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Nonlinearity from quantum mechanics: Dynamically unstable Bose-Einstein condensate
in a double-well trap
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We study theoretically an atomic Bose-Einstein condensate in a double-well trap, both quantum-mechanically
and classically, under conditions such that in the classical model an unstable equilibrium dissolves into large-scale
oscillations of the atoms between the potential wells. Quantum mechanics alone does not exhibit such nonlinear
dynamics, but measurements of the atom numbers in the potential wells may nevertheless cause the condensate
to behave essentially classically.
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Even though quantum mechanics is supposedly the fun-
damental theory, a classical description succeeds for a large
number of systems. When the classical model is nonlinear,
apparent discrepancies with linear quantum mechanics readily
arise. We have earlier [1] studied stationary states of a
Bose-Einstein condensate (BEC) in an optical lattice. Classical
theory predicts a nonlinear soliton, while quantum mechanics
does not. Of course, solitons are seen experimentally [2]. Our
resolution of this dilemma is that the measurements probing
the soliton will bring it about [1].

Here we study a time-dependent case in which quantum
mechanics and classical mechanics seem to disagree, namely,
dynamical instability. Classically, the signature of an instabil-
ity is that a small deviation from an unstable equilibrium grows
exponentially in time. Quantum-mechanically, under unitary
time evolution, the distance between any two states remains
constant.

A Bose-Einstein condensate in a symmetric double-well
potential makes our example. A convenient quantum descrip-
tion exists [3], and can be easily solved numerically for a large
number of atoms [4]. There is a corresponding classical model,
too, exactly as in quantized and classical descriptions of an
electromagnetic field. It is nonlinear, and has been discussed
in particular as an example of population trapping [3,5],
asymmetric oscillations of the atoms between the two wells.
Population trapping has also been seen experimentally [6].
The classical system may have an unstable equilibrium, and a
smallest deviation from the equilibrium can lead to large-scale
oscillations of the atoms between the two sides of the potential
well [7]. The question is, what does quantum mechanics have
to say about such oscillations?

We describe a preparation that leaves the classical model
in an unstable state. The oscillations of the atoms differentiate
between the two potential wells. Since quantum mechanics
strictly preserves the symmetry between the sides of the
trap, there seemingly cannot be any such oscillations. But
the broken symmetry in the classical case [1,8–10] once
more [1,8,9] correctly suggests that inclusion of a model for
the observations of the atoms will cure the discrepancy. We do
this much as before [9], and solve the theory using quantum
trajectory simulations [11–14]. Not only will the quantum
system, thus amended, display the classical behavior, but, in
analogy to Ref. [1], the measurements are seen to literally
cause the classical dynamics.

We study a double-well trap for bosonic atoms within the
conventional two-mode approximation [3]. The Hamiltonian
is

H

h̄
= −J (b†rbl + b

†
l br ) + U (b†rb

†
rbrbr + b

†
l b

†
l blbl). (1)

Here bl and br are the annihilation operators for the atoms
in the “left” and “right” wells, J > 0 is the amplitude for
tunneling between the wells, and U characterizes the strength
of the atom-atom interactions. The total number of atoms N̂ =
b
†
rbr + b

†
l bl is a constant of the motion, and its value is denoted

by N .
The corresponding classical field theory is obtained by

taking the Heisenberg equations of motion for the boson
operators, for example, iḃr = −Jbl + 2Ub

†
rb

†
rbr , and declar-

ing that in the equations of motion the operators are c

numbers, no longer operators. We then have, for instance,
iḃr = −Jbl + 2U |br |2br . This classical system has only two
relevant dynamical variables [5], which we pick as

z = (|br |2 − |bl|2)/N, ϕ = arg(brb
†
l ), (2)

the relative population imbalance and phase difference of the
condensates between the right and left traps. The variables z

and ϕ make a canonical pair, and their evolution is governed
by the classical Hamiltonian

H = −2J
√

1 − z2 cos ϕ + χ (1 + z2), χ = NU. (3)

The variables z and ϕ scale away the dependence on
total atom number N , but N is still part of the classical
Hamiltonian (3) in that χ ∝ N . If ever, the classical ap-
proximation can be accurate only for a large number of
atoms, when the discreteness of the atoms may be ignored.
In the classical limit of the quantum problem embodied in
Eq. (1) one should simultaneously take N � 1, and scale the
atom-atom interaction strength U so that χ = NU remains
constant. As the interaction strength U can be adjusted using
the Feshbach resonance [15] and the atom number can also
be varied experimentally, the two-well model represents a
realistic system that can be tuned between the quantum and
classical limits.

The classical Hamiltonian (3) has two stationary states
in the region (z,ϕ) ∈ [−1,1] ⊗ [0,2π ), namely, (z,ϕ) = (0,0)
and (0,π ). Both are dynamically stable for |χ |/J < 1; for
χ/J > 1 the steady state (z,ϕ) = (0,π ) is unstable, while for
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FIG. 1. (Color online) Phase-space portrait for the classical model
of a two-well system for the parameter values χ/J = −1.5. The thick
line marks the homoclinic orbits; the arrows indicate the direction of
flow in phase space.

χ/J < −1 the unstable state is (z,ϕ) = (0,0). Figure 1 shows
a phase-space portrait, contours of constant H(z,ϕ). Since
the Hamiltonian is a constant of the motion, the phase-space
coordinate (z,ϕ) is constrained to move along a constant-
energy contour. Figure 1 is for the case with χ/J = −1.5,
whereupon the point (z,ϕ) = (0,0) is a dynamically unstable
equilibrium, a hyperbolic fixed point. There are two directions
in phase space in which the system first recedes exponentially
in time from the point (0,0) and then returns to the fixed point,
completing a loop called a homoclinic orbit.

To facilitate an unbiased comparison between classical and
quantum dynamics, we envisage an experimentally feasible
preparation that works in the same way for both cases. Thus,
the system is first prepared in the lowest-energy state in the
presence of repulsive atom-atom interactions, χ/J > 1, and at
the time t = 0 the sign of the atom-atom interaction is suddenly
flipped.

Classically, the lowest-energy state for positive interactions
is (z,ϕ) = (0,0), with half of the atoms on each side of the
trap and the same phase for the condensates on both sides;
for χ/J < −1 the same state is the unstable equilibrium.
Whether in numerical or physical experiments, a classical
system will not stay in a dynamically unstable state, but some
form of noise will invariably launch the instability. In the
example of Fig. 1, even a minute amount of noise can cause
three distinct macroscopic behaviors [7]. If the system starts
inside the homoclinic orbit with z > 0, in the absence of further
noise it will stay inside the same orbit. Correspondingly, the
atoms stay predominantly in the right trap. The same situation
but favoring the left trap occurs if the system starts inside the
homoclinic orbit with z < 0. The third alternative is that the
system starts (slightly) outside the homoclinic orbits. Then
symmetric oscillations of the atoms from side to side will
result.

In the quantum case, the preparation puts the system in
the ground state for repulsive atom-atom interactions. This
state interpolates from the situation with all atoms in the
single-particle ground state of the double-well trap, |ψ〉 ∝
(b†r + b

†
l )N |0〉, to the number state with half of the atoms

in each side, |ψ〉 ∝ b
†
r

N/2
b
†
l

N/2|0〉, as the interaction strength

ranges from U = 0 to NU/J → ∞ [3,4]. It is not a stationary
state after the sign of the interaction is flipped. However, since
both the ideal initial state and the Hamiltonian are invariant
under the exchange of the site labels l and r , Hamiltonian time
evolution alone cannot produce any overt difference between
the two sides of the trap either: every quantum expectation
value remains unchanged under the exchange of l and r .
Moreover, and in contrast to the classical case, a small error
in the initial state will not cause runaway oscillations of the
atoms between the two sides. To find a counterpart of classical
instability we look elsewhere, into measurements.

In our thought experiments we assume in close analogy with
Refs. [9] and [16] that, perhaps by utilizing far-of-resonant
light scattering, a situation has been set up whereby two photon
detectors, “left” and “right,” give photon counts as a result of
the presence of the atoms in the left and right traps at the
rates Rr = �〈b†rbr〉 and Rl = �〈b†l bl〉. The constant � could
depend on the geometry of the experiment and the tuning
and intensity of the probe light. Here we make a technical
assumption that removes various secondary complications
from the picture: no photons are missed, but there is instead
a one-to-one correspondence between photon detections and
their back-action on the condensate. Formally, we model the
photon detections by the operators

Lr,l =
√

�/2
√
b
†
r,lbr,l , (4)

such that the Liouville–von Neumann equation of motion of
the density operator of the BEC, ρ, is amended by an addition
in the usual Lindblad form [14],

ρ̇ = − i

h̄
[H,ρ] +

∑
i=l,r

(2LiρL
†
i − L

†
i Liρ − ρL

†
i Li). (5)

The equation of motion (5) is unraveled using stan-
dard quantum trajectory simulations [11–14]. For reasons
of efficiency and accuracy, the practical algorithm is more
complicated [12,14] than our conceptual discussion [11], but
the idea is as follows. Suppose we have a state vector for the
system at time t , |ψ(t)〉. To obtain the state vector a short time
dt later, we first evolve the state according to

d

dt
|ψ〉 =

(
− i

h̄
H −

∑
i

L
†
i Li

)
|ψ〉 (6)

to obtain |ψ̃(t + dt)〉. In our particular example, the com-
bination of the Lindblad operators gives

∑
i L

†
i Li = 1

2�N̂ ,
so that the effect of the term added to the Schrödinger
equation is simply to damp the state vector by the factor
e−N�dt/2. At the end of the integration over dt , the probability
for a photon count on the right detector is calculated,
dPr = dtRr = dt�〈b†rbr〉, and dPl analogously. Using a
random number generator, the algorithm decides whether a
photon count happens on either detector. If the decision is
that the right detector r clicked, the state vector at time

t + dt will be |ψ(t + dt)〉 = Lr |ψ(t)〉 ∝
√
b
†
rbr |ψ(t)〉; if the

detector l reported, the result is |ψ(t + dt)〉 ∝
√
b
†
l bl|ψ(t)〉;

if neither detector reported, the state at t + dt is |ψ(t +
dt)〉 = |ψ̃(t + dt)〉; and for a short enough time step dt the
possibility that both detectors clicked is negligible. Finally,
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the state |ψ(t + dt)〉 is normalized, and the next time step
commences.

A collection of stochastic state vectors obtained in this
way could be used to compute expectation values over the
density operator ρ [11–14]. More to the present point, it can
be argued that the sequence of photon counts produced along
with an individual realization of a quantum trajectory |ψ(t)〉 is
a representative example of a sequence of photon counts that
one would see in one run of a conforming experiment. This
idea permeates the literature on quantum trajectory simulations
[14], but for completeness we enunciate the underlying
(meta)physical assumption [17]. Namely, by construction of
the quantum trajectory algorithm, the multitime correlation
functions for the photon counts from repeated runs of the
simulation would be the same as the correlation functions
from repeated real experiments as predicted from quantum
mechanics under the Markov approximation and the quantum
regression theorem [14]. If one reasonably assumes that it is
not possible to tell the difference between the realizations of
two stochastic processes with the same correlation functions,
quantum trajectory simulations and experiments should pro-
duce indistinguishable sequences of photon counts.

We may now consider what would happen in an individual
experiment in which the quantum system starts from the state
whose classical counterpart is dynamically unstable. If we
were to analyze an actual experiment, in the present setup the
only information available would be the timing of the photon
counts. We would have to reconstruct the counting rates at
both detectors from the observed photon counts, and infer
from those the numbers of the atoms in each potential well.
In a simulation we have the shortcut that the instantaneous
photon counting rates Rr and Rl are on hand, and we may
use them to find a representation of the population imbalance.
Analogously to Eq. (2), we compute

z(t) = 〈ψ(t)|(b†rbr − b
†
l bl)|ψ(t)〉/N. (7)

In the simulations we also define the phase difference between
the condensates by closely mimicking Eq. (2),

ϕ(t) = arg〈ψ(t)|brb
†
l |ψ(t)〉. (8)

It is possible to measure experimentally the phase difference
between the condensates [18], but in our scheme ϕ(t) from
Eq. (8) is an auxiliary quantity with no direct operational
meaning.

Example results are given in Fig. 2. Here we have the
atom number N = 104 and the interaction strength χ/J =
NU/J = −1.5. Each data set shows the outcome of one
quantum trajectory simulation. The difference is in the fre-
quency of detection of the atom numbers, set for instance
by varying the intensity of the detection light; from top to
bottom we have N�/J = 1, 100, and 10 000. The graphs on
the left present the population imbalance as a function of time
computed from Eq. (7), while the graphs on the right show the
population imbalance z(t) versus the angle ϕ(t), Eq. (8), as
points for all of the 5000 time samples that were also used to
plot z(t).

First look at the middle data set with N�/J = 100. In the
plot of z(t), all three behaviors anticipated for the classical
system are apparent at once: symmetric oscillations between
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FIG. 2. (Color online) Time dependence of population imbalance
z(t) and the phase-space trajectory z(ϕ) from three quantum trajectory
simulations that differ in the frequency of the observations by photon
counting; from top to bottom, N�/J = 1, 100, and 104. The trajectory
in phase space is plotted as discrete points, 5000 of them; the solid
line shows the same homoclinic orbits as Fig. 1.

the wells, and oscillations in which a majority of the atoms
stays in one or the other of the wells. A classical system
starting from a random initial condition and thereafter evolving
deterministically would stick with one type of behavior. We
attribute the switching to quantum noise and/or noise due to
the back-action of the measurements. On the other hand, the
plot of z(ϕ) is as if the system stayed close to the homo-
clinic orbits, something that the classical system is expected
to do.

The top data set differs in the frequency of observations,
N�/J = 1. We qualitatively assign a period of the oscillations
in population trapping, approximately half of the period of
those oscillations in which the atoms go back and forth
between the traps, as the characteristic time scale for the
oscillations. Then the top panel corresponds to about 5 photon
counts per characteristic time, the middle panel to about
500. There is still a qualitative resemblance to the classical
dynamics in the results for N�/J = 1, but the quantitative
agreement is quite poor compared to the N�/J = 100 case.
When the rate of observations is further decreased, the
resemblance to classical dynamics deteriorates further. In a
very real sense, the observations cause the classical behavior:
for the classical dynamics to emerge, the state has to be
observed frequently enough that the classical behavior can
be resolved.

In the bottom data set we have N�/J = 104, which means
that several photons are recorded per each atom during a
characteristic time of the oscillations of the atoms between the
traps. Although the noise is enhanced, the classical behavior
is still clearly discernible. Our interpretation is that, while
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increasingly aggressive measurements will eventually destroy
the classical behavior, the system is highly resilient against the
noise from the back-action of the measurements.

Our particular model for continuous measurements of
the atom number was picked for numerical expediency, as
quantum trajectory simulations boil down to solving the
Schrödinger equation. Real experiments on the instability
would not necessarily comply. For instance, suppose one has
inside a Mach-Zehnder interferometer light that is far off res-
onance from any atomic transition, and that the interferometer
is initially balanced so that all light comes out from one
port. When one inserts an atomic sample inside one arm of
the interferometer, the refractive index from the atoms makes
light come out of the formerly dark port. But the amplitude
of this light is proportional to the number of the atoms, so
that the intensity, and photon counting rate, are proportional
to the square of the number of the atoms, not the atom
number [16].

The notion that measurements or other environmental influ-
ences may cause a quantum system to behave approximately
classically is by no means new [19], and quantum-trajectory-
type methods have been used to study the emergence of
classical chaos in quantum systems [20–23]. The unusual
feature about our dynamically unstable model is that a dramatic
macroscopic behavior is triggered entirely by measurement
back-action. We do not enter into details of different measure-
ment schemes, for one thing because we believe that, within
reason (many atoms, measurements not too weak or strong),
classical physics always emerges [21–23]. However, although
the smaller atom numbers dictated by the constraints of the
numerics make the results less striking, we have verified the
same qualitative behaviors as in our explicit examples also in

the case when the photon counting rates are proportional to
the squares of the atom numbers.

It may be a challenge in real experiments to make the sides
of the trap and the measurement scheme symmetric enough
that quantum phenomena rather than technical imperfections
dictate the behavior of the atoms. On the other hand, the
assumption that no scattered photon is lost without a detection
event is clearly unimportant for the basic principle. For
instance, the detection of the classical behavior suffers because
of the less-than-unit efficiency of a photon counter, but
information about the atom numbers gets conveyed to the
detectors, and there is a back-action from the measurements.
Analysis of the effects of nonidealities of the system and of
the measurements is an interesting problem area, but we leave
it for future work.

We have studied the behavior of a Bose-Einstein condensate
in a double-well trap under the conditions when the classical
model of the system has an unstable steady state and exhibits
large-scale nonlinear dynamics as a result. A priori, the
corresponding quantum system does no such thing, but
when the state is monitored the classical nonlinear dynamics
nonetheless emerges. That a quantum-mechanical calculation
gives you nothing without a description (at least an implied
description) of the measurements may be trivial in itself. We
think, though, that we also have a practical point: When one
deals with a system that is intermediate between quantum and
classical mechanics, a careful description of the measurements
is a necessary part of the analysis.
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