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Amplification of maximally-path-entangled number states
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We examine the behavior of a non-Gaussian state like the maximally path-entangled number state commonly
known as a N00N state under phase-insensitive amplification. We derive an analytical result for the density matrix
of the N00N state for arbitrary gain of the amplifier. We consider cases of both symmetric and antisymmetric
amplification of the two modes of the N00N state. We quantitatively evaluate the loss of entanglement by the
amplifier in terms of the logarithmic negativity parameter. We find that N00N states are more robust than their
Gaussian counterparts.
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I. INTRODUCTION

Among the continuous variable (CV) entangled states [1],
non-Gaussian states are generally believed to possess much
more robust entanglement vis a vis the Gaussian states—states
characterized by Gaussian quasiprobability distributions and
hence by their first and second moments. Though mathemati-
cally not as well understood as the Gaussian states [2] in so far
as their entanglement properties are concerned, non-Gaussian
states, by virtue of the robustness of their entanglement, have
in recent years emerged as strong contenders for potential
applications in quantum information technology. The fact that
the non-Gaussian states are defined by what they are not
makes a general discussion of their entanglement properties
impossible and one is forced to restrict oneself to subfamilies
of non-Gaussian states such as states obtained by adding or
subtracting a fixed number of photons to Gaussian states [3]
and forming suitable superpositions thereof. One such widely
discussed family of non-Gaussian states parameterized by
an integer N is the family of the maximally path-entangled
number state commonly known as N00N states [4]

|N00N〉 = 1√
2

[|N,0〉 + |0,N〉]. (1)

These states, similar in structure to the Einstein-Podolsky-
Rosen (EPR) states, have attracted much attention in recent
years and can be viewed as a two-mode state consisting
of a superposition of states containing N photons in one
mode and none in the other and vice versa. Schemes for
reliable production of such states have been proposed [5,6] and
their usefulness as a practical tool in making superprecision
measurements in optical interferometry, atomic spectroscopy,
and in sensing extremely small magnetic fields than hitherto
possible have been highlighted [7]. This circumstance makes
it imperative to investigate their behavior under attenuation
and amplification. While studies on the decoherence effects
on N00N states under specific models for system-bath
interactions already exist in the literature [8], in the present
work we focus on the question of amplification of N00N states
and the consequent degradation of entanglement therein and
to compare and contrast it with the behavior of entanglement
in Gaussian states under the amplification investigated in
[9,10]. It is important to understand that the amplification of
N00N states as quantum communication protocols would use

both amplifiers and attenuators [11]. In the present work we
consider only phase-insensitive amplification and model this
in the standard way as a bath consisting of N two-level atoms
of which N1 are in the excited state and N2 the ground state
with N1 > N2. Under the assumptions that atomic transitions
have a large width and that the bath is maintained in a steady
state, the time evolution of the density operator ρ for a single
mode of radiation field on resonance with the atomic transition
is described, in the interaction picture, by the master equation

∂ρ

∂t
= −κN1(aa†ρ − 2a†ρa + ρaa†)

− κN2(a†aρ − 2aρa† + ρa†a), (2)

where a and a† are the annihilation and creation operators of
the field mode.

A brief outline of this work is as follows. In Sec. II, with the
N00N state as the input to the amplifier, we obtain expressions
for the output density operator for the case when both the
modes are symmetrically amplified and for the case when
only one mode is subjected to amplification and the other is
not amplified at all. We investigate how the entanglement in
the output state varies with the amplifier gain using logarithmic
negativity as the quantifier for entanglement [12]. Section III
contains our concluding remarks and further outlook. Our
study complements the work done by Vitelli et al. [6] on
amplification of a N00N state by a phase-sensitive amplifier.

II. EVOLUTION OF THE N00N STATE UNDER
PHASE-INSENSITIVE AMPLIFICATION

In our earlier work [9], we found that for a two-mode
squeezed vacuum as the input, there are limits on the gain
beyond which the output of the amplifier has no entanglement
between the two modes and the limiting values of the gain
in the two cases considered, symmetric and asymmetric
amplification, were found to be

G2 =
(

2 + 2η

1 + 2η + e−2r

)
symmetric amplification, (3)

G2 = 1 + 1

η
asymmetric amplification. (4)

where the gain G = exp[(N1 − N2)κt] and η = N2/(N2 −
N1). Here r is the squeezing parameter for the two-mode

1050-2947/2010/81(4)/043843(5) 043843-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.043843


G. S. AGARWAL, S. CHATURVEDI, AND AMIT RAI PHYSICAL REVIEW A 81, 043843 (2010)

squeezed state. In particular, when η → 0, the limiting gain in
the symmetric case remains finite and that for the asymmetric
case the limiting value moves off to infinity [13].

In this section we discuss how an input N00N state evolves
under the action of a phase-insensitive amplifier as modeled
by the master equation (2) confining ourselves for simplicity
to the η → 0 limit. The solution of master equation (2) can be
written in terms of the Fock-state matrix elements. However,
such a solution is rather involved [14]. It is instructive to work
in terms of phase-space distributions. A distribution which
is especially useful is the Q function introduced by Kano,
Sudarshan, and Mehta [15,16]. This function is defined by

Q(α) ≡ 1

π
〈α|ρ|α〉. (5)

The master equation (2) for η = 0 then leads to

∂Q

∂t
= −G

∂(αQ)

∂α
− G

∂(α∗Q)

∂α∗ . (6)

Note that this differential equation for the Q function involves
only the first-order derivatives with respect to phase-space
variables and hence its solution is simple [17]

Qin(α) ≡ 1

π
〈α|ρin|α〉 → Qout(α) = 1

G2
Qin(α/G). (7)

Let us see what the result (7) means. Let us consider the
input state to be a vacuum, then the output would be

Qin(α) = 1

π
〈α|0〉〈0|α〉

= 1

π
e−|α|2 → Qout(α) ≡ 1

πG2
e−|α|2/G2

. (8)

Such an output Q function is equivalent to a thermal density
matrix with the mean number of photons equal to (G2 − 1).
Thus the vacuum state on amplification becomes a thermal
state with a mean number of photons that grows with the gain
of the amplifier. We note that a result like (6) extends to the
multimode case.

We now examine two cases, the symmetric case in which
both the modes a and b in the input N00N state are
symmetrically amplified and the asymmetric case in which
only one mode, say a, is amplified. Before discussing the
amplification of the N00N state we examine quantitatively the
entanglement in the state (1). We compute the log-negativity
parameter which is defined as

EN = log2(2N + 1),

where N is the absolute value of the sum of all the negative
eigenvalues of the partial transpose of the density matrix ρ. It is
clear that the partial transpose of the density matrix associated
with the state (1) is

ρpt = 1
2 [|N,0〉〈N,0| + |0,N〉〈0,N |
+ |N,N〉〈0,0| + |0,0〉〈N,N |], (9)

which can be written in the diagonal form as

ρpt = 1
2 (|N,0〉〈N,0| + |0,N〉〈0,N |)
+ 1

4 (|N,N〉 + |0,0〉)(〈N,N | + 〈0,0|)
− 1

4 (|N,N〉 − |0,0〉)(〈N,N | − 〈0,0|). (10)

The partial transpose has a negative eigenvalue −1/2 and
hence the logarithmic negativity parameter EN = 1.

Symmetric case: The Q function corresponding to the
density operator for the input N00N state

ρin = 1

2
[|N,0〉〈N,0| + |N,0〉〈0,N |

+ |0,N〉〈N,0| + |0,N〉〈0,N |]
= 1

2N !
[a†Nρ0a

N + a†Nρ0b
N + b†Nρ0a

N + b†Nρ0b
N ],

ρ0 = |0,0〉〈0,0|, (11)

is found to be

Qin(α,β) ≡ 1

π2
〈α,β|ρin|α,β〉

= 1

2N !π2
|αN + βN |2 exp[−(|α|2 + |β|2)].

(12)

Following the prescription in (7), under a symmetric phase-
insensitive amplification, the Q function evolves as follows:

Qin(α,β) → Qout(α,β)

= 1

G4
Qin(α/G,β/G) = 1

2N !π2G2N+4
|αN + βN |2

× exp[−(|α|2 + |β|2)/G2]. (13)

The N00N state is highly nonclassical. A quantitative measure
for nonclassicality is obtained by examining zeros of the Q

function [18]. We note that the zeros of the function Qout are
identical to the zeros of the function Qin and hence we have the
remarkable result that the nonclassical character of the input
N00N state is preserved.

We can now find the density matrix after amplification by
using the results (8) and (13)

ρin → ρout = 1

2N !G2N
[a†NρGaN + a†NρGbN

+ b†NρGaN + b†NρGbN ],

(14)
ρG = 1

G4
e−β(a†a+b†b),

β = ln

(
G2

G2 − 1

)
.

We note that the structure of (14) is such that it cannot be
written in a separable form. This is seen more clearly if we
write (14) as

ρout = 1

2N !G2N
{a†N + b†N }ρG{aN + bN .} (15)

We further note that the output state has the structure of a two-
mode photon-added thermal state in which either mode has
added photons. The single-mode version of the photon-added
thermal state was introduced by Agarwal and Tara [19]. These
states have been experimentally studied recently [20].

Writing ρG in the number state basis as

ρG = 1

G4

∞∑
n,m=0

(
G2 − 1

G2

)n+m

|n,m〉〈n,m|, (16)
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we have

ρout = 1

2N !G2N+4

∞∑
n,m=0

(
G2 − 1

G2

)n+m

× [a†N |n,m〉〈n,m|aN + a†N |n,m〉〈n,m|bN

+ b†N |n,m〉〈n,m|aN + b†N |n,m〉〈n,m|bN ]

= 1

2N !G2N+4

∞∑
n,m=0

(
G2 − 1

G2

)n+m

×
[

(n + N )!

n!
|n + N,m〉〈n + N,m|

+ (m + N )!

m!
|n,m + N〉〈n,m + N |

+
√

(n + N )!

n!

(m + N )!

m!
(|n + N,m〉〈n,m + N |

+ |n,m + N〉〈n + N,m|)
]
, (17)

which immediately gives us the expression for the operator
ρPT

out obtained by partially transposing ρout (with respect to the
b mode):

ρPT
out = 1

2N !G2N+4

∞∑
n,m=0

(
G2 − 1

G2

)n+m

×
[

(n + N )!

n!
|n + N,m〉〈n + N,m|

+ (m + N )!

m!
|n,m + N〉〈n,m + N |

+
√

(n + N )!

n!

(m + N )!

m!
(|n + N,m + N〉〈n,m|

+ |n,m〉〈n + N,m + N |)
]

= 1

2N !G2N
[a†NρGaN + b†NρGbN

+ a†Nb†NρG + ρGaNbN ]. (18)

The object of interest now is to calculate the logarithmic
negativity EN , the sum of the logarithmic negativity eigenval-
ues of ρPT

out and to see how it varies as a function of G2. We
carry out this task numerically and the results are displayed in
Fig. 1 where we plot EN as a function of G2 for N = 2, 4,
and 6. In Fig. 1 we also show the log-negativity parameter for
the two-mode squeezed vacuum state (taken from Ref. [9].)
as well as the state for N = 1. The state (1) for N = 1 is
especially relevant for Mach-Zehnder interferometers [21,22]
based on single photon input. Clearly the N00N state is much
more robust under amplification.

N = 2
N = 4

N = 1

N = 6

FIG. 1. (Color online) Behavior of the logarithmic negatively as a
function of G2 for the symmetric case. The dashed curve (black) gives
the normalized log-negativity parameter for the two-mode squeezed
vacuum state under amplification for squeezing parameter r .

Asymmetric case: Proceeding as above, one finds that

Qin(α,β) → Qout(α,β)

= 1

G2
Qin(α/G,β) = 1

2N !π2GN+2
|(α/G)N + βN |2

× exp[−(|α|2/G2 + |β|2)], (19)

and hence

ρin → ρout = 1

2N !G2N
[a†N ρ̃aN + GNa†N ρ̃bN

+GNb†N ρ̃aN + G2Nb†N ρ̃bN ]

ρ̃ = 1

G2
e−β(a†a)|0〉〈0|; β = ln

(
G2

G2 − 1

)
.

(20)

Writing ρ̃ as

ρ̃ = 1

G2

∞∑
n=0

(
G2 − 1

G2

)n

|n,0〉〈n,0|, (21)

we can write ρout in terms of number states as

ρout = 1

2N !G2N+2

∞∑
n=0

(
G2 − 1

G2

)n

× [a†N |n,0〉〈n,0|aN + GNa†N |n,0〉〈n,0|bN

+GNb†N |n,0〉〈n,0|aN

+G2Nb†N |n,0〉〈n,0|bN ]

= 1

2N !G2N+2

∞∑
n=0

(
G2 − 1

G2

)n

×
[

(n + N )!

n!
|n + N,0〉〈n + N,0|

+G2NN !|n,N〉〈n,N |

+GN

√
(n + N )!

n!
N !(|n + N,0〉〈n,N |

+ |n,N〉〈n + N,0|)
]
, (22)
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N =2
N =4

N =1

N =6

FIG. 2. (Color online) Behavior of the logarithmic negatively as
a function of G2 for the asymmetric case. The dashed curve (black)
is the result for the two-mode squeezed vacuum.

and hence

ρPT
out = 1

2N !G2N+2

∞∑
n=0

(
G2 − 1

G2

)n

×
[

(n + N )!

n!
|n + N,0〉〈n + N,0|

+G2NN !|n,N〉〈n,N |

+GN

√
(n + N )!

n!
N !(|n + N,N〉〈n,0|

+ |n,0〉〈n + N,N |)
]

= 1

2N !G2N
[a†N ρ̃aN + G2Nb†N ρ̃bN

+GNa†Nb†N ρ̃ + GNρ̃aNbN ]. (23)

The logarithmic negativity of ρPT
out is computed numerically

and the results are shown in Fig. 2 for N = 1, 2, 4, and 6.
Clearly in the asymmetric case the loss of entanglement is
much slower. Again, entanglement in the N00N state is more
robust then that in the squeezed vacuum state. Finally, we

compare the amplification of the N00N state with that of a
photon-added two-mode squeezed vacuum state (i.e., the state,
for brevity the normalization factors are ignored)

|�〉 ∝ a†b† exp{ζa†b† − ζ ∗ab}|00〉, ζ = r. (24)

This is a non-Gaussian state. The input and output Q functions
are found to be

Qin ∝ |α|2|β|2Qsq, (25)

Qout ∝ |α|2|β|2
G4

Qsq,G (26)

where Qsq is the Q function for the two-mode squeezed
vacuum and Qsq,G is the Q function obtained by amplification
of the squeezed vacuum. Thus the density operator after
amplification of the non-Gaussian state can be written as

ρout ∝ a†b†(ρsq out)ab, (27)

where ρsq out is the density operator for the squeezed vacuum
after amplification. Now ρsq out becomes separable for G

greater than that given by (3) and hence ρout becomes separable
if G2 > (2 + 2η)/(1 + 2η + e−2r ). Thus the non-Gaussian
states obtained from Gaussian states by the addition of photons
would behave under symmetric amplification in a manner
similar to Gaussian states. We have therefore found that the
N00N states behave quite differently under amplification.

III. CONCLUSION

In conclusion, we found that the N00N states are more
robust under amplification than their Gaussian counterparts
such as a two-mode squeezed vacuum produced by a downcon-
verter. We presented results for the logarithmic negativity as a
function of the gain of the amplifier. We presented numerical
results for cases of states which have already been realized
experimentally. We also found that the N00N state does better
than say a photon-added two-mode squeezed vacuum state.

[1] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513
(2005): Quantum Information and Continuous Variables of
Atoms and Light edited by N. Cerf, G. Leuchs, and E. S. Polzik
(Imperial College Press. London, 2007).

[2] R. Simon, Phys. Rev. Lett. 84, 2726 (2000); L.-M. Duan,
G. Giedke, J. I. Cirac, and P. Zoller, ibid. 84, 2722 (2000);
G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, ibid.
87, 167904 (2001); R. F. Werner and M. M. Wolf, ibid. 86,
3658 (2001); M. B. Plenio, ibid. 95, 090503 (2005); G. Adesso,
A. Serafini, and F. Illuminati, Phys. Rev. A 70, 022318 (2004);
J. Eisert and M. B. Plenio, J. Mod. Opt. 46, 145 (1999);

S. Virmani and M. B. Plenio, Phys. Lett. A 268, 31 (2000).
[3] G. S. Agarwal and K. Tara, Phys. Rev. A 47, 3160 (1993);

T. Opatrny, G. Kurizki, and D.-G. Welsch, ibid. 61, 032302
(2000); P. T. Cochrane, T. C. Ralph, and G. J. Milburn, ibid. 65,
062306 (2002); S. Olivares, M. G. A. Paris, and R. Bonifacio,
ibid. 67, 032314 (2003).

[4] P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 65, 052104
(2002); J. P. Dowling, Contemp. Phys. 49, 125 (2008); Y. Gao
and H. Lee, J. Mod. Opt. 55, 3319 (2008).

[5] A. Landers, T. Weber, I. Ali, A. Cassimi, M. Hattass,
O. Jagutzki, A. Nauert, T. Osipov, A. Staudte, M. H. Prior,
H. Schmidt-Bocking, C. L. Cocke, R. Dorner, and Y. Shih,
Phys. Rev. Lett. 87, 013002 (2001); M. W. Lundeen and A. M.
Steinberg, Nature (London) 429, 161 (2004); P. Walther, J.-W.
Pan, M. Aspelmeyer, R. Ursinand, and A. Zeillinger, ibid. 429,
158 (2004); A. E. B. Nielsen and K. Molmer, Phys. Rev. A 75,
063803 (2007); P. Kok, e-print arXiv:quant-ph/0604139.

[6] C. Vitelli, N. Spagnolo, F. Sciarrino, and F. De Martini, J. Opt.
Soc. Am. B 26, 892 (2009); N. Spagnolo, C. Vitelli, T. De
Angelis, F. Sciarrino, and F. De Martini, Phys. Rev. A 80, 032318
(2009).

[7] S. Boixo, A. Datta, M. J. Davis, A. Shaji, A. B. Tacla, and
C. M. Caves, Phys. Rev. A 80, 032103 (2009); J. A. Jones,
S. D. Karlen, J. Fitzsimons, A. Ardavan, S. C. Benjamin, G. A.
D. Briggs, and J. J. L. Morton, Science 324, 1166 (2009); D. W.
Berry, B. L. Higgins, S. D. Bartlett, M. W. Mitchell, G. J. Pryde,
and H. M. Wiseman, Phys. Rev. A 80, 052114 (2009).

[8] X. Y. Chen and L. Z. Jiang, J. Phys. B 40, 2799 (2007);
A. Al Qasimi and D. F. V. James, Opt. Lett. 34, 268 (2009);

043843-4

http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.87.167904
http://dx.doi.org/10.1103/PhysRevLett.87.167904
http://dx.doi.org/10.1103/PhysRevLett.86.3658
http://dx.doi.org/10.1103/PhysRevLett.86.3658
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevA.70.022318
http://dx.doi.org/10.1103/PhysRevA.70.022318
http://dx.doi.org/10.1016/S0375-9601(00)00157-2
http://dx.doi.org/10.1103/PhysRevA.47.3160
http://dx.doi.org/10.1103/PhysRevA.47.3160
http://dx.doi.org/10.1103/PhysRevA.61.032302
http://dx.doi.org/10.1103/PhysRevA.61.032302
http://dx.doi.org/10.1103/PhysRevA.65.062306
http://dx.doi.org/10.1103/PhysRevA.65.062306
http://dx.doi.org/10.1103/PhysRevA.67.032314
http://dx.doi.org/10.1103/PhysRevA.65.052104
http://dx.doi.org/10.1103/PhysRevA.65.052104
http://dx.doi.org/10.1080/00107510802091298
http://dx.doi.org/10.1080/09500340802428298
http://dx.doi.org/10.1103/PhysRevLett.87.013002
http://dx.doi.org/10.1038/nature02493
http://dx.doi.org/10.1038/nature02552
http://dx.doi.org/10.1038/nature02552
http://dx.doi.org/10.1103/PhysRevA.75.063803
http://dx.doi.org/10.1103/PhysRevA.75.063803
http://arXiv.org/abs/arXiv:quant-ph/0604139
http://dx.doi.org/10.1364/JOSAB.26.000892
http://dx.doi.org/10.1364/JOSAB.26.000892
http://dx.doi.org/10.1103/PhysRevA.80.032318
http://dx.doi.org/10.1103/PhysRevA.80.032318
http://dx.doi.org/10.1103/PhysRevA.80.032103
http://dx.doi.org/10.1126/science.1170730
http://dx.doi.org/10.1103/PhysRevA.80.052114
http://dx.doi.org/10.1088/0953-4075/40/14/001
http://dx.doi.org/10.1364/OL.34.000268


AMPLIFICATION OF MAXIMALLY-PATH-ENTANGLED . . . PHYSICAL REVIEW A 81, 043843 (2010)

U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S.
Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley,
Phys. Rev. Lett. 102, 040403 (2009); T. W. Lee, S. D. Huver,
H. Lee, L. Kaplan, S. B. McCracken, C. Min, D. B. Uskov,
C. F. Wildfeuer, G. Veronis, and J. P. Dowling, Phys. Rev. A 80,
063803 (2009).

[9] G. S. Agarwal and S. Chaturvedi, Opt. Commun. 283, 839
(2010).
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