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Confinement limit of the Dirac particle in one dimension
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For a particle of mass m that obeys the time-independent Dirac equation in one dimension with a symmetric
potential, Unanyan et al. [Phys. Rev. A 79, 044101 (2009)] recently pointed out that the inequality �x =

√
〈x2〉 >

λ/2 can be derived simply from the Dirac equation. Here λ = h̄/(mc) is the Compton wavelength, x is the particle
coordinate, and 〈x2〉 is the expectation value of x2. We conjecture that a new, more stringent limit �x � λ/

√
2

holds for any symmetric potential. We present a model analysis on which the conjecture is based.
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Consider a particle in a stationary state that is described by
the one-dimensional Dirac equation,

Hψ(x) = Eψ(x), H = cαp + βmc2 + V (x), (1)

where ψ(x) is a two-component wave function, c is the speed
of light, p = −ih̄ d/dx, and m is the rest mass of the particle.
Here α and β are 2 × 2 Dirac matrices, which we will specify
shortly. The potential V (x) is real and time-independent. Wave
function ψ(x) is normalized as

∫ ∞

−∞
ρ(x)dx = 1, ρ(x) = ψ†(x)ψ(x). (2)

By assuming that V (x) is symmetric, that is, V (x) = V (−x),
Unanyan et al. [1] recently pointed out that the inequality

�x =
√

〈x2〉 − 〈x〉2 > λ/2, λ = h̄/(mc), (3)

follows simply from the Dirac equation (1). Here λ is the
Compton wavelength and 〈xn〉 = ∫ ∞

−∞ ρ(x)xndx. Since V (x)
is symmetric, the density ρ(x) is also symmetric and hence
〈x〉 = 0 and �x =

√
〈x2〉. It is noteworthy that Unanyan et al.

did not use the uncertainty principle �x�p � h̄/2 and that
the validity of Eq. (3) does not depend on the explicit form
of V (x).

The purpose of this Brief Report is to conjecture a more
stringent confinement limit, �x � λ/

√
2. We do this in

two steps. First, by way of reexamining Unanyan et al.’s
derivation of Eq. (3), we find that �x = λ/

√
2 holds when

V (x) represents a point interaction. Then, we present a model
analysis that leads to the conjecture that �x � λ/

√
2 holds

for any symmetric potential. The equality applies if and only
if the range of the potential is zero.

Let us reexamine Unanyan et al.’s derivation of �x > λ/2.
For the Dirac matrices α and β, any two of the 2 × 2 Pauli
matrices σx , σy, and σz can be used. We use α = σy and β = σz

as Unanyan et al. did. Then αp = −iσy h̄d/dx becomes real
and hence ψ(x) can be chosen to be real. Equation (1) can be
written as

−ch̄vx + mc2u + V u = Eu,
(4)

ch̄ux − mc2v + V v = Ev,

where ψ = ψ∗ = (
u

v

)
, ux = du/dx, and vx = dv/dx.

From Eq. (4) we can obtain uv = (h̄/2mc)(uux + vvx) =
(h̄/4mc)(dρ/dx), and then

∫ ∞

−∞
uvxdx = h̄

4mc

∫ ∞

−∞

dρ

dx
xdx = −λ

4
. (5)

Note that ρ = u2 + v2 � 2|uv|, which leads to

〈|x|〉 =
∫ ∞

−∞
ρ|x|dx � 2

∣∣∣∣
∫ ∞

−∞
uvxdx

∣∣∣∣ = λ

2
. (6)

Using the Cauchy-Schwarz inequality 〈x2〉 = 〈|x|2〉 � 〈|x|〉2

and Eq. (6), we obtain

�x � λ/2. (7)

This result does not depend on V (x). This is how Unanyan
et al. proceeded.

A question that arises here is whether the equality �x =
λ/2 can hold. In order for the equality to hold, we require
that u2 + v2 = 2|uv|. Unanyan et al. stated that this equality
holds only if u(x) = v(x) and that u(x) = v(x) is incompatible
with the Dirac equation; hence �x = λ/2 does not hold. This
statement of Unanyan et al., however, is not quite correct.
The equality u2 + v2 = 2|uv| only requires |u| = |v|. Since
V (x) is symmetric, we can assume that u(x) = u(−x) and
v(x) = −v(−x). Then |u| = |v| leads to u(x) = (x/|x|)v(x)
or u(x) = −(x/|x|)v(x). As we show in the following, such a
solution is allowed if (and only if ) E = 0 and V (x) is a point
interaction acting at the origin.

The simplest point interaction is in the form of the Dirac
delta function. The point interaction in its most general form
can be characterized by means of a boundary condition that
relates u(x) and v(x) for x = 0+ to those for x = 0−. The
boundary condition can be characterized in terms of three
real parameters [2,3]. Such details about the general point
interaction, however, are actually unimportant in the following.
The Dirac equation with a point interaction can be easily
solved. There can be one bound state. We focus on the situation
in which the interaction is symmetric, that is, invariant with
respect to x ↔ −x. The u(x) and v(x) of the bound state can
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be chosen as

u(x) = N e−|x|/λE , (8)

v(x) = −N

√
mc2 − E

mc2 + E

x

|x| e−|x|/λE , (9)

where N is the normalization factor, E is the energy eigen-
value, and λE is defined by

λE = ch̄/
√

(mc2)2 − E2. (10)

Note that −mc2 < E < mc2 and λE � λ. If V (x) is not a
point interaction, that is, if V (x) �= 0 for x �= 0, Eq. (4) does
not allow a solution such that u(x) ∝ v(v).

The normalized density distribution in the bound state is
given by

ρ(x) = (1/λE)e−2|x|/λE . (11)

The maximum (strongest) confinement is accomplished when
E = 0, that is, when the binding energy is mc2 and λE = λ.
In that case we obtain

(�x)2 = 〈x2〉 =
∫ ∞

−∞
ρ(x)x2dx = λ2/2, (12)

that is, �x = λ/
√

2. When (and only when) E = 0, we find
that u(x) = −(x/|x|)v(x) and the equality u2 + v2 = 2|uv|
holds. We agree with Unanyan et al. in that the equality
�x = λ/2 cannot hold but the reasoning we have given above
is different from that of Unanyan et al.

We examine �x for two models, I and II. In model I, V (x)
is a square-well (rectangular) potential, namely,

V (x) = −(g/2a) θ (a − |x|), (13)

where g and a > 0 are constants and θ (x) = 1 (0) if x > 0
(x < 0). In numerical illustrations, we assume that g > 0
such that V (x) < 0. Regarding the sign of g, the following
observation would be in order. Let H ′ be the H of Eq. (1)
in which V is replaced by −V . Then we can obtain H ′ψ ′ =
−Eψ ′, where ψ ′ is related to ψ by ψ ′ = σxψ . Note that
ψ ′†ψ ′ = ψ†ψ = ρ. This means that, when the sign of V is
reversed, the density distribution and hence �x remain the
same. The sign of g is unimportant as far as ρ and �x are
concerned.

Functions u(x) and v(x) can, respectively, be chosen as even
and odd functions of x. Outside the potential, that is, if |x| > a,
u(x) and v(x) are both proportional to exp[−(|x| − a)/λE].
The maximum confinement results when E = 0 and λE =
λ. We focus on such a situation in the following. The Dirac
equation with E = 0 and the V of Eq. (13) is satisfied by the
following u(x) and v(x):

u(x) =
{
N cos κa e−(|x|−a)/λ if |x| > a,

N cos κx if |x| � a,
(14)

v(x)

=
{−N cos κa (x/|x|) e−(|x|−a)/λ if |x| > a,

−Nch̄κ (x/|x|) sin κx/[mc2 + (g/2a)] if |x| < a,

(15)

where

(ch̄κ)2 = (g/2a)2 − (mc2)2 (16)

and N is the normalization factor that will be given shortly. It
is understood that (g/2a)2 > (mc2)2 so that κ is real. If this
inequality does not hold, there is no solution with E = 0. We
can assume κ > 0 without losing generality. Because V (x) is
finite, u(x) and v(x) are continuous functions. The function
u(x) of Eq. (14) is continuous at x = ±a. On the other hand
the continuity of v(x) of Eq. (15) at x = ±a requires that

ch̄κ tan κa = mc2 + (g/2a). (17)

With the κ that is subject to Eq. (17), we find that
v(x) = −N cot κa sin κx for |x| < a. Note also that u(x) =
−(x/|x|)v(x) for |x| > a.

The density ρ(x) is given by

ρ(x) = N2{2 cos2 κa e−2(|x|−a)/λ θ (|x| − a)

+ (cos2 κx + cot2 κa sin2 κx) θ (a − |x|)}, (18)

where

1

N2
= 2λ cos2 κa +

(
a − sin 4κa

4κ

)
cosec2κa. (19)

We then obtain

〈x2〉
N2

= λ(2a2 + 2aλ + λ2) cos2 κa

+ a3

3
cosec2κa − 1

8κ3
{[2(κa)2 − 1] sin 4κa

+ 4κa cos2 2κa}cosec2κa. (20)

In the limit of a → 0, we obtain Eqs. (8)–(12). In taking this
limit, care has to be exercised as discussed in Refs. [4,5].

For all numerical illustrations we take units such that c =
h̄ = m = λ = 1. For a, we have tried many values between 0
and 1. For an assumed value of a, g is determined by Eq. (17).
For example, g = 1.699118 when a = 0.1. Figure 1 shows
that �x increases as a increases. This is natural. Consequently,
�x > λ/

√
2 holds for any value of a > 0.

FIG. 1. �x of model I plotted as a function of a. The solid and
dashed lines are, respectively, for the cases with potentials of Eqs. (13)
and (21). The dotted line indicates �x = λ/

√
2.
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In order to examine how �x depends on the shape of the
potential, we examined cases in which the square (rectangular)
form is replaced by a smooth form such as Gaussian, Woods-
Saxon potential, etc. We found that the relation between �x

and a found in the square-well case remains essentially the
same. �x becomes slightly larger when the potential is made
smooth. In Fig. 1 we also show the results obtained with a
potential of Gaussian form,

V (x) = −(g/
√

π a )e−(x/a)2
. (21)

Note that
∫ ∞
−∞ V (x)dx = −g for both of the potentials defined

by Eqs. (13) and (21).
The particle can be more strongly confined if something like

barriers are added outside the square-well potential assumed
in model I. In order to explore such a possibility we consider
model II with

V (x) = −(g/2a) θ (a − |x|) + (h/b) θ (|x| − a)

× θ (a + b − |x|), (22)

where h and b > 0 are constants. For the sign of h, we assume
that h > 0 so that the two terms of V (x) have opposite signs. If
we assume that the two terms are of the same sign, then we are
essentially making the range of V (x) of model II greater than
that of model I. It is obvious that �x of such a case is greater
than its counterpart of model I. We are not interested in such
a situation. The Dirac equation with V (x) of Eq. (22) can be
handled in a way similar to what we did for model I with the
square-well potential of Eq. (13). In choosing the parameters
of the potential, we start by assuming some values for a, b,

and h. Then we determine g such that there is a bound state
with E = 0.

If we start with a set of fixed values of a and b and
increase h starting with h = 0, �x slightly decreases in the
beginning. Beyond a certain value of h, �x becomes an
increasing function of h. The value of �x always stays above
λ/

√
2. This feature is illustrated in Fig. 2 in which a = 0.1 is

combined with b = 0.005, 0.01, 0.05, 0.1, and 0.15. We have
also examined cases with smaller values of b. Lines for a = 0.1
and b < 0.005, however, are virtually indistinguishable from
the one for a = 0.1 and b = 0.005. On the other hand, if we
start with a set of fixed values of a and h and increase b starting
with b = 0, �x slightly decreases in the beginning. Beyond
a certain value of b, �x becomes an increasing function
of b. The value of �x always stays above λ/

√
2. Close

scrutiny reveals that, for a = 0.1, �x becomes minimum at
approximately b = 0.002 and h = 0.25. The value of g in this
case is g = 2.15709. This feature remains essentially the same
when the value of a is changed.

Figure 3 compares the density ρ(x) of the (square version
of) model I and that of model II. In both models we assume
a = 0.1. In model II b and h are chosen such that �x becomes
approximately minimum. In addition the density given by
Eq. (11) with E = 0 is shown with a dotted line. We have also
examined smoothed versions of model II such as the one in
which the rectangular potential is replaced by a potential with
two Gaussian functions. We found that the density remains
almost the same.

In summary, when V (x) is a symmetric point interaction
acting at the origin, we obtain �x = λ/

√
2. We examined

FIG. 2. �x of model II plotted for a fixed value of a = 0.1 and
b = 0.005 (solid line), 0.01 (spaced-dashed line), 0.05 (long dashed
line), 0.1 (dashed line), and 0.15 (dashed-dotted line). Lines for b <

0.005 are virtually indistinguishable from that of b = 0.005. �x

becomes minimum around b = 0.002 and h = 0.25. The dotted line
indicates �x = λ/

√
2.

�x for a large variety of symmetric, finite-ranged potentials
and found that �x > λ/

√
2. On the basis of this extensive

model analysis we conjecture that �x � λ/
√

2 holds for any
symmetric potential. The equality applies if and only if the
range of the potential is zero.

Before ending let us mention the confinement problem
with a more general form of the Dirac Hamiltonian, that is,

FIG. 3. Comparison of the densities of models I and II. The solid
and dashed lines show, respectively, ρ(x) for models I and II. In both
models, a = 0.1 is assumed. In model II, we assume b = 0.002 and
h = 0.25. For these values of b and h, �x becomes approximately
minimum. In addition, ρ(x) of Eq. (11) with E = 0 is shown with a
dotted line.
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H = αp + β[mc2 + S(x)] + V (x), where S(x) is a real
function of x [6–8]. Assume for example that S(x) =
(gs/2a) θ (|x| − a). If we let gs → ∞, the particle is com-
pletely confined in the region of |x| < a. The value of a can
be chosen arbitrarily small. This is not surprising because
we are essentially assuming that the mass of the particle is
infinitely large. Such a scalar potential is used for confining
quarks within a “bag” (see, e.g., Ref. [9]). There is another type
of S(x) with which we can confine a particle to an arbitrarily

small region. Assume that S(x) ∝ x and V (x) = 0. This leads
to a solution of the Dirac equation such that density ρ(x) is
Gaussian. Its width is related to S(x)/x, which is a constant.
This constant can be chosen such that the density can be
confined to an arbitrarily small region [10].
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