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Proposed method for direct measurement of the non-Markovian character of the qubits
coupled to bosonic reservoirs
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Non-Markovianity is a recently proposed characterization of the non-Markovian behavior in an open quantum
system, based on which we first present a practical idea for directly measuring the non-Markovian character of
a single qubit coupled to a zero-temperature bosonic reservoir, and then extend to investigate the dynamics of
two noninteracting qubits subject to two reservoirs, respectively, with a lower bound of non-Markovianity. Our
scheme, with no need for optimization procedures and quantum state tomography, is helpful for experimental
implementation.
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Realistic quantum systems are fragile due to an unavoidable
interaction with the environment [1,2]. For this reason, the
dynamics of open quantum systems have attracted much
attention in the investigations of modern quantum theory,
particularly of quantum-information processing (QIP) [3].
Over the past decades, the conventionally employed Marko-
vian approximation with the assumption of an infinitely
short correlation time of the environment has experienced
more and more challenges due to the advance of exper-
imental techniques [1], and non-Markovian features have
been observed in some physical systems (e.g., atomic and
molecular systems [4], high-Q cavity systems [5], and
solid state systems [6]). To understand these non-Markovian
effects, there have been various kinds of analytical and
numerical methods developed so far [1,7–10], such as non-
Markovian quantum trajectories [7], pseudomodes [8], non-
Markovian quantum jumps [9], and quantum semi-Markov
processes [10].

Among the recent investigations for non-Markovian be-
havior [11–14], a particular approach using non-Markovianity
contains the exact characterization of the non-Markovian
behavior of a quantum process without making any approxi-
mation for the dynamics [12]. The non-Markovianity is defined
to quantify the total amount of information flowing from the
environment back to the system through a quantum process
�(t) with ρ(t) = �(t)ρ(0), where ρ(0) and ρ(t) are the density
operators of the system at an initial time and at an arbitrary
time. In Ref. [12], the information is characterized by the
trace distance D(ρ1,ρ2) = 1

2 tr|ρ1 − ρ2| of two quantum states
ρ1 and ρ2, describing the distinguishability between the two
states and satisfying 0 � D � 1 [3]. D maximally reaches 1
when the two states are totally distinguishable and approaches
0 for two identical states [3]. The direction of information
flow is dependent on the slope of D(ρ1(t),ρ2(t)) [i.e., when
∂tD(ρ1(t),ρ2(t)) < 0] the information dissipates to the envi-
ronment and vice versa. Therefore, the non-Markovianity can
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be calculated by
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with τmin
n (τmax

n ) the time point whenD(ρ1(t),ρ2(t)) reaches the
nth local minimum (maximum). Equation (1) can be carried
out by summing up the amount of the increase of the trace
distance over each time interval [τmin

n ,τmax
n ] for any pair of

initial states ρ1(0) and ρ2(0), where the maximum is considered
as the non-Markovianity N (�). Since this is a problem of
optimization, however, we have to consider all pairs of initial
states in our calculation, which is inconvenient and impractical,
especially from the viewpoint of experimental exploration.

In this work, we show that the optimization problem
of N (�) can be simplified to an effectively computable
expression in the case of a single qubit coupled to a zero-
temperature bosonic reservoir. Moreover, for two independent
qubits coupled to two bosonic reservoirs, respectively, we
investigate a lower bound of the non-Markovianity. The
favorable feature of our method is the possibility to connect
the non-Markovianity to the population of the qubit in the
excited state, which can be detected directly in experiments
without the requirement of tomographic reconstruction of the
density matrix. In addition, our result also makes it possible
to have an easy evaluation of non-Markovianity even without
any information about the interaction between the qubit and
the reservoir.

We first consider a single qubit coupled to a zero-
temperature bosonic reservoir. The Hamiltonian in units of
h̄ = 1 is given by

H = ω0|e〉〈e| +
∑

l

ωla
†
l al +

∑
l

(gl|e〉〈g|al + g∗
l |g〉〈e|a†

l ),

(2)

where ω0 is the resonant transition frequency of the qubit
between the excited state |e〉 and the ground state |g〉. ωl and
al (a†

l ) are, respectively, the frequency and the annihilation
(creation) operator of the lth mode of the reservoir with the
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coupling constant gl to the qubit. The dynamics of the single
qubit can be represented by the reduced density matrix [1]

ρS(t) =
[

ρS
ee(0)|b(t)|2 ρS

eg(0)b(t)

ρS
ge(0)b∗(t) 1 − ρS

ee(0)|b(t)|2
]

, (3)

in the qubit basis {|e〉, |g〉}, where the superscript S of ρ

represents the single-qubit case. b(t) can be interpreted as the
amplitude of the upper level |e〉 of the qubit initially prepared
with ρS

ee(0) = 1 and b(0) = 1, and is given by the inverse
Laplace transform

b(t) = L −1

[
1

s + F (s)

]
, (4)

where the parameter s is a complex number and F (s) =
L [f (t)] = ∫ ∞

0 f (t) exp(−st)dt with the correlation function
f (t) = ∑

l |gl|2eiδl t = ∫
dωJ (ω)eiδt and δ(l) = ω0 − ω(l). The

explicit form of b(t) depends on the specific spectral density
of the reservoir [1].

As the density matrix should be of Hermiticity,
normalization, and semipositivity, any pair of initial
states can be written as

ρS
1 (0) =

(
α β

β∗ 1 − α

)
,

(5)

ρS
2 (0) =

(
µ ν

ν∗ 1 − µ

)
,

with |β|2 � α(1 − α), |ν|2 � µ(1 − µ), (β,ν)∈ C and 0 � α

(µ) � 1, (α,µ)∈ R. So we have

ρS
1 (t) =

[
α|b(t)|2 βb(t)

β∗b∗(t) 1 − α|b(t)|2
]

,

(6)

ρS
2 (t) =

[
µ|b(t)|2 νb(t)

ν∗b∗(t) 1 − µ|b(t)|2
]

.

Using the definition of the trace distance, we obtain

DS
(
ρS

1 (t),ρS
2 (t)

) = |b(t)|
√

|b(t)|2(α − µ)2 + |β − ν|2. (7)

In what follows, we consider the case that the qubit
interacts resonantly with a reservoir with Lorentzian spectral
distribution

J (ω) = 1

2π

γ0�
2

(ω0 − ω)2 + �2
, (8)

with γ0 the Markovian decay rate and � the spectral width
of the coupling [1], which has been widely employed in
quantum optics [15]. We may distinguish the Markovian and
the non-Markovian regimes using γ0 and �: γ0 < �/2 means
the Markovian regime and γ0 > �/2 corresponds to the non-
Markovian regime. Therefore, using Eq. (4), we have b(t) =
exp(−�t/2)[cosh(κt/2) + (�/κ) sinh(κt/2)], γ0 < �/2 and
b(t) = exp(−�t/2)[cos(κt/2) + (�/κ) sin(κt/2)], γ0 > �/2,

with κ =
√

|�2 − 2γ0�| [1]. We may check that, in the
non-Markovian regime, all local minima of |b(t)| ap-
proach zeros at τmin

n = 2[nπ − arctan(κ/�)]/κ with n =
1,2,3, . . . [i.e., |b(τmin

n )| = 0]. According to Eq. (7), all
nontrivial trace distances own the same monotonicity,
so DS(ρS

1 (τmin
n ),ρS

2 (τmin
n )) = 0. Therefore, Eq. (1) is re-

duced to N S = maxρ1,2(0)
∑

n DS(ρS
1 (τmax

n ),ρS
2 (τmax

n )) and the

maximum taken over all pairs of initial states is equivalent to
finding a trace distance whose local maxima are larger than
those of others. In what follows, we adopt DS

N (ρS
1 (t),ρS

2 (t))
for such a trace distance and

N S =
∑

n

DS
N

(
ρS

1

(
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n

)
,ρS

2

(
τmax
n

))
, (9)

for the non-Markovianity of a single qubit case, where the
summation is over all local maxima of DS

N (ρS
1 (t),ρS

2 (t)). We
first prove the theorem below.

Theorem. There exists a maximum trace distance |b(t)| at
any instant time in Eq. (7) when α = µ = 1/2,|β| = |ν| = 1/2
and |β − ν| = 1.

Proof. Suppose DS(ρS
1 (t),ρS

2 (t)) = |b(t)|d(t) with
d(t) =

√
|b(t)|2(α − µ)2 + |β − ν|2 where d(t) can be

taken as the distance between the points P1(|b(t)|α,β) and
P2(|b(t)|µ,ν), and Pi(x,y) (i = 1,2) denotes the points
with x ∈ R and y ∈ C. It is convenient to check that
[|b(t)|α − |b(t)|/2]2/[|b(t)|/2]2+ |β|2/(1/2)2− 1 =4[|β|2 −
α(1 − α)] � 0, which implies that the point P1[|b(t)|α,β] or
P2[|b(t)|µ,ν] is in (or on the circumference of) the ellipse

[x − |b(t)|/2]2/[|b(t)|/2]2 + |y|2/(1/2)2 = 1, (10)

with x ∈ R and y ∈ C. We know that the maximum distance
between the two points in an ellipse is in between the two ends
of the major axis. Since |b(t)| < 1 (t > 0), d(t) reaches the
maximum 1 only in the case of |b(t)|α = |b(t)|µ = |b(t)|/2
(i.e., α = µ = 1/2 and |β| = |ν| = 1/2 and |β − ν| = 1).
Consequently, DS(ρS

1 (t),ρS
2 (t)) will also reach the maximum

|b(t)|. �
It is easy to check that any pair of initial states satisfying the

conditions in the above theorem definitely owns the same trace
distance |b(t)|. Since the maximum of the trace at any instant
time is |b(t)|, for any pair of the initial states not meeting the
conditions in the above theorem, the local maxima of |b(t)|
should never be larger than those of the initial pairs meeting
the conditions. In what follows, we will employ DS

N = |b(t)|
as the trace distance for measuring non-Markovianity. As a
result, the calculation of non-Markovianity can be simplified
to an easily computable expression

N S =
∑

n

∣∣b(
τmax
n

)∣∣, (11)

with τmax
n the time point when |b(t)| reaches the nth local

maximum.
Straightforwardly, we can find the relationship between the

population of a single qubit initially in the excited state |e〉 and
the maximum trace distance P|e〉 = (DS

N )2, which yields

N S =
∑

n

√
P|e〉

(
τmax
n

)
, (12)

from which the non-Markovianity of the qubit coupled to the
reservoir can be measured from the population of the upper
level of the qubit. The requirements for this implementation
are (i) the bosonic reservoir is initially in a vacuum state and
(ii) the initial state of the qubit is prepared in the upper level.

Figure 1(a) shows a comparison between the non-
Markovianity [the dark (blue) bars] and N S

ρ|e〉,ρ|g〉 [the light
(blue) bars] in the case of a non-Markovian regime ranging
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FIG. 1. (Color online) (a) Blue bars (black in the printed version):
The non-Markovianity of a single qubit coupled to a zero-temperature
bosonic reservoir with a Lorentzian spectrum. Light blue bars (gray
in the printed version): The total growth of trace distance with
the initial pair of states ρ|e〉(0) = |e〉〈e| and ρ|g〉(0) = |g〉〈g|. The
maximum trace distanceDS

N (blue solid lines) characterizes the decay
process (red dashed lines) of a single qubit in (b) non-Markovian
regime (e.g., � = 0.1γ0) and (c) Markovian regime (e.g., � = 10γ0),
respectively.

from � = 0.1γ0 to � = γ0, where N S
ρ|e〉,ρ|g〉 is measured by the

trace distance DS(ρ|e〉(t),ρ|g〉(t)) = |b(t)|2 with the initial pair
of states ρ|e〉(0) = |e〉〈e| (α = 1,β = 0) and ρ|g〉(0) = |g〉〈g|
(µ = 0,ν = 0). Due to |b(t)| < 1 and |b(t)|2 < |b(t)|, the light
(blue) bars are always shorter than the dark (blue) ones. In
addition, it can be seen that the indistinguishability of the
states grows with the increase of the reservoir bandwidth
�. This might be interpreted as the non-Markovian character
becoming less evident when the coupling between the qubit
and the reservoir decreases.

We studied in Fig. 1(b) the population of the excited state
P|e〉 and DS

N in the non-Markovian regime (e.g., � = 0.1γ0),
which shows the population P|e〉 reviving with the increase
of DS

N . This can be explained as the non-Markovian effect
of the bosonic reservoir: The process with DS

N being larger
corresponds to the case that information lost by the qubit
flows back from the reservoir, increasing the distinguishability.
Therefore, the population revives for several times during this
period. In contrast to the non-Markovian regime, no revival
of the population occurs in the weak-coupling Markovian
regime (e.g., � = 10γ0) as shown in Fig. 1(c) because
DS

N monotonously approaches zero with b(t) � exp[−(� −
κ)t/2]. This implies no information flowing back to the qubit.

The above analysis can be conveniently extended to other
spectral densities, other than Lorentzian spectral distribution,
for the non-Markovian characterization of a qubit coupled to a
bosonic reservoir [16], as long as the condition |b(τmin

n )| = 0
(n = 1,2,3, . . .) is fulfilled [17].

Let us take a brief look at the non-Markovianity of two
identical noninteracting qubits A and B locally interacting
with two independent zero-temperature bosonic reservoirs,

respectively. We noticed that taking the maximum over any
pair of initial states according to Eq. (1) is nearly intractable
in the two-qubit case, although numerical simulation might
been employed for this job [12]. However, since any growth
of the trace distance is a clear illustration of non-Markovian
character, in the following, instead of finding the maximum,
we consider the trace distance

DT (ρ|++〉(t),ρ|−−〉(t)) = |b(t)|
√

2 − 2|b(t)|2 + |b(t)|4, (13)

as the measurement of the non-Markovian character of
the two qubits where the initial pair of states ρ|++〉(0) =
|+〉A〈+| ⊗ |+〉B〈+| and ρ|−−〉(0) = |−〉A〈−| ⊗ |−〉B〈−| with
|±〉i = (|g〉i ± |e〉i)/

√
2 and i = A,B. Similar to the single-

qubit case, the trace distance approaches zeros [i.e.,
DT (ρ|++〉(τmin

n ),ρ|−−〉(τmin
n )) = 0 when |b(τmin

n )| = 0]. There-
fore, a lower bound of non-Markovianity can be calculated by

N T
ρ|++〉,ρ|−−〉 =

∑
n

∣∣b(
τmax
n

)∣∣√2 − 2
∣∣b(

τmax
n

)∣∣2 + ∣∣b(
τmax
n

)∣∣4
,

(14)

or by the equivalent form

N T
ρ|++〉,ρ|−−〉 =

∑
n

√
2P|e〉

(
τmax
n

)− 2P|e〉
(
τmax
n

)2+P|e〉
(
τmax
n

)3
.

(15)

Similar to the single-qubit case, the non-Markovian character
lowers with the increase of the spectral width of the coupling,
as shown in Fig. 2(a).

FIG. 2. (Color online) (a) A lower bound of non-Markovianity
corresponding to the trace distance DT with the initial pair of states
ρ|++〉(0) = |+〉A〈+| ⊗ |+〉B〈+| and ρ|−−〉(0) = |−〉A〈−| ⊗ |−〉B〈−|
(|±〉i = (|g〉i ± |e〉i)/

√
2,i = A,B). The trace distance DT (blue

solid lines) characterizes the dynamics of two noninteracting qubits
coupling to two independent reservoirs in (b) the non-Markovian
regime (e.g., � = 0.1γ0) and (c) the Markovian regime (e.g.,
� = 10γ0). While the red dot-dashed lines and green dotted lines
represent the concurrence of two qubits initially prepared in
Bell states |�〉 = (|ge〉 + |eg〉)/√2 and |�〉 = (|gg〉 + |ee〉)/√2,
respectively.

044105-3



BRIEF REPORTS PHYSICAL REVIEW A 81, 044105 (2010)

Conventionally, the dynamics of two entangled qubits can
be measured by the Wootters concurrence [18]. Using the
method in Ref. [19], we obtain the concurrence of the two
qubits as

C|�〉 = max{0,|b(t)|2},
(16)

C|�〉 = max{0,|b(t)|4},
when the initial states are prepared in Bell states
|�〉 = (|ge〉 + |eg〉)/√2 and |�〉 = (|gg〉 + |ee〉)/√2,
respectively [19].

The trace distance DT [Eq. (13)] measuring a lower
bound for non-Markovianity can well characterize the non-
Markovian behavior of the dynamics of two qubits. In Fig. 2(b),
the dynamics of the qubits initially prepared in Bell states
|�〉 [(red) dot-dashed line] and |�〉 [(green) dotted line],
respectively, in the non-Markovian regime (e.g., � = 0.1γ0)
is investigated. The entanglement measured by concurrence
periodically vanishes in accordance with the trace distance
DT . In contrast, the trace distanceDT , in the Markovian regime
(e.g., � = 10γ0), asymptotically approaches zero, as shown in
Fig. 2(c), which implies that no entanglement revival exists in
the Markovian regime.

In practice, our scheme will be very preferable for exper-
imental implementation. According to Eqs. (12) and (15),

we can study the non-Markovian effect on coherence and
entanglement of the qubits coupled to bosonic reservoirs
by directly measuring the population of a qubit without
resorting to tomographic reconstruction of the density matrix.
Besides, our proposal requires no specific information about
the interaction between the qubit and the reservoir. These
favorable features make our scheme feasible in experiments
under real environments (e.g., using two-level atoms confined
in optical microcavities [20]) or under simulated reservoirs
[21] (e.g., using a spin-reservoir model with spectral densities
ranging from subohmic to superohmic cases simulated by
trapped ions [22]).

To summarize, we presented a simple method for measuring
the non-Markovian character of the qubits coupled to bosonic
reservoirs. We believe that this easily operated measure for
non-Markovianity will be very useful for further understanding
non-Markovian behavior and also for experimental explo-
ration, particularly in realistic experimental situations without
knowing much about the interaction between a qubit and the
environment.
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