g atom number and are thus manifestly
a finite-size effect.

Experimental realization. We now consider the feasibility
of generating and observing these dynamics in an experiment.
Throughout this Rapid Communication we have assumed a
unit-filled Mott insulator of e atoms coexisting with various
fillings of g atoms at the center of a trap. To realize this situation
in experiment, one could first ramp up a deep optical lattice for
the g atoms so that they exhibit a Mott insulator shell structure.
By taking advantage of the energy shift between double and
single occupied sites, it is then possible to selectively transfer
atoms into the e state so that sites with two gg atoms become
eg sites and single occupied g sites become single occupied e

sites. A subsequent adiabatic reduction of the lattice depth for
the g atoms achieves the desired configuration. It may also be
helpful to confine the g atoms more tightly than the e atoms
(to ensure that they do not sample the wings of the e atom
Mott insulator), which can be achieved by blue detuning the
deep lattice. In most of our calculations we have used small
trap displacements to simplify the numerics, and in a real
experiment they will inevitably be larger. Observation of the
dipole oscillations in 1D with an amplitude of <∼8 lattice sites
has precedent and was carried out by mapping the center-of-
mass position of the atomic cloud to momentum space [9,10].

Moreover, a recent proposal [25] suggests that dynamics could
be characterized from a single nondestructive measurement if
the atoms are coupled to an unpumped cavity field. The small
atom numbers necessary for observation of the modulations at
small |Vex| also has precedent, with ∼18 atoms per tube having
been realized in an array of 1D lattices [26]. We emphasize
that all physics discussed here involves energy scales on
the order of Vex, which makes temperature demands less
constraining than for proposals involving superexchange or
Ruderman-Kittel-Kasuya-Yosida-type physics. (v ≈ 1 gives a
Kondo temperature on the order of |Vex|/kB , so this statement
applies even to the heavy fermion behavior.)

The results presented demonstrate that dipole oscillations
of the g atom COM effectively probe a variety of KLM phe-
nomena. The emphasis has been on a 1D system, which is of
relevance to cold atom experiments, primarily because current
theoretical understanding of the phase diagram is strongest
here. However, the heavy fermion behavior generalizes to
experiments in two and three dimensions. Although it has not
been discussed, we point out that an optical lattice experiment
(especially in D > 1) is a natural setting for probing the size
of the Fermi surface in the heavy fermion state and could
corroborate evidence for a large Fermi surface observed in
condensed-matter experiments.
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