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Low-energy universality and scaling of van der Waals forces
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At long distances, interactions between neutral ground-state atoms can be described by the van der Waals
potential. In the ultracold regime, atom-atom scattering is dominated by s-waves phase shifts given by an effective
range expansion in terms of the scattering length α0 and the effective range r0. We show that while the scattering
length cannot be predicted for these potentials, the effective range is given by the universal low-energy theorem
r0 = A + B/α0 + C/α2

0 , where A, B, and C depend on the dispersion coefficients Cn and the reduced diatom
mass. We confront this formula to about 100 determinations of r0 and α0 and show why the result is dominated by
the leading dispersion coefficient C6. Universality and scaling extend much beyond naive dimensional analysis
estimates.
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van der Waals (vdw) forces account for long-range dipole
fluctuations between charge neutral atomic and molecular
systems [1] with implications on the production of Bose-
Einstein condensates of ultracold atoms and molecules [2].
vdw forces, however, diverge when naively extrapolated to
short distance scales [3,4]. Fundamental work for neutral
atoms was initiated in Refs. [5–7] (see also [8]), within
a quantum-defect theoretical viewpoint. In this article we
systematically show that these simplified approaches work and
analyze why they succeed. vdw forces are extremely simple in
this case and are described by the potential

V (r) = −
N∑

n=6

Cn

rn
, (1)

where Cn are the vdw coefficients which are computed ab initio
from intensive electronic orbital atomic structure calculations
(see, e.g., Ref. [9] for a compilation). Usually, only the terms
with n = 6,8,10 are retained, although the series is expected
to diverge asymptotically, Cn ∼ n! [10]. The impressive
calculation in hydrogen up to C32 [11] exhibits the behavior
Cn ∼ (1/2)nn! at relatively low n values. The potential (1)
holds for distances much larger than the ionization length lI =
h̄/

√
2meI (I is the ionization potential), which usually is a

few a.u. In the Born-Oppenheimer approximation the quantum
mechanical problem consists of solving the Schrödinger
equation for the two atoms separated by a distance r ,

−u′′
k + U (r)uk + l(l + 1)

r2
uk = k2uk, (2)

where U (r) = 2µV (r)/h̄2 is the reduced potential, µ =
m1m2/(m1 + m2) the reduced di-atom mass, k = p/h̄ = 2π/λ

the wave number, and uk(r) the reduced wave function. For
our purposes, it is convenient to write the reduced potential in
vdw units,

U (r) = −R4
6

r6

[
1 + g1

R2
6

r2
+ g2

R4
6

r4
+ · · ·

]
, (3)
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where R6 = (2µC6/h̄
2)

1
4 is the vdw length scale and g1, g2,

etc., represent the relative contributions from the terms with
C8, C10, etc., at r = R6, respectively. In Table I we display
numerical values for several diatomic systems which are
extremely small in the vdw units g1 ∼ 10−2 and g2 ∼ 10−4

with the exception of H and He. Thus, we may anticipate a
dominance of the C6 term in the calculations at low energies,
an implicit assumption in Refs. [5–7] and systematically
quantified in what follows.

Using the superposition principle for positive energy
scattering s-waves we decompose the general solution as

uk(r) = uk,c(r) + k cot δ0(k) uk,s(r), (4)

with uk,c(r) → cos(kr) and uk,s(r) → sin(kr)/k for r → ∞
and δ0(k) the scattering phase shift for the l = 0 angular
momentum state. The potential given by Eq. (1) is both long
range and singular at short distances. At short distances, the
De Broglie wavelength is slowly varying and hence a WKB
approximation holds [3,4], yielding for r → 0

uk(r) → C

(
r

RN

) N
4

sin

[
2

N − 2

(
RN

r

) N
2 −1

+ ϕk

]
, (5)

where RN = (2µCN/h̄2)1/(N−2) corresponds to the highest
vdw scale considered in Eq. (1). The phase ϕk is in principle
arbitrary. On the other hand, at low energies one has the
effective range expansion [18]

k cot δ0(k) = − 1

α0
+ 1

2
r0k

2 + v2k
4 log(k2) + · · · , (6)

where α0 is the scattering length and r0 is the effective range
which can be calculated from

r0 = 2
∫ ∞

0
dr

[(
1 − r

α0

)2

− u0(r)2

]
. (7)

Here, the zero-energy solution becomes, from Eq. (4),

u0(r) = u0,c(r) − u0,s(r)/α0, (8)

where u0,c(r) → 1 and u0,s(r) → r for r → ∞, yielding

r0 = A + B

α0
+ C

α2
0

, (9)
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TABLE I. van der Waals length R6 = (2µC6/h̄
2)1/4 and the

coefficients g1 and g2 defined by the reduced dimensionless po-
tential 2µV (r)R2

6/h̄
2 ≡ −x−6[1 + g1x

−2 + g2x
−4 + · · ·] with x =

r/R6. We use results from Refs. [12–17].

Atoms R6 (a.u.) g1 (10−2) g2 (10−4)

Li-Li 64.9214 1.424 58 2.978 74
Na-Na 89.8620 0.923 20 1.113 69
K-K 128.9846 0.647 80 0.497 84
Rb-Rb 164.1528 0.456 47 0.233 70
Cs-Cs 201.8432 0.365 44 0.139 83
Fr-Fr 215.0006 0.273 62 0.095 26
Li-Na 73.2251 1.256 05 2.171 83
Li-K 84.2285 1.183 74 1.796 89
Li-Rb 88.0587 1.185 72 1.705 55
Li-Cs 92.8950 1.213 64 1.682 41
Na-K 106.5708 0.806 00 0.801 55
Na-Rb 115.3377 0.745 28 0.659 23
Na-Cs 123.2277 0.738 74 0.611 48
K-Rb 142.8292 0.565 43 0.371 06
K-Cs 154.2909 0.539 03 0.321 52
Rb-Cs 180.8480 0.415 20 0.186 54
Be-Be 43.3013 2.549 53 6.703 03
Mg-Mg 72.3589 1.264 14 1.603 99
Ca-Ca 111.4907 0.845 84 0.650 57
Sr-Sr 148.9023 0.551 17 0.276 32
Ba-Ba 189.4340 0.416 92 0.152 60
Cr-Cr 91.2731 1.228 21
H-H 10.4532 17.517 60 423.454 26
He-He 10.1610 9.359 37 117.946 42

with A, B, and C given by

A = 2
∫ ∞

0
dr

(
1 − u2

0,c

)
, (10)

B = −4
∫ ∞

0
dr(r − u0,cu0,s), (11)

C = 2
∫ ∞

0
dr

(
r2 − u2

0,s

)
. (12)

Then, combining the zero- and finite-energy wave functions,
we get for any rc > 0

u′
k(r)u0(r) − u′

0(r)uk(r)|∞rc
= k2

∫ ∞

rc

uk(r)u0(r)dr, (13)

where rc plays the role of a short-distance cutoff which is
innocuous provided lI � rc � Rn. Using Eqs. (4), (5), and
(8), we then get for rc → 0

1

Rn

sin(ϕk − ϕ0) = k2
∫ ∞

0
dr

[
u0,c(r) − 1

α0
u0,s(r)

]
× [uk,c(r) + k cot δ0(k) uk,s(r)]. (14)

Orthogonality between uk and u0 requires ϕk = ϕ0, in which
case, expanding the integrand, we get the structure

k cot δ0(k) = α0A(k) + B(k)

α0C(k) + D(k)
, (15)

where

A(k) =
∫ ∞

0
dr u0,c(r)uk,c(r), (16)

B(k) =
∫ ∞

0
dr u0,s(r)uk,c(r), (17)

C(k) =
∫ ∞

0
dr u0,c(r)uk,c(r), (18)

D(k) =
∫ ∞

0
dr u0,s(r)uk,s(r). (19)

The interesting feature of Eqs. (9) and (15) is that the
dependence on the scattering length α0 and the potential
is explicitly disentangled. This is a universal form of a
low-energy theorem, which applies to any potential regular
or singular at the origin which falls off faster than 1/r5 at
large distances. We can visualize Eq. (9) as a long-distance
(vdw) correlation between r0 and α0. If the reduced potential
depends on a single scale R, that is, U (r) = −F (r/R)/R2,
one gets universal scaling relations

r0

R
= Ā + B̄

R

α0
+ C̄

R2

α2
0

, (20)

where Ā, B̄, and C̄ are purely geometric numbers which
depend solely on the functional form of the potential.

For the pure vdw case, V = −C6/r6, the effective range
has been computed analytically [6,7] and in harmony with the
general structure Eq. (20) reads

r0

R6
= 1.394 73 − 1.333 33

R6

α0
+ 0.637 318

R2
6

α2
0

, (21)
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FIG. 1. (Color online) The effective range r0 vs the inverse scattering length 1/α0 in units of the vdw radius R6 = (2µC6/h̄
2)1/4 for different

ranges. Points are potential calculations: [19–21] (Li-Li, Na-Na), [22] (Cs-Cs), [23] (Na-Rb), [24] (Be-Be), [25] (Cs-Rb), [26] (Cr-Cr), [27]
(Fr-Fr), [28–31] (H-H), [31] (He-He). The line corresponds to Eq. (21) [6,7].
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FIG. 2. The effective range coefficients A, B, and C [see Eq. (9)]
as a function of the dimensionless coupling g1 representing the 1/r8

correction to the vdw potential 1/r6.

In Fig. 1 we confront the prediction for the effective range
to the result of many potential calculations in vdw units.
As can be vividly seen, the agreement is rather impressive,
taking into account the simplicity of Eq. (21). Alternatively,
and discarding the exceptional outliers for α0 and r0, we
perform a χ2 fit to the form Eq. (20) for the remaining
82 points and get A = 1.31, B = −1.57, and C = 0.66, in
good agreement with Eq. (21). As we see, Fig. 1 repre-
sents a universal correlation accurately supported by phe-
nomenology when only the nonrelativistic 1/r6 potentials are
considered.

We analyze the robustness of this agreement by showing
in Fig. 2 the effect on the effective range coefficients, A(g1),
B(g1), and C(g1) due to adding a 1/r8 term. From Table I
we see that mostly g1 ∼ 10−2, in which case tiny changes
are expected from Fig. 2. Actually, the smallness of the
deviations suggests using perturbation theory. If we expand
the full solutions of the 1/r6 potential at small k, uk(r) =
u0(r) + k2u2(r) + · · · , the change in the effective range due
to inclusion of a �U (r) ∼ 1/r8 potential keeping α0 fixed
reads [32,33]

�r0 = 4
∫ ∞

rc

�U (r)u0(r)u2(r) dr, (22)

where rc ∼ g1R6 � R6. The leading contribution is deter-
mined by the short distance behavior of u0(r) [see Eq. (5)],
which acts as an inhomogeneous term for the equation
satisfied by u2(r). We find u2(r) ∼ (r/R6)4u0(r) yielding
�r0 ∼ g1R6 log g1 + O(g1). The logarithmic enhancement in
g1 can indeed be observed in Fig. 2 by the tiny curvature.

Of course, in obtaining α0 itself, C8 and C10, as well
as the short-range part of the atom-atom potential, become
important in practice provided the latter is determined from
low-energy data. However, once α0 is given, r0 is mainly
determined by C6 and α0 only. For further illustration, we
show in Fig. 3 the universal functions A(k), B(k), C(k),
and D(k), which in conjunction with α0 make it possible to
determine the phase-shift from Eq. (15). They scale with R6

and are uniquely determined by the power law −1/r6 once
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FIG. 3. The universal functions in units of R6 defined by
2µV (r) = −R4

6/r6, which make it possible to determine the phase
shift if the scattering length is also known [see Eq. (15)].

and forever. We have found that these functions show little
dependence on g1 and g2 at momenta as large as kR6 ∼ 10,
a rather unexpected result, hinting that the vdw universality
and scaling extend much beyond the naive dimensional
analysis estimate kR6 ≈ 1 or the effective range expansion of
Eq. (6) truncated with the first two terms. We note in passing
that although such a truncation suggests a higher degree of
universality, the vdw nature of the interaction prevents using
(α0,r0) as fully independent variables in view of Eq. (21)
and Fig. 1. In passing, it is interesting to notice that within a
nuclear-physics context characterized by short-range Yukawa
potentials stemming from meson exchange [34], the general
Eq. (9) has been exploited as a means of checking SU(4)
Wigner symmetry in the nucleon-nucleon interaction for the
1S0 and 3S1 channels with a pattern similar to Fig. 1. Actually,
the renormalization limit analyzed there corresponds to take
rc → 0.

We conclude by underlining that, when suitably displayed,
the analytical approach to vdw forces pursued in previous
works [6,7] acquires a quite universal character with indis-
putable phenomenological success; the leading 1/r6 contri-
bution suffices to accurately describe low-energy atom-atom
scattering with just two parameters in a wide energy range.
We naturally expect new universality and scaling patterns to
emerge from systems characterized by power law forces but
less understood such as molecular interactions in the ultracold
regime. From a broader perspective we stress that the lack of
dependence of potential model calculations on short-distance
details, unveiled from our systematic comparison, is a feature
traditionally built in by the quantum-defect theory. Its natural
counterpart of a smooth and controllable short-distance cutoff
dependence complies with the requirement of renormalizabil-
ity within a pure quantum-mechanical framework.
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Rev. A 69, 030701(R) (2004).
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