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Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular
momentum state spaces
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We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital
angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows
us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional
OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal
superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that
SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information
processing systems.
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I. INTRODUCTION

The violation of a Bell-type inequality is the hallmark of
quantum entanglement. In the past couple of decades, bipartite
quantum entanglement has been of interest both within the
context of quantum information theory [1] and quantum
computing [2,3] and for applications such as entangled cryp-
tographic systems [4] and quantum imaging [5–7]. Initially
demonstrated for polarization [8–11], entanglement has also
been shown between conjugate variables such as time and
energy [12,13], position and momentum [14], and also multiple
variables simultaneously (known as hyperentanglement) [15].

Entanglement has also been demonstrated between spatial
modes carrying orbital angular momentum (OAM) and has
been used for quantum information protocols [16–23]. These
helically phased modes have an azimuthal phase dependence
ei�ϕ and carry an OAM of �h̄ per photon [24]. The spatial
modes of light are defined within an infinite-dimensional,
discrete Hilbert space and there is considerable potential
for their use within applied quantum systems [25,26]. For
example, a simple displacement of a spiral phased hologram
with respect to the beam axis introduces additional modes in
an OAM superposition, thereby expanding the dimensionality
of the Hilbert space [18,19]. In our work we use spatial light
modulators (SLMs) to restrict ourselves to a two-dimensional
(2D) OAM subspace, selected from the complete state space.
Within this subspace, by using measurement holograms that
control both the phase and the intensity of the light we can
measure any complex superposition of � and −� states, each
represented as a point on a sphere [27], analogous to the Bloch
sphere [2] as shown in Fig. 1.

In this paper we demonstrate that photon pairs generated
by parametric down-conversion are entangled in arbitrary
superpositions of OAM modes, and that the use of SLMs
allow us to access the entire 2D state space of the OAM.
For this we measure the correlations between pairs of modal
superpositions, each described by arbitrary positions on the
Bloch sphere. This is only possible through manipulation by
the SLM of both the phase and the intensity of the measured
state. From these correlations we violate a Bell inequality [28]
for superpositions that are represented by equatorial, polar, and

arbitrary great circles around the Bloch sphere, demonstrating
that these superpositions remain highly entangled.

II. THEORY

Each point on the Bloch sphere (Fig. 1) describes a different
pure state and its antipode represents the orthogonal state. In
general, a state |a〉 can be written as

|a〉 = cos

(
θa

2

)
|�〉 + eiφa sin

(
θa

2

)
|−�〉, (1)

where a = (sin(θa) cos(φa), sin(θa) sin(φa), cos(θa)) is a vec-
tor with latitude 0 � θa � π and longitude 0 � φa < 2π , as
shown in Fig. 1. The longitudinal position φ on the sphere is
the phase between the two superposed modes and relates to
the orientation of the mode superposition. It is related to the
azimuthal phase of the mode via φ = 2�ϕ, where ϕ relates to
the orientation of the mode (i.e., it is the azimuthal coordinate
in real space for a Laguerre-Gauss mode [24]) For example,
the orientation angle between the two orthogonal modes of,
say, the HG20 mode is π/4, while the phase between the
superposed Laguerre-Gauss modes (±2) is π . Hence, the states
|�〉,|− �〉 correspond to the poles of the sphere (θa = 0,π ),
respectively, while equally weighted superpositions of |�〉 and
|− �〉 correspond to points around the equator (θa = π/2),
with the equatorial position determined by the phase term φa

between the two states.
Photons produced by spontaneous parametric down-

conversion conserve OAM under the conditions of approx-
imately collinear phase matching [16] and for small non-
collinear opening angles where the paraxial approximation
can still be applied [29]. Thus, for an � = 0 pump, if a signal
photon is measured in state |�〉 then the idler must be in the
state |− �〉, with an associated probability amplitude c� where
c� = c−� because the process is symmetric.

For a pump with � = 0, the two-photon field produced can
be written as

|ψ〉 =
�=∞∑

�=−∞
c�|− �〉A|�〉B, (2)
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FIG. 1. (Color online) Bloch sphere equivalent for ±� OAM
states. The pure state |a〉 is defined by its latitude (0 � θa � π )
and longitude (0 � φa < 2π ) on the sphere. The poles (θa = 0,π )
represent the states |�〉,|− �〉, respectively, while around the equator
(θa = π/2) are the equally weighted superpositions of |�〉 and |− �〉.

where A and B denote the photons measured with SLMs A
and B, respectively, and |�〉 denotes a one-photon state with
OAM �h̄.

We restrict ourselves to a two-dimensional Hilbert space by
making measurements that are sensitive only to the photons
spontaneously prepared in this space. The two-photon state,
for the 2D subspace, can be written in the normalized form

|ψ〉 = 1√
2

(|�〉A|− �〉B + |− �〉A|�〉B). (3)

Each single-photon measurement outcome corresponds to
projection onto a state of the form of Eq. (1). The measurement
states for the two photons can be oriented in different directions
θa,φa and θb,φb, represented by the Bloch vectors a and b,
respectively. The coincidence rate C(a,b) for detecting one
photon in state a and the other in b is, for the entangled state
(3),

C(a,b) ∝ |〈a|〈b|ψ〉|2
= 1

4 [1 − cos(θa) cos(θb)

+ sin(θa) sin(θb) cos(φa − φb)]. (4)

Therefore, we predict maximum coincidence for θb = π − θa

and φb = φa , corresponding to states with the same longitude
but reflected about the equator, and minimum coincidence for
θb = θa and φb = φa − π , corresponding to states with the
same latitude but reflected about the vertical axis, as shown in
Fig. 2.

An experimentally appropriate Bell-type inequality is the
Clauser-Horne-Shimony-Holt (CHSH) inequality [8,31,32],
−2 � S � 2, where

S = E(a,b) − E(a,b′) + E(a′,b) + E(a′,b′). (5)

Here a,a′ and b,b′ correspond to two different measurement
states, selected by the appropriate holograms on SLMs A and
B, respectively, and

E(a,b) = C(a,b) + C(−a, − b) − C(a, − b) − C(−a,b)

C(a,b) + C(−a, − b) + C(a, − b) + C(−a,b)
,

(6)

a
b

min

b
max

FIG. 2. (Color online) For measurements of state |a〉 (left), the
state measurement of the other photon |b〉 will yield maximum
coincidence when the state has the same longitude and is reflected
about the equator and minimum coincidence when the state has the
same latitude and is reflected about the vertical axis (right).

where C(a,b) is the observed coincidence count rate, which is
predicted to be of the form of Eq. (4).

In previous work we demonstrated the violation of a Bell
inequality by measuring the correlations between equally
weighted superpositions of two pure OAM states, | ± �〉, of
differing relative phase [22]. Measurement of these states,
which lie on the equator of the Bloch sphere, were made
using SLMs acting as holograms to define �-fold rotationally
symmetric sector states. The measurements using these phase-
only sector states in order to violate a Bell-type inequality was
appropriate in these cases due to the limited spiral bandwidth
and negligible amplitude of higher-order modes. Similarly
we have reported the full density matrix reconstructions for
±� subspaces [30], which require additional measurements
of the pure OAM states (which lie at the poles of the Bloch
sphere). Although the density matrices are a full predictor of
the anticipated correlation of all possible measurements, they
are not a test of the ability to make arbitrary measurements,
and they are not a test of local hidden-variable theories. These
measurements are analogous to measuring the pure linear
(equatorial) and circular (polar) states of polarization. In this
present work, our measurements are equivalent to measuring
states of elliptical polarization.

In this work, therefore, the design of our SLM holograms is
necessarily more sophisticated than that in our earlier work and
incorporates a spatially dependent blazing function to create
an intensity mask that is superimposed on the phase mask.
This is the same approach that we used previously to create
complicated superpositions of modes, in the classical domain,
for the generation of optical vortex knots [33]. The phase
distribution of the hologram, �(x,y)holo, can be expressed
within the range from −π to π as

�(x,y)holo

= {[�(x,y)beam + �(x,y)grating]}mod2π sinc2{[1 − I (x,y)π ]},
(7)

where �(x,y)beam is the phase distribution of the beam,
�(x,y)grating is the phase distribution of a blazed diffraction
grating, and I (x,y) is the desired intensity. The sinc2 term
accounts for the mapping of the phase depth to the diffraction
efficiency of the spatially dependent blazing function.
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FIG. 3. (Color online) (a) Experimental setup. The down-
converted light from the crystal is imaged onto the SLMs, and
then reimaged at the plane of the single-mode fibers, where the
detection and coincidence measurement takes place. (b) Typical phase
masks—with appropriate intensity blazing—as would be displayed
on an SLM. Shown are the two OAM eigenstates and four equally
weighted superposition states (Laguerre-Gauss and Hermite-Gauss,
respectively).

III. EXPERIMENT

Our experimental setup (see Fig. 3) uses a 150-mW pump
laser of wavelength 355 nm incident on a 3-mm-long β-barium
borate crystal tuned for type I, collinear down-conversion.
The 710-nm down-converted photons are separated by a
50/50 beam splitter and imaged onto SLMs (Hamamatsu
liquid crystal on silicon) and then reimaged onto the facets
of single-mode fibers which are coupled to two spatially
separated single-photon counting modules (PerkinElmer). The
magnifications are set so that the 5-µm-diam facets of the fibers
form 2-mm images at the SLMs and 300-µm overlapping
images at the crystal, which are smaller than the 500-µm beam
waist of the pump. The single-channel Transistor-transistor
logic (TTL) outputs of the counting modules are fed into a
coincidence counter (Ortec). This allows us to measure both
the single-channel and coincidence count rates as a function
of the holograms displayed on SLMs A and B. Example forms
of the measurement holograms are shown in Fig. 3(b).

IV. RESULTS

Our results, for the � = ±2 subspace, are shown in Fig. 4.
In each case we plot the coincidence rate as one of the
superpositions is scanned around a great circle of the Bloch
sphere, while maintaining the other superposition at one of
four equally spaced states, represented by the black dots. In
Fig. 4, the measured states are positioned on the equator (as in
our earlier work), from pole to pole and around an arbitrarily
chosen great circle. As expected from Eq. (4), we observe
sinusoidal fringes in the coincidence rate, characteristic of
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FIG. 4. (Color online) Bell curves for three different great circles
around the equator, poles, and an arbitrarily chosen great circle.
Each curve corresponds to coincidence measurements between a
state on a great circle around one Bloch sphere (right) and one of
four different static states (left), shown as points on the spheres. The
sinusoidal fringes are indicative of quantum correlations within a
purely two-dimensional subspace, and each example shown violates
a Bell inequality.

entanglement in two dimensions. In each case our results
show a violation of a Bell-like inequality. We find the values
of S to be 2.62 ± 0.06, 2.56 ± 0.05, and 2.59 ± 0.05 for
the equatorial, polar, and arbitrary great circles in Fig. 4,
respectively—clearly violating the constraints of a local,
realistic hidden-variable theory.

A demonstration of the importance of modulating both
the phase and the intensity of the holograms is shown in
Fig. 5. Here the correlations are measured in a great circle
around the poles again, but with holograms which represent
only the phase of the desired state. In this case, it is clear
that the measured variation in coincidence is not sinusoidal,
and, hence, the phase-only holograms are inadequate for
restricting the measurement space to two dimensions. It would
be inappropriate to apply the CHSH inequality to these results,
as the number of participating modes is no longer equal to 2.

In our method, we are not restricted to only measuring cor-
relation between modes corresponding to great circles around
the sphere. We are able to make coincidence measurements
between any two superpositions of modes described by points
a(θa,φa) and b(θb,φb), giving us access to the entire 2D
state space (the entire surface of the Bloch sphere). We demon-
strate this by choosing one particular point, a, and varying
b over the full range of possible values (θb = [0,π ]; φb =
[0,2π ]). We can then map out a sphere of coincidence rate
between the static state in arm A, with respect to the full
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FIG. 5. (Color online) The necessary measurement of both the
phase and the intensity of the modes. Pole-to-pole measurements (of
the same type as in Fig. 4) are shown, but with only representations
of the phase of the desired mode displayed on the SLM (left). The
coincidence for the phase and intensity measurement (from Fig. 4) is
shown for illustration (right). There is a clear difference between the
form of the curves in each case, indicating that the number of modes
selected in each case is different.

range of states measured in arm B. Our results are shown in
Fig. 6(a) for reference holograms at a point on the equator
(θa = π/2,φa = 0) and in Fig. 6(b) for reference holograms
at a pole (θa = 0,φa = 0). As expected, we find that the
coincidence rate varies sinusoidally in a great circle around the
sphere with maximum counts when θb = π − θa and φb = φa

and with minimum counts when θb = θa and φb = φa − π .

V. CONCLUSIONS

In this paper we have demonstrated the use of SLMs to
make precise measurements of arbitrary (but well-defined)
superpositions of OAM states within a two-dimensional OAM
subspace. This allows us to investigate the entanglement
between spatial modes of photon pairs created in a spontaneous
parametric down-conversion process. From precise control of

350

0

350

0

b bbb

Q Q

FIG. 6. (Color online) Two spheres in coincidence, shown with
the same projection as Fig. 1. The scale shows the quantum contrast
Q = C

S1S2	t
, where C is the measured coincidence rate, S1,S2 are the

single count rates for each detector, and 	t is the gate time of our
coincidence electronics.

holograms to shape both the phase and the intensity of the
light, we can map out the coincidence rate between photon
pairs over the entirety of a two-dimensional subspace within
the higher-dimensional OAM Hilbert space. We then use these
results to confirm the quantum nature of the entanglement,
and to ensure the dimensionality of the state space is exactly
equal to 2, by violating a Bell-type inequality between modal
superpositions represented by equatorial, polar, and arbitrary
great circles on the Bloch sphere. We note that the data required
to do this are similar to that required to examine the Leggett-
type inequalities [34–36]. It is possible that our system may
permit a thorough exploration of the violation of these for
OAM entangled states.

In conclusion, any applications that require the use and
manipulation of complex OAM states may find this method
and representation of states to be of practical value. Our work
shows, moreover, that SLMs can be used to measure arbitrary
spatial states with a fidelity sufficient for appropriate quantum
information processing systems.
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