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Detection of pair-superfluidity for bosonic mixtures in optical lattices
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We consider a mixture of two bosonic species with tunable interspecies interaction in a periodic potential and
discuss the advantages of low filling factors on the detection of the pair-superfluid phase. We show how the
emergence of such a phase can be put dramatically into evidence by looking at the interference pictures and
density correlations after expansion and by changing the interspecies interaction from attractive to repulsive.
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Ultracold atoms in optical lattices are presently one of the
best environments for the study of exotic quantum phases
[1,2]. The experimental demonstration of the superfluid-to-
Mott transition [3] has opened the way to the study of strongly
correlated phases in lattices. In the case of mixtures of different
atomic species or different internal levels, new phenomena
related to quantum magnetisms and spin physics arise (see,
e.g., [4], and references therein).

The quantum phase that is central to this work is the
pair-superfluid (PSF) phase for a mixture of two different
bosonic species. This phase consists of the formation of a
superfluid of pairs where atoms of different species pref-
erentially hop together in the lattice. Single-species con-
densate is associated with the macroscopic occupation of
the zero quasi-momentum state for each species, while a
pair-superfluid requires the macroscopic occupation of the
zero relative quasimomentum, without any constraint on the
value that the single-species momenta can separately take. As a
consequence, single-species condensation is destroyed. In this
Brief Report, we will see how this picture is directly reflected
into physical quantities accessible in experiments with optical
lattices.

The question concerning the coexistence of single- and
pair-superfluidity in free space has been previously discussed
(see, e.g., [5]), and the existence of a pair-superfluid phase
in lattices has been already pointed out in several papers
[6–14]. In the lattice problem, the main emphasis has been
put on the situation of equal density for the two species
leading to total-integer and half-integer filling factors. For
integer filling factors, PSF arises in the regime where the
interspecies interaction almost completely compensates the
repulsive intraspecies interaction. Unfortunately, the precision
on the values of the interaction strengths and the very
small values of the tunneling parameter required to get
pair-superfluidity make this phase almost unaccessible exper-
imentally. At half filling factor for each species (total integer
filling), the PSF phase (analogous to the x-y ferromagnet),
is predicted in a larger region of the phase space. At low
tunneling and in the presence of asymmetries between the
interaction and tunneling parameters of the two species, the
PSF phase competes with the insulating-like antiferromagnetic
ordering. Instead, for total incommensurate filling factor, no
insulating-like phases (Mott or antiferromagnetic-like) exist.
In this regime, easily accessible signatures for the experimental
observation of pair-superfluidity are available. In this Brief
Report, we would like to complement the predictions in

[14], discussing the role played by the two-body momentum
distribution and commenting on the effect of interactions in the
expansion.

At total incommensurate filling factor and zero temperature,
two important phases are naturally conceived1: (i) a double
superfluid (2SF), where both species are independently super-
fluid and single-species coherence exists, and (ii) a PSF phase,
characterized by pair-coherence. Assuming that interactions
do not affect significantly the expansion of the atomic cloud
after release, all required information needed to distinguish
between the two phases is included in the pictures of the
two species after expansion: First, the interference fringes,
typical of single-species coherence, will appear for the 2SF
phase and vanish in the case of PSF. Moreover, the density-
density correlations between the two species after expansion
carry information about the correlations in momentum space
before expansion, which are dramatically different for the two
phases.

We consider two bosonic atomic species in a lattice,
described by the Bose-Hubbard Hamiltonian

H = −
∑
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[Jaa
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where σ = a,b indicates the two bosonic species and
ai,bi,a

†
i ,b

†
i , and nσ

i are the annihilation, creation operators,
and density of species a and b at site i, respectively. The
notation 〈ij 〉 represents nearest neighbors. The intraspecies
on-site interactions Uσ and tunneling parameters Jσ depend in
the standard way on the optical lattice potential and scattering
lengths. Generally speaking, the most favorable conditions
for PSF are given by a complete symmetry between the
two species, as far as interaction, hopping, and density are
concerned. This is the situation that we will assume in this
Brief Report (Na = Nb = N , Ja = Jb = J , Ua = Ub = U ),
focusing on the possibility of changing the interspecies inter-
action Uab from negative to positive by tuning the interspecies
scattering length via a Feshbach resonance over a wide range,
as demonstrated in [15].

1In this Brief Report, we do not investigate the supersolid and
pair-supersolid phases, which are instead discussed, e.g., in [13,14].
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The solution of Hamiltonian (1) is a nontrivial many-body
task. Quantum Monte Carlo (QMC) calculations provide the
most accurate results [6,8,11]. Evidence of the PSF phase has
been recently obtained also by matrix-product-state [9,13,14]
and dynamical mean-field approaches [12]. Furthermore, a
mean-field treatment of the effective Hamiltonian in the pair
subspace applied to a bilayer system of 2-D dipolar lattice
bosons has proven successful in describing the PSF and pair-
supersolid (PSS) phases [16].

In order to capture the basic physics of the pair correlations
underlying the emergence of the PSF, in this Brief Report,
we employ a toy model based on the exact diagonalization
of Hamiltonian (1) for a system of few atoms occupying few
lattice wells in 1-D with periodic boundary conditions. Of
course, sharp phase transitions are not accounted for by our
treatment, but we believe that the main conclusions remain
valid also for larger systems and higher dimensions.

The comparison between filling factors equal to and less
than 1/2 is useful. For filling factor exactly equal to 1/2, there
exists a particle-hole symmetry between positive and negative
interspecies interaction in the almost hard-core limit |Uab| �
U , leading to the PSF for attractive interactions (pairing of two
atoms of different species) and the so-called supercounterfluid
phase (SCF) for repulsive interactions (pairing of one atom
with a hole of the other species). Instead, for equal filling
factors less than 1/2 for each species, PSF still persists, but
SCF pairing is suppressed. This different behavior for positive
and negative interspecies interaction might help identify the
formation of PSF, as discussed later.

In order to put into evidence the differences between filling
factor ν = 1/2 and ν < 1/2, we will consider a system of four
wells and two atoms of each species (Nw = 4, N = 2) and a
system of six wells and two atoms of each species (Nw = 6,
N = 2), which are the smallest cases including the possibility
of having equal filling factors ν � 1/2 and nontrivial on-site
interactions. We look at the following quantities2:

V2SF = 〈a†
i ai+1〉 = 〈b†i bi+1〉, (2)

VPSF = 〈a†
i b

†
i ai+1bi+1〉 − 〈a†

i ai+1〉〈b†i bi+1〉, (3)

VSCF = 〈a†
i biai+1b

†
i+1〉 − 〈a†

i ai+1〉〈bib
†
i+1〉. (4)

The quantities V2SF, VPSF, and VCSF characterize the 2SF, PSF,
and SCF phases, respectively.3 We also consider single-particle
and two-particle momentum distributions in order to make a
useful link to the experiments.

In Fig. 1, we show the phase diagram as a function of J

and Uab. One can clearly identify the PSF (or SCF) regions as
the dark regions in Figs. 1(a) and 1(d), where single-species
coherence vanishes, and at the same time pair-coherence (or
counterpair-coherence) is different from zero, namely, the
light regions in Figs. 1(b) and 1(e) [or Fig. 1(c) for SCF].
As explained earlier, for ν = 1/2, PSF and SCF are found

2In the infinite system, the SF phase is defined by the conditions
〈a〉,〈b〉 �= 0 and 〈ab〉 − 〈a〉〈b〉 = 0, while the conditions for the PSF
phase are 〈a〉 = 〈b〉 = 0 and 〈ab〉 − 〈a〉〈b〉 �= 0.

3We have checked that correlations at two lattice sites distance
produce a similar phase diagram. Correlations at longer distances
cannot be investigated within our model.

FIG. 1. (Color online) Phase diagram for (top) Nw = 4 and
(bottom) Nw = 6 and N = 2. (a, d) Single-particle coherence
Nw|V2SF |, as defined in Eq. (2); (b, e) pair-coherence Nw|VPSF|, as
defined in Eq. (3); (c, f) counterpair-coherence Nw|VSCF|, as defined
in Eq. (4). The factor Nw allows a better comparison between the two
different lattice sizes. The region of parameters of strong attractive
interaction Uab <∼ −U corresponds to collapse in a large system.

for attractive and repulsive interaction, respectively. Instead,
for ν < 1/2, SCF is absent. For low filling, the crossover
from 2SF to PSF is governed by the competition between the
single-particle hopping J and the energy cost for breaking
a pair, equal to |Uab|. For that reason, PSF is found for
attractive interspecies interactions at sufficiently low tunneling
parameters J � |Uab|.

An important quantity accessible in experiments that would
provide an unquestionable proof of PSF is the measure of
correlations in the momentum distribution, reflecting the fact
that in the PSF and SCF phases, two atoms of different
species form a pair and condense in the state of total quasi-
momentum qa ± qb = 0 (for atom-atom and atom-hole pairs,
respectively), as shown in Figs. 2(a), 2(c), and 2(f). In the case
of two noninteracting superfluids (Uab = 0), the two species
have completely uncorrelated momentum distributions, that is,
n(a,b)(qa,qb) = n(a)(qa) × n(b)(qb), where n(a)(qa) and n(b)(qb)
separately present interference peaks at even multiples of the
Bragg momentum qB [see Figs. 2(b) and 2(e)], as happens for
standard single-component condensates [3,17]. In the presence
of interspecies interactions Uab �= 0, correlations build up in
a very different way, depending on the filling factor and on
whether the interactions are repulsive or attractive. For filling
factors exactly equal to 1/2, the situation is almost symmetric
for positive and negative Uab on particle-hole duality for the
different species. The momentum correlations are opposite
in the two cases, as shown in Figs. 2(a) and 2(c), indicating
SCF and PSF, respectively. The 2SF phase is recovered in the
vicinity of vanishing interspecies interactions [Fig. 2(b)]. For
equal filling factors smaller than 1/2, a 2SF is obtained both for
vanishing and repulsive interactions [Figs. 2(d) and 2(e)] since
the filling factor of one species does not match the filling factor
of the holes of the other. Hence only negligible momentum
correlations exist for Uab � 0. On the contrary, attractive
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FIG. 2. (Color online) Two-body momentum distribution
n(a,b)(qa,qb) for N = 2 and Nw = 4,6, i.e., filling factor (top) 1/2 and
(bottom) 1/3. (a, d) Repulsive interparticle interaction Uab = 0.5U ;
(b, e) vanishing interparticle interaction Uab = 0; (c, f) attractive
interparticle interaction Uab = −0.5U . In all pictures, J = 0.01U.

Two Brillouin zones are shown for clarity.

interactions lead to PSF and very strongly correlate the two
different species [Uab/U = −0.5; Fig. 2(f)]. The existence of
correlations is put even more into evidence by subtracting
the uncorrelated part n(a)(qa) × n(b)(qb) of the momentum
distribution.

The correlations in the two-body momentum distribution
are strictly related to single-particle coherence and strongly
affect the visibility of the single-particle momentum dis-
tribution, as shown in Fig. 3. The presence of momentum
correlations in n(a,b)(qa,qb) leads to a reduced contrast in
n(σ )(qσ ). Hence some signatures of the formations of the
PSF/SCF phases are provided already by the interference
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FIG. 3. (Color online) Single species momentum distribution
n(σ )(qσ ) for N = 2 and Nw = 4,6, i.e., filling factor (top) 1/2 and
(bottom) 1/3. (a, d) Repulsive interparticle interaction Uab = 0.5U ;
(b, e) vanishing interparticle interaction Uab = 0; (c, f) attractive
interparticle interaction Uab = −0.5U . In all pictures, J = 0.01U .
Two Brillouin zones are shown for clarity.

in the single-particle expansion pictures, which is the most
easily accessible experimental quantity [14]. For instance, at
low enough tunneling, for ν < 1/2, interference is expected
at Uab � 0, while it disappears (under exactly the same
conditions) by tuning Uab to negative values.

Most important, the single-species expansion pictures
carry information about the momentum correlations. In fact,
as demonstrated in [18], the direct measurement of the
momentum correlations can be performed by looking at
the noise in the single-species expansion pictures [19,20].
Assuming first that interactions do not affect the expansion,
the single-species densities after time of flight are given by
nσ

TOF(rσ = qσ t/mσ ) = n(σ )(qσ ). Hence, in the case of PSF,
where the correlations are of the type qa + qb = 0, we expect
the two expansion pictures to be correlated at correctly rescaled
opposite positions and possibly at corresponding points in
different Brillouin zones.

In usual experiments, interatomic interactions are not turned
off during the expansion, and their effect is considered to
be negligible because of the higher energy scales involved
in the problem. In the present case, it would be a safe
procedure to tune at least Uab to zero just before releasing
the cloud. However, this might not be so easily achievable
in an experiment. For this reason, we have estimated the
effect of the interspecies interactions on the expansion for
two atoms released from a four-well lattice by integrating
the full two-body Schrödinger equation. While with relatively
weak attractive interactions [|Uab|/J ≈ 20; see Figs. 4(a)
and 4(b)], the two-body momentum distribution is hardly
modified during the expansion, we have seen that the two-
body momentum distribution can be affected by attractive
interspecies interaction Uab, for interaction strengths leading
to pairing [|Uab|/J ≈ 60; see Figs. 4(c) and 4(d)]. This effect
tends to create also some correlations along the diagonal
qa = qb but does not destroy the correlations typical of the
PSF phase (at qa = −qb). Hence, recovering the two-body
density after expansion via noise correlation measurements,
the distinction between PSF and 2SF phases still remains

FIG. 4. (Color online) Effect of attractive interspecies interaction
Uab on the expansion. (a, c) Two-body density after expansion after
a time of flight ErtTOF ≈ 12, where Er is the recoil energy, in the
presence of interspecies interaction Uab; (b, d) free expansion at
the same time of flight (shown for comparison). The strengths of
interaction are |Uab|/J ≈ 20 in (a, b) and |Uab|/J ≈ 60 in (c, d),
respectively.
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very clear. More dramatic effects of the interactions during
the expansion take place only for values of |Uab|/J which are
much beyond the estimated onset of the PSF phase transition.

Small asymmetries in the Hamiltonian parameters of the
two species do not destroy the PSF phase. Instead, an
imbalance in the densities of atoms a and b hinders the
formation of the pairs. Unfortunately, we are not able to
quantify the realistic effect of the imbalance because of the
small number of atoms considered. However, one can think
of experimental procedures to create a sample with almost
exactly equal populations of the two species. For instance, one
could start with a Mott insulator at unit filling for both species
and then tailor the optical potentials, introducing a second laser
at half the wavelength such as to split each lattice well into
two equal wells. Alternatively, one can create a unitary filled
Mott region for both species in the trap center and then release
the harmonic trap until the desired filling factor is reached.
This method would favor the creation of the pairs in the Mott
phase, which can then become superfluid once the filling factor
is made incommensurate.

The physical ingredient on which pair-superfluidity relies is
the second-order hopping of two atoms of the different species
at once. This is closely related to the exchange interaction,

whose observability has been recently demonstrated in [21].
The fact that pair hopping is a second-order process in J ,
where J is assumed to be small, might seem to be discouraging
for the experimental observation of the PSF phase. However,
exact 2-D QMC simulations of this problem [11] predict the
transition between 2SF and PSF, at half-integer filling and
symmetry between the two species, to happen at J ≈ 0.1|Uab|.
Exploiting the possibility of having Uab of the same order of
U , this leads to relatively large values for the critical tunneling.
On the other hand, careful analysis of the critical temperature
and entropy for the formation of the PSF phase, as recently
done in [22], is required.

Our model provides an oversimplified description of the
system. We believe, however, that it includes correctly the
fundamental ingredients of the physics involved. A more
quantitative analysis based on exact numerical calculations,
including the effects of two-species unbalance on the forma-
tion of the paired phases, will be the subject of future work.
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