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Filamentation processes and dynamical excitation of light condensates in optical
media with competing nonlinearities
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We analyze both theoretically and by means of numerical simulations the phenomena of filamentation
and dynamical formation of self-guided nonlinear waves in media featuring competing cubic and quintic
nonlinearities. We provide a theoretical description of recent experiments in terms of a linear stability analysis
supported with simulations, showing the possibility of the observation of modulational instability suppression
of intense light pulses traveling across such nonlinear media. We also show a mechanism of indirect excitation
of light condensates by means of coalescence processes of nonlinear coherent structures produced by managed
filamentation of high-power laser beams.
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I. INTRODUCTION

Studies of nonlinear beam filamentation of ultrashort pulses
are being actively developed nowadays [1]. Far beyond a
certain critical power threshold, extremely short pulses may
become unstable and break up into several uncorrelated light
structures by modulational instability (MI) processes. These
structures, called filaments in this context, are spatiotemporal
soliton-like light distributions which appear after MI and hold
for large propagation distances without changing their shape or
size [2]. In fact, optical filaments have been observed in several
scenarios, such as air [1], water [3], and carbon disulfide [4],
and some mechanisms to control their spatial location have
been recently proposed [5].

On the other hand, the theoretical description of these
localized modes is generally based on nonlinear Schrödinger
equations (NLSEs) [6–8]. In the modeling of these kind of
systems, nonlinear effects like two- and three-photon absorp-
tion, second-order group-velocity dispersion, time-delayed
nonlinear response, multiphoton ionization, and plasma de-
focusing [9] are usually taken into account. Nevertheless, in
order to favor the insight of dynamics in these systems, simpler
models are employed when certain physical conditions are
satisfied. To this end it is common to consider NLSEs involving
only local intensity-dependent nonlinear susceptibilities which
are real [9]. As an example, the so-called cubic-quintic (CQ)
nonlinearity [10] has been used as a solvent approximation
in modeling subpicosecond pulse propagation in nonlinear
media [4]. In Ref. [4], the dynamics of filament formation
and evolution in carbon disulfide cells is analyzed both
experimentally and by numerical means. In this respect,
extensive numerical work based on a conservative CQ model
is successfully employed in the qualitative description of
experimental achievements.

In addition, “liquid light condensates” (i.e., robust solitonic
distributions in CQ optical media with a “flat-top” transverse
spatial envelope and intriguing surface tension properties)
were studied in Ref. [11]. Recently, it was shown that their
dynamics follows the same equations governing the evolution
of usual liquid droplets [12]. These results were obtained by
both analytical and numerical methods, but they have not yet
been confirmed by real experiments. The main difficulty, of
course, is the search for a cubic-quintic nonlinear medium,

although some candidates were inspected in Ref. [13]. In fact,
both nonlinear third- and fifth-order terms in the polarization
of the material are usually complex, so it is often necessary to
consider some other nonlinear processes like those mentioned
above. Nevertheless, in light of Ref. [4], we are allowed to
think of materials like CS2 as real CQ nonlinear media in
specific power regimes. Recently, some common gases such
as air, N2, and O2 have also been identified as CQ optical
media by means of the measurement of n4 coefficients [14],
although the propagation dynamics of probe pulses throughout
these media has not yet been investigated.

The purpose of the present paper is threefold. First, we
give a simple theoretical description of the results obtained
in Ref. [4] by means of a linear stability analysis of plane
waves. Second, we study both analytically and numerically the
possibility of real observation of the modulational instability
suppression process in CS2. Finally, we provide a detailed
description of a mechanism of dynamical excitation of flat-top
solitons in “pure” CQ systems via filamentation management
and coalescence and we analyze the possibility of achieving
light condensates in carbon disulfide.

II. PHYSICAL MODEL

We consider the propagation of a high-intensity laser
pulse through a CS2 bulk, within the framework of the
NLSE. In order to simplify the theoretical model, we assume
a scalar slowly varying spatial envelope and we neglect
group-velocity dispersion effects. These approximations have
been experimentally justified for media like carbon disulfide
[4] and air [9] within proper parameter spaces. We also
include a cubic-quintic nonlinearity, resulting in the following
NLSE:

2ik0n0
∂ψ

∂z
+ ∇2

⊥ψ + 2k2
0n0(n2|ψ |2 − n4|ψ |4)ψ = 0, (1)

where ψ is the complex slowly varying electric field enve-
lope of the corresponding electromagnetic wave propagating
through the nonlinear medium, k0 = 2π/λ is the vacuum
wavenumber corresponding to the laser source wavelength λ,
n0 is the linear refractive index of the medium, and z is the prop-
agation distance. Nonlinear coefficients n2,n4 characterize the
strength of the real third- and fifth-order nonlinear optical
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susceptibilities, respectively, and ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is

the Cartesian transverse Laplacian operator. Notice that Eq. (1)
preserves the norm of the field �; that is, we have also
neglected the effect of nonlinear two-photon absorption,
which can be justified for moderate-intensity pulses traveling
throughout a carbon disulfide bulk over a short distance [4].

For technical reasons related to numerical treatment of
partial differential equations, it is often useful to express
Eq. (1) in a reduced form by introducing a suitable set of
nondimensional variables, namely

i
∂�

∂η
+ �� + (|�|2 − |�|4)� = 0, (2)

where η = zk0n
2
2/n4 is the nondimensional propagation dis-

tance, � = ∂2/∂χ2 + ∂2/∂ζ 2 is the dimensionless trans-
verse Laplacian operator, with spatial coordinates � =
θk0n2

√
2n0/n4, with � = χ,ζ , θ = x,y. The normalized

beam irradiance |�|2 = (n4/n2)|ψ |2 is measured in units of the
quotient n4/n2 which univocally characterizes the nonlinear
response of the medium.

Keeping in mind the equivalence between Eqs. (1) and
(2), typical parameters corresponding to beam propagation
in real dielectric materials like CS2 are (for femtosecond
optical pulses with λ = 800 nm [15]) n0 = 1.6, n2 = 3 ×
10−15 cm2/W. To our best knowledge, the CS2 quintic coeffi-
cient n4 has not yet been measured, since there are no values of
this quantity cited in the literature, although an approximation
of n4 = 2 × 10−27 cm4/W2 based on the agreement between
simulations and experiments was successfully introduced in
Ref. [4]. Very remarkably, the first experimental determination
of the nonlinear coefficient n4 of several gaseous media was
recently carried out in Ref. [14].

In the following section, we introduce an analytical linear
stability analysis of plane waves in the CQ model and its results
are compared with those of the experiments in Ref. [4].

III. LINEAR STABILITY ANALYSIS OF PLANE WAVES

It is well known that Eq. (2) admits plane-wave (PW)
solutions of the type � = �0e

iγ η, where �0 is a constant
which depends on γ eigenvalues as follows:

�0 =
(

1

2
+

√
1 − 4γ

2

) 1
2

. (3)

Let us proceed with a linear stability analysis of these
homogeneous solutions, following the Bespalov-Talanov pro-
cedure [16]. The first step of this method is to add a small
amplitude perturbation of the form ξ = ξR + iξI to the PW
solutions, with ξR,I = ξ 0

R,I e
[iK⊥·r+ihη] and |ξR,I | � �0, where

K⊥ is the transverse wave vector and h is the propagation
constant of the corresponding perturbational mode. Now, for
h2 < 0, depending on the sign of Im(h), we have two possible
outcomes. If Im(h) < 0, the perturbations grow exponentially
in η, yielding to field destabilization. However, if Im(h) > 0,
the amplitude of the perturbational mode decays quickly,
so that the underlying PW remains stable. On the contrary,
whenever h2 > 0, the amplitude of the perturbations remains
limited.

By substituting the expression for the perturbed PW � =
(�0 + ξ )eiγ η in Eq. (2) and separating both the real and
imaginary parts of the outgoing relation, we obtain, after
linearizing on ξR,ξI (i.e., retaining only the first-order terms
in perturbation theory), the following pair of Schrödinger-type
equations:

∂ξI

∂η
− �ξR − (

2�2
0 − 4�4

0

)
ξR = 0, (4a)

∂ξR

∂η
+ �ξI = 0, (4b)

where ξR,I depend upon K⊥ and h in the way noted above.

From Eq. (4b), we obtain ξR = K2
⊥

ih
ξI , and taking into account

Eq. (4a) we deduce the algebraic relation

� = K⊥
(−K2

⊥ + 2�2
0 − 4�4

0

) 1
2 , (5)

where � is the growth rate of the perturbations, satisfying � =
ih. Notice that all the information about the PW perturbational
spectrum is contained in the amplitude �0. We can estimate the
value of the transverse wave vector which gives the maximum
growth rate by looking for the extremals of Eq. (5); that is,

∂�

∂K⊥
= 0 → (Kmax

⊥ )2 = �2
0 − 2�4

0 = �max. (6)

As a consequence, the PW of amplitude �0 = 1
2 features the

highest perturbation growth rate (see Fig. 1). This means that it
will suffer destabilization in a shorter characteristic scale than
any other homogeneous solutions of Eq. (2) if it is perturbed
by a harmonic mode with K⊥ = Kmax

⊥ . These assertions are
illustrated by Figs. 1 and 2. In Fig. 1 the quantity �max is plotted
as a function of the PW intensity. For |�0|2 > 0, we get �max �
0, corresponding to the modulationally stable PW branch [17].
The three pseudocolor intensity plots in the right-hand side
of Fig. 1 display different examples of the state of perturbed

FIG. 1. (Color online) Plot of �max vs |�0|2. The highest growth
rate corresponds to �2

0 = 0.25, whereas for �2
0 � 0.5 all values

of �max vanish or become negative, delimiting the domain of
modulational instability suppression. The labeled points on the graph
refer to the pseudocolor intensity plots to the right of the graph. These
plots display a small region (width = 500, height = 300) of perturbed
PWs of intensities (a) �2

0 = 0.045, (b) �2
0 = 0.25, and (c) �2

0 = 0.64
at the propagation distance η = 125. The filaments shown in (b) arise
before those in (a), so that both coalescence and domain formation
effects can be observed.
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FIG. 2. (Color online) Plots of the peak intensity evolution over
the line [ζ = 0,−120 < χ < 120] of perturbed plane waves. The
solid (blue) line (�2

0 = 0.64) is almost constant, featuring small
bounded oscillations due to spatial noise initially added. The dashed
(orange) line (�2

0 = 0.25) shows a rapid growth in intensity with
η, which is a trace of a short longitudinal instability scale. The
dotted (black) line (�2

0 = 0.045) shows the destabilization scale
for experimental data [4]. It is important to notice the difference
in between the instability scales of the dashed (orange) and dotted
(black) curves. For the simulation with experimental data, the starting
point of the filamentation process is around η = 75 (2.1 mm in
dimensional units), which is compatible with that of experiments.
In all cases, the maximum propagation distance is η = 300.

light homogeneous distributions after a propagation distance
η = 125. All PWs considered throughout this manuscript are
perturbed with a 5% spatial random noise and propagated with
a standard beam propagation method.

Figure 1(a) corresponds to a simulation with �2
0 = 0.045

(unstable PW). It is observed that this noisy distribution leads
to the formation of several self-trapped optical channels which
survive a long distance. We have chosen this intensity because
it corresponds to one of those used in the experiments [4].
We estimate the full width at half maximum (FWHM) of
the arising filaments to be around 10 µm, in good agreement
with the experimental measurements. Figure 1(b) shows the
last stage of a simulation with �2

0 = 0.25, corresponding to
the PW with the highest �max. In fact, because this PW
possesses the shortest longitudinal scale of destabilization,
it can be seen in Fig. 1(b) that after filament formation some
domains are formed due to coalescence processes between
self-guiding structures. The final example, in Fig. 1(c),
shows a stable PW of �2

0 = 0.64. This is a very interesting
illustration of the phenomenon called modulational instability
suppression (MIS). For �2

0 > 0.5, the linear perturbational
modes decrease exponentially, thus leading to a suppression
of the modulational instability which could be observed in real
experiments. To our knowledge, this would constitute the first
example of beam stabilization in a nonlinear optical medium
obtained just by changing the input intensity.

Moreover, when the considered perturbations are intense
enough, the quantity �max acquires a greater relevancy since
its inverse value yields the characteristic longitudinal scale
of instability development �|| [16]. In a first approximation,
we consider the filamentation regime to be described by the

coefficient �|| as well as by the quantity �⊥ = π/Kmax
⊥ , which

univocally characterizes the transverse spatial scale of the
emerging filaments [9,16]. We are assuming throughout this
paper that optical filaments are axially symmetric so that �⊥
is valid for both transverse coordinates (χ,ζ ). In general, both
quantities (�||, �⊥) are useful in estimating the order of mag-
nitude of different spatial instability scales, but their agreement
with both simulations and experiments can be rather qualitative
due to the existence of different filamentation regimes, radial
perturbations, nonlinear responses, inhomogeneities in the
medium, coalescence processes between filaments, and so on.
In any case, as multiple filamentation appears as a consequence
of modulational instability of the corresponding field, the
linear stability analysis should be at least qualitatively correct
at the leading order, where other nonlinear processes are not
considered to be involved.

In Fig. 2, we have selected a transverse cut of the three
paradigmatic PWs considered above (see Fig. 1) and we have
determined their peak intensity along the propagation. As it
can be appreciated, the perturbed PW with �2

0 = 0.64 [solid
(blue) line] features a quasiconstant intensity during the whole
simulation, illustrating the MIS process. However, for �2

0 =
0.25 [dashed (orange) line] and �2

0 = 0.045 (dotted line), a
dramatic increase of the peak intensity with η is observed,
indicating the destabilization of the initial conditions. Fur-
thermore, there is a substantial difference in the longitudinal
instability scale of both situations. It can be appreciated that
�2

0 = 0.25 (PW featuring the highest �max) displays a shorter
instability scale than �2

0 = 0.045. Hereafter, we compare this
numerical result with the theory as well as the predictions of the
stability analysis for the experimental parameters considered
by Centurion et al. [4], who observed the filamentation process
performed via femtosecond pulses propagating in CS2. Using
pulses of peak intensity Ip = 0.68 GW/mm2, they measured
a mean filament size of 12 µm, in good agreement with our
estimation. Moreover, the transverse scale of the filaments
predicted by our linear stability analysis for their experimental
configuration is �⊥ = π/(�2

0 − 2�4
0)

1
2 , or �⊥ ≈ 16.45 µm

in dimensional units, which is also consistent with the sizes
measured in Ref. [4]. This can be interpreted as further
theoretical proof of the validity of the CQ model in describing
the dynamics of femtosecond optical pulses propagating in
CS2.

On the other hand, the longitudinal scale of instability
development �|| can be estimated as �|| ≈ �−1

max = 24.4
(0.7 mm in dimensional units). This scale was not directly
characterized by Centurion et al. in Ref. [4]. Nevertheless,
they found completely developed filaments on a scale of 5 mm,
which is compatible with our value of �|| and constitutes a
rough estimation of the propagation distance for the filaments
when they start to grow up. Note that for �2

0 = 0.25 we get
�|| = 8, thus justifying the shorter characteristic scale of
instability development observed in Fig. 2.

While our analytical and numerical results for �⊥ are
both in good agreement with the experiment of Ref. [4],
the estimations for �|| turn out to be less accurate. This is
due to the fact that in the simulations we have perturbed
the homogeneous distributions with random noise instead of
using harmonic perturbations with fixed K⊥. In fact, we have
checked that using harmonic perturbations leads to smaller
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values for �|| by a factor of ∼3, getting closer to the analytical
calculation.

These results show that, in spite of its simplicity, the
linear stability analysis not only provides good insight into
the physics but also can be used to obtain quantitative useful
predictions for the experiments of filamentation in CS2.

IV. LIQUID LIGHT SOLITONS ARISING
BY COALESCENCE

In this section we show through numerical simulations a
mechanism for the dynamical excitation of so-called liquid
light condensates [11] in media with CQ nonlinearity, by
means of spatial control of the filamentation regime and
coalescence processes between self-guided optical channels.
Furthermore, we discuss the possibility of observation of these
structures in the experiments with CS2.

As a starting point, we have considered an initial condition
for our simulations consisting of a broad extended laser
pulse with random noise fluctuations added. Group-velocity
dispersion effects are not considered here since it is justified to
assume that the temporal profile of the pulse does not change
during short propagation distances through CS2 [4]. We model
this light distribution with a wide flat-top profile represented
by the following function:

� = Abg(0.25{[1 + tanh(ρ + ωbg)][1 − tanh(ρ − ωbg)]}),
(7)

where Abg is the peak amplitude of the light pulse, ρ =√
χ2 + ζ 2 is the radial coordinate, and ωbg is the mean radius.

We have performed all simulations fixing Abg = 0.2 and
ωbg = 1000. As we restrict the experiment to a small region
located at the center of the pulse, we can think of the domain
delimited by � as part of a plane wave, since boundary effects
(e.g., near-field diffraction) will not affect our results within
the longitudinal scale imposed by the common experimental
setups. We explore the case Abg = 0.2, corresponding to a
modulationally unstable plane wave [17] as we have discussed
above, although the same qualitative behavior is obtained
whenever �max > 0 (see Fig. 1).

By adding an inhomogeneity to the light distribution of
Eq. (7), we are able to manage the filamentation regime. In fact,
we have induced a small-scale Gaussian fluctuation (SGF) of
amplitude AG = 0.5071 and width ωG = 30, located at the
center of the bidimensional spatial profile �, in order to select
a small region where filamentation will first appear. Notice
the scale difference between the two counterparts. Then by
overlapping both structures � and SGF, we generate a spatially
inhomogeneous profile �in with a peak intensity |�in|2 =
0.5, which corresponds to that of the plane wave defining the
boundary between the stable and unstable PW solutions of
Eq. (1) [17].

The evolution dynamics of such a light distribution is
illustrated in Fig. 3. In this figure, the panels show our small
region of interest [−75 < χ,ζ < 75]. The initial condition is
plotted in Fig. 3(a). Once the pulse has entered the medium, the
SGF starts to self-focus. It is remarkable how such a process
is quickly counteracted by the self-defocusing nonlinearity.
As a result, a bright hot spot is observed at the distribu-

(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color online) Intensity pseudocolor plots of the SGF
evolution in the presence of an unstable homogeneous background.
The intensity snapshots correspond to a spatial domain [−75 <

χ,ζ < 75] at several propagation distances, namely, (a) η = 0,
(b) η = 80, (c) η = 150, (d) η = 200, and (e) η = 1000. Panel (f)
displays the phase map of the field depicted in panel (e). From this
phase structure, it can be stated that the light condensate appearing at
the last stage of the propagation is a coherent light structure since the
color within the region where it is located [see (blue) circle in panel
(f)] is homogeneous.

tion centroid and diffractive rings representing shockwaves
due to “background-fluctuation” interplay appear (see (b)
snapshot).

The spectral properties of these waves (usually referred as
conical emissions) have been studied in [18]. They give support
to the formation of new filaments from pulse MI. Hereafter,
we will discuss how to control the shock-wave propagation
in order to stimulate the appearance of several filaments
surrounding the hot spot [see Fig. 3(b)]. The key point is
to generate a SGF in a precise way by using phase masks [5]
and techniques like pulse shaping [19]. To excite wide liquid
solitons, we propose to surround the main custom-generated
light structure, which is roughly similar to a top-flat beam,
with a critical number of filaments located close to it. In fact,
the solitons are statistical attractors due to their high internal
energy. The satellite filaments are then used to provide an
energy source for the central seed so that its power could be
increased by coalescence processes, if the phases of the soliton
and the filament match. As shown in Fig. 3(c), there is indeed
a dynamical energy exchange between filaments and hot spot
during propagation. As a result, all solitonic structures are
both created and annihilated several times [Fig. 3(c)], until a
wider coherent structure with almost constant peak intensity
arises [Fig. 3(d)]. As a consequence, the emerging liquid light
soliton [11] is strongly perturbed by the energy excess released
in the collective coalescence. Nevertheless, from Fig. 3(e)
we see that after a large propagation distance the flat-topped
soliton features an improved radial symmetry, and the energy
excess is radiated in the form of linear modes.

In Fig. 3(f) we also show the phase map correspond-
ing to the intensity plot displayed in Fig. 3(e). We see
within the region where the condensate is placed [high-
lighted with a (blue) circle] that the phase structure is
homogeneous.
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FIG. 4. (Color online) Transverse intensity profile of the filament
distribution (black solid line) at η = 5000, with a superposed
transverse profile of an eigenstate [dashed (red) line] of Eq. (2)
with propagation constant γ = 0.173. The agreement between both
contours is reasonable. FWHMs [delimited with solid (blue) lines]
of the different-sized filaments represented in the figure have been
estimated to be Lc ≈ 28.5 (flat-topped soliton) and Lf ≈ 10 (Kerr-
type soliton). The spatial coordinate is χ ∈ [−150,150].

Finally, we have checked the transverse size of the distribu-
tion after a huge propagation distance, η = 5000. This allows
the light condensate to relax toward a stationary state, thus
minimizing random profile variations due to surface modes.
In Fig. 4, we have compared this extracted profile with that of
a stationary solution of Eq. (2). The agreement between the
transverse profiles corresponding to this simulation and the
stationary mode is remarkable. This completes the demonstra-
tion that this nonlinear structure observed in our simulations
is a true flat-topped CQ soliton.

To determine whether this kind of flat-top transverse mode
has been observed in the experiments with CS2 [4], we
have estimated their transverse size and found that it would
lie around the value Lc ≈ 28.5 (30.2 µm in dimensional
units). This is almost three times greater than the size of the
optical filaments measured in Ref. [4]. We thus conclude that
Centurion et al. have not reached the threshold to produce
flat-top, liquid light solitons.

On the other hand, on the right-hand side of the light
condensate displayed in Fig. 4, we also see a completely
developed self-guided light channel of size Lf ≈ 10 (10.6 µm
in dimensional units), which closely resembles those observed
by Centurion et al. This is a further demonstration that our
simulations reasonably reproduce the existing observations,
besides providing a guide for the new managed production of
the higher-power flat-top solitons.

V. CONCLUSIONS

In this paper, we have provided theoretical support for
recent experiments on filamentation of ultrashort pulses
propagating through carbon disulfide by means of approximate
analytical methods and numerical simulations of propagation.
The agreement between our calculations and the experimental
outcomes is remarkable, taking into account that we have
developed the theoretical description assuming a quintic
coefficient n4 which has not been measured in the laboratory.
We have shown that under certain conditions, a suppression
of the modulational instability could be observed in such
media over an intensity threshold. We have also described a
procedure for indirect excitation of flat-top solitons in pure CQ
materials, and we have argued that these nonlinear structures
have not been observed experimentally. Very remarkably,
recent experiments with air and other gases have revealed
their CQ nature via measurement of their high-order nonlinear
coefficients [14]. Thus, our results open the door to the quest
for liquid light condensates in real experiments.
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