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Probing the environment of an inaccessible system by a qubit ancilla
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We study the conditions for probing the environment affecting an inaccessible system by means of continuous
interaction and measurements performed only on a probe. The scheme exploits the statistical properties of the
probe at its steady state and simple data postprocessing. Our results, highlighting the roles played by interaction
and entanglement in this process, are both pragmatically relevant and fundamentally interesting.
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Examining the dynamics of a complex system is known
to be difficult, also in light of the fact that direct access to
its constituent parts may often be impossible. Built-in charge
qubits embedded in superconducting waveguides, which can
only be accessed through their electromagnetic field [1],
electron spins in self-assembled quantum-dot arrays [2], the
mechanical part of nanoelectromechanical systems and their
optomechanical counterparts [3,4], single-molecule junctions
[5], arrays of Josephson junctions with only a few of them cou-
pled to read-out antennae, or cold quantum gases and optical
lattices [6] are striking examples of the situation depicted here,
where only partial access to the components of a complex and
multipartite system is possible. In these instances, the use of
ancillary probing devices represents a valuable diagnostic tool
for the gain of information on inaccessible evolutions. First,
the coupling to such ancillae is frequently the only way to
grant some access, although indirect. Second, when unitary
dynamics and fine time control are in order, special techniques
of “interaction tomography” based on ancillae may be used [7].
Here we are interested in the case where the element to probe
experiences a nonunitary evolution. The interesting question
we assess is whether a proper characterization of such an open
system is still possible and which are the crucial ingredients for
such a process to be effective. Using a physically significant
model where an ancilla is continuously coupled to the system
to be probed and its steady state measured, we show that simple
postprocessing enables the characterization of an open-system
dynamics. In fact, current experiments have already realized all
the necessary ingredients to implement the proposed scheme
and their results can simply be reinterpreted to be exactly in
line with our findings [8].

In addition to the above pragmatic interests, our central
question is also fundamentally important. The ability to
reliably determine the environmental parameters affecting
inaccessible systems is vital in the development of means to
control such spoiling effects. Quite strikingly, we show this can
be done via the presence of an interaction with an ancillary
system and, aside from the nature of the system to be probed,
no other strong assumptions are made, making our scheme
remarkably flexible and readily implementable. Interestingly,
entanglement turns out to be inessential [9]. The presence of
simple classical correlations is sufficient to reliably infer the
main features of the system under scrutiny. In this respect,
our study is different from others dealing with the revelation
of the quantum correlations within a large environment by
detecting entanglement generated between two independent
probes [10]. Moreover, although the idea might be reminiscent

of schemes for quantum nondemolition measurements, the
underlying concepts are quite different. Instead of writing
the information encoded in a specific degree of freedom of
the system to be probed onto a “meter,” here we show that
one can operatively characterize a given evolution simply by
looking at the spectrum of the statistical two-time correlations
of the probe. We also stress the differences with a trivial ideal
state-swapping operation: here we look at the steady state of a
system in continuous interaction with its environment, which
is what one should realistically expect to occur. In this respect,
our proposal is also distinguished from any scheme relying on
the quantum Zeno effect, which would require proper timing
of measurements performed on the probing part [11].

We start by considering the simple case of two qubits,
labeled 1 and 2 and characterized by the respective transition
frequency ωj (j = 1,2). The free evolution of the qubits
is ruled by the Hamiltonian Ĥf = 1

2

∑2
j=1 ωj σ̂z,j (we

take h̄ = 1) with σ̂k (k = x,y,z) the k Pauli operator and
{|g〉,|e〉} the ground and excited state of each qubit. Qubit 2
embodies the system whose dynamics we want to characterize
through the detection stage represented by qubit 1. To account
for the case where qubit 2 is originally part of a multipartite
register whose state we are not interested in, we allow for
qubit 2 to be prepared in a general mixed state. This would be
the case, for instance, when this qubit is originally entangled
with the rest of a register. The second assumption we make
is that qubit 1 is in a pure state, well isolated from the
environment B affecting 2. This condition does not affect
the generality of our results and can easily be relaxed. We
also make no assumptions on the features of B, although we
assume its Markovian nature. Such a simplification allows the
problem to be treated with a Liouvillian approach requiring
the use of a standard “quantum optics” master equation
(ME). It should be stressed that the validity of such an
approach extends to quite a wide range of relevant physical
settings [12]. We allow the qubits to interact via the coupling
Hamiltonian Ĥ, whose choice is a setup-dependent issue.
Its form is usually guided by naturally or easily realized
interactions, specific to a chosen implementation. One could
even consider the case where probe and system to be probed
have different physical natures. As Ĥ embodies one of the
key tools in our scheme, we assume the ability to engineer
the most suitable form of coupling, possibly by changing
the type of probe to use. The choice of a specific form of
Ĥ thus has to be considered part of our scheme, whose crucial
target is the determination of the parameters characterizing
the environment B. Clearly all assumptions made, with the
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exception of the Markovian nature of the environment, can
be relaxed. This insensitivity to stringent conditions and
clear general applicability make the scheme experimentally
appealing as well as fundamentally interesting. To illustrate
the main point of our analysis, we study a general anisotropic
Heisenberg model. (In Ref. [8] we discuss the case of a second
interesting coupling mechanism, thus showing generality of
our results.) We thus take the Hamiltonian Ĥ = Ĥxy + ĤIsing

with Ĥxy = ∑
k=x,y Jk(σ̂k,1 ⊗ σ̂k,2) and ĤIsing = Jzσ̂z,1 ⊗

σ̂z,2. The nonunitary part of the evolution is entirely ascribed
to qubit 2, which is exposed to its environment B that we take
to be both dissipative and dephasing. With this in mind, the
evolution of the density matrix � of the system is given by
the ME ∂τ� = −i[Ĥt ,�] + LB(�) with Ĥt = Ĥf + Ĥ. The
Liouvillian L̂B(�) acting on the density matrix � of the system
is L̂B(�) = −�(n + 1)({|e〉2〈e|,�} − 2|g〉2〈e|�|e〉2〈g|) −
�n({|g〉2 〈g|,�} − 2|e〉2 〈g|�|g〉2〈e|) − 2γ (|g〉2〈g|�|g〉2〈g| −
{|g〉2〈g|,�}). The first two terms account for dissipation
occurring at rate � (n is the mean thermal occupation number
of the environment), while the last term describes dephasing
at rate γ . Our Markovian assumption unambiguously sets the
form of such nonunitary parts of the ME and leaves us with
the task of determining the coefficients γ , n, and �.

The terms involving Jx,y can be grouped together so
that Ĥxy = σ̂+,1(J σ̂−,2 + δσ̂+,2) + h.c. with J = Jx + Jy ,
δ = Jx − Jy , and σ̂±,j = (σ̂x,j ± iσ̂y,j )/2. For δ �= 0 we have
that [Ĥ,

∑
j σ̂z,j ] �= 0, which prevents conservation of the

total number of excitations, making the analysis rather
nontrivial. The dynamics of the system is evaluated by
projecting the ME onto the elements of the computational
basis {|gg〉,|ge〉,|eg〉,|ee〉}. This leaves us with a set of
differential equations characterizing the density matrix of the
system. We identify a matrix of coefficients 	 such that the
equations for the dynamical evolution become v(t) = e	tv(0)
with v(t) a vector of time-dependent density matrix entries.
The steady state thus corresponds to the eigenvector of 	

with zero eigenvalue. For the anisotropic Heisenberg coupling
in Ĥ, this leads to �ss

H = [��̃ss
H + J 2δ2GN1]/dH, where we

have introduced the matrix (written in the computational
basis)

�̃ss
H = �̃1 ⊗ �̃2 + N (E |ge〉12〈eg| + F |gg〉12〈ee| + h.c.) (1)

with �̃1 = A−|g〉1〈g| + A+|e〉1〈e|, �̃2 = [(N + 1)|g〉2〈g| +
(N − 1)|e〉2〈e|]/4, N = 2n + 1, G = �N + 2γ and the
frequencies 
 = ω1 + ω2 and ω̄ = ω1 − ω2. We have
used A± = (N ∓ 1)(G2+ω̄2)δ2 + (N ± 1)(G2 + 
2)J 2, E=
− i�JNδ2(G + iω̄), andF = i�J 2δ(G + i
). Moreover, we
have dH = N{�N [(G2 + ω2)δ2 + (G2 + 
2)J 2] + 4GJ 2δ2}.
The entanglement within �ss

H thus depends on the trade-off
among all these parameters.

We now temporarily divert from the main topic of our study
to look at the amount of entanglement in �̃ss

H . This allows us
to later ascertain the role, if any, played by entanglement in
our environment characterization scheme. As an entanglement
measure, we use the bipartite negativity NĤ(τ ). Dynamically,
this is evaluated by determining the v(τ )’s and its value can
be compared to the degree of entanglement between the two
qubits at their steady state, Nss

Ĥ . Figure 1 shows an example of
such a comparison for an environment being both dissipative
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FIG. 1. (Color online) (a) Entanglement against the rescaled
interaction time J τ for �/J = 0.1, n = 0, γ /J = 10−3,
J/J = 0.3, δ/J = 0.1, and Jz = J (where J is the typical order
of magnitude of the parameters and depends on the implementation
of the scheme). The straight line shows steady-state entanglement
while each curve refers to one of three random mixed states of
qubit 2. Qubit 1 is prepared in (|g〉 + |e〉)1/

√
2. The dashed line is the

average entanglement calculated over 1000 initial states of qubit 2.
(b) Influence of the Ising term in Ĥ. Each curve shows the average
entanglement for increasing Jz [other parameters as in (a)].

and dephasing. One would expect the dynamical behavior
of entanglement to depend on the initial preparation of the
qubits. The preparation of qubit 1 is (|g〉 + |e〉)1/

√
2 and we

consider various (in general mixed) initial states of qubit 2.
Figure 1(a) reveals that NĤ(τ ) is persistent in time, regardless
of the initial preparation of qubit 2. An interesting observation
is that Jz does not enter the steady state, implying that the
Ising part of Ĥ does not play a role in the determination of
the entanglement properties of the two-qubit systems in the
long-time limit, although it quantitatively affects them in a
purely dynamical sense as shown in Fig. 1(b). From now on
we set this parameter to zero and concentrate on Ĥxy , whose
features determine the degree of stationary entanglement.
The time required by the system to reach its steady state
is sensitive to the environmental parameters (γ ,�,n). This
can be seen in Figs. 2(a) and 2(b), where the effects of the
amplitude- and phase-damping rates on NĤ(τ ) are studied.
Dephasing has a stronger effect than amplitude damping on
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FIG. 2. (Color online) (a) NĤ(τ ) vs J τ (solid line) for J/J =
0.3, δ/J = 0.1, ω̄ = 0.3, 
/J = 3, γ /J = 0.001, and n = 10−3.
Each line shows the average entanglement for a uniformly random
ensemble taken as described earlier, for a set value of � ∈ [0,0.1]J ,
varying in steps of 0.02J . The straight line shows Nss

Ĥ . (b) Same as in
(a) but for � = 0 and γ ∈ [0,0.01]J , varying in steps of 2 × 10−3J .
(c) Effects of thermal mean occupation number n of the environment.
We plot NĤ(τ ) vs J τ and n ∈ [0,0.1] for �/J = 10−3.
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FIG. 3. (Color online) (a) Spectrum S(ν) of qubit 1 vs ν and the environment mean occupation number n for J/J = 0.3, δ/J = 0.1,
ω̄ = 0, γ = � = 10−3J , 
/J = 3. (b) For a set value of n, S(ν) is well approximated by the sum of two Lorentzian functions. Each (red)
curve is the result of a best fit over S(ν) for n = 10, 60, 100, 140, 300, and 500. (c) S(ν) vs the frequency ν and the dephasing rate γ for n = 0,
J/J = 0.3, δ/J = 0.1, ω̄ = 0, �/J = 10−3, and 
/J = 3. (d) As for panel (b) for a set value of γ each (red) curve is the best fit for S(ν)
corresponding to γ = 0.1, 0.25, 0.5, 0.75, and 1.

the settlement of steady entanglement. These considerations
help us to understand the results of the environment-probing
part of our study, which we now discuss. Motivated by similar
recent experimental efforts [1,4], we consider the emission
spectrum of qubit 1 in order to discern the effect of the coupling
between qubit 2 and B. That is, we aim at determining [13]
S(ν) = Re

∫
dτeiντ 〈σ̂+,1(τ )σ̂−,1(0)〉ss , where Re indicates real

part; S(ν) is the Fourier transform of the two-time correlation
function 〈σ̂+,1(τ )σ̂−,1(0)〉ss at the steady state. The linearity
of the Bloch-like equations allows the use of the quantum
regression theorem to obtain the two-time correlation function
we need [13]. The Fourier transform S(ν) can be given in a fully
(although lengthy) analytical form, which we omit. However,
we find that the determination of the parameters characterizing
the environment affecting qubit 2 is possible by studying S(ν).
Let us illustrate this claim with some instructive situations.
Figure 3(a) addresses the case of ω1 = ω2. Both dissipation
and dephasing are considered and the spectrum is studied
against the thermal occupation number n of the bath affecting
qubit 2. Two Lorentzian peaks appear at n � 1, centered at
J ± √

δ2 + ω2
c , which is a clear effect of quantum interference,

still possible in such a quasiunitary situation in virtue of the
weak effects of the environment. As soon as the thermal nature
of the bath affecting qubit 2 becomes stronger, the incoherent
dynamics reduces the distance between the peaks and merges
them into a single thermal peak at ωc. The separation between
the Lorentzian functions at n = 0 gives a direct estimate
of the coherent interaction strength, reinforcing the idea that
the two-peak structure arises because of strong coherences
in the system. For ω1 �= ω2 and n = 0, the coherent peaks
are located at ν± = 1

2 |√4J 2 + ω2 ± √
4δ2 + 
2| for small

damping and dephasing, with a nonlinear dependence on
�, n, and/or γ . Both the amplitude and the width of the
structures involved in S(ν) depend on � almost linearly in
the range �/J ∈ [0,1], while the dephasing rate γ has strong
effects on the peak-merging process. At small temperatures,
increasing γ destroys the interference effect quickly due to
cancellation of the off-diagonal elements in �ss

Ĥ [see Fig. 3(c)],
while increasing the dissipation rate leads to a decrease in
the amplitude of the peaks. Hence, the engineered interaction
allows us to identify the characteristics of the environment
affecting qubit 2. We can thus conclude that the analysis of the
spectrum S(ν) of qubit 1 is able to provide full information

on the details of the open-system dynamics experienced by
qubit 2. The shape, height, width, and structure of S(ν) can be
compared to data acquired experimentally. By simply fitting
such data with our analytic formulas, one can give excellent
estimates of the environmental features.

Although the spectrum is the most powerful diagnostic
tool in our investigation, its form makes it difficult to get an
immediate idea of the orders of magnitude of the parameters
being involved in the dynamics at hand. In light of our previous
discussions, this information can instead be easily gathered by
approximating the spectra shown in Figs. 3(a) and 3(c) with
the sum of two Lorentzian functions, whose respective maxima
get closer as the characteristic parameters of the environmental
effects are allowed to grow. We have thus checked that a
reliable characterization of S(ν) is achieved by means of the
fitting function Sfit(ν) = ∑

j=l,r Aj/[Bj + (ν − ν0
j )2], where

label j identifies the leftmost and rightmost Lorentzian, while
Aj , Bj , and ν0

j depend, in general, on the sets of parameters
of the dynamics (coherent and incoherent). For instance, at
n = 0 and for γ , � � J , we expect that ν0

l = ν− (ν0
r = ν+).

Moreover, 2
√

Bj gives the width of each Lorentzian, whose
maximum is given by Aj/Bj . As shown in Figs. 3(a), 3(c),
and 4, we have found an excellent agreement between the exact
analytic expression of S(ν) and its fitting function. Moreover,
it allows us to draw an analogy between the behavior of
S(ν) highlighted here and what occurs for the well-known

FIG. 4. (Color online) (a, b) The dots show the behavior of S(ν)
for an amplitude-damping-like channel with γ = 0 and �/J = 0.01
and 0.1 for J/J = 0.3, δ/J = 0.1, ω/J = 0.3, and n = 1. Each
solid line is a fit to the sum of two Lorentzian functions having
features analogous to those discussed earlier. The agreement between
the analytic function and the fitting one is excellent. (c, d): Same as
panels (a) and (b) but for � = 0 and γ /J = 0.1 and 0.3.

050301-3



RAPID COMMUNICATIONS

S. CAMPBELL, M. PATERNOSTRO, S. BOSE, AND M. S. KIM PHYSICAL REVIEW A 81, 050301(R) (2010)

Autler-Townes doublets [14] found for a multilevel atom
strongly interacting with an electromagnetic field. In this latter
case, the atomic spectrum of emission consists of two split
Lorentzian peaks with width proportional to the spontaneous
emission rate of the atom, in full similarity with what is
found and discussed in our study. As soon as the incoherent
atomic emission dominates over the coherent interaction with
the field, the Autler-Townes doublet disappears in favor of
an incoherent, single-peak structure, which again is strongly
reminiscent of what we find for the behavior of S(ν) under
increasingly stronger environmental effects. The qualitative
similarities that could be seen by inspection of the figures
presented here are made more rigorous by the use of the
two-Lorentzian structure given in Sfit(ν). In fact, this allows
us to infer, for instance, the rate � or the occupation number
n of the environment. A general analytic expression for the
width of the peaks in S(ν) is not in order, as it results
from the solution of a eighth-order algebraic equation in ν.
However, interesting insight can still be gained. For the sake
of definiteness, let us concentrate on the large n limit, which
is somehow easier to describe. By assigning the values of �

and γ , one numerically finds an inverse dependence of the full
width at half maximum (FWHM) of the Lorentzian peak in
S(ν) on n. In fact, an excellent fitting of the analytical curve is
obtained by using the model FWHM(n) = α[β + (n + 1)]−1,
where α and β are two functions of the remaining parameters in
the problem. This allows one to determine the temperature ofB
by postprocessing the experimental data acquired on S(ν). The
other parameters can be similarly determined. A completely
analogous approach can be taken in order to assess the
case of multilevel systems to be probed, up to continuous
variable ones. In Ref. [8] we discuss an example of such an
instance that proves how the validity of our approach goes
beyond the scenario discussed here.

Finally, we make an important remark: the presence of
nonclassical correlations between the probed and probing

systems is not relevant to the characterization process de-
scribed here. In fact, for the case of Fig. 3(a), �ss

H is separable
already at n ∼ 0.1, while the discrimination of the properties
of B is still possible. For n >∼ 1, �ss

Ĥ has nonzero (although
small) coherences, giving witness to the existence of classical
correlations between the two qubits. This can be seen by
showing that the corresponding mutual information of the
steady state (which accounts for both classical and quantum
correlations) is non-null, implying that the “mixedness” of
the state of qubit 1 is due not to the entanglement involving
the inaccessible part but to the shared effects arising from the
presence of an environment, which are the features probed by
S(ν). While the possibility of characterizing an environment
even in the absence of entanglement can be understood using
arguments based on the no-signaling theorem [9], this result
allows us to draw a fundamentally interesting conclusion:
environmental characterization is possible as long as a proper
correlation-establishing interaction with a probe is present.
The noncentral role played by entanglement in our scheme
already sets it apart from many previous proposals. It should
also be stressed that the scheme presented has, in effect, already
been experimentally realized for continuous-variable systems
[8], making it immediately useful in the current experimental
field. A surprising point here is that the information about the
open dynamics of the inaccessible system can be inferred just
by probing the steady state of the ancilla. The clear general
applicability of our protocol to effectively any situation in
which a Markovian assumption can be made makes our results
both pragmatically relevant and fundamentally interesting.
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