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Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity
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(Received 18 February 2010; published 28 April 2010)

We consider a subwavelength periodic layered medium whose slabs are filled by arbitrary linear metamaterials
and standard nonlinear Kerr media and show that the homogenized medium behaves as a Kerr medium whose
parameters can assume values not available in standard materials. Exploiting such a parameter availability, we
focus on the situation where the linear relative dielectric permittivity is very small, thus allowing the observation
of the extreme nonlinear regime where the nonlinear polarization is comparable with or even greater than the
linear part of the overall dielectric response. The behavior of the electromagnetic field in the extreme nonlinear
regime is very peculiar and characterized by interesting features such as the transverse power flow reversing. In
order to probe this regime, we consider a class of fields (transverse magnetic nonlinear guided waves) admitting
full analytical description and show that these waves are allowed to propagate even in media with ε < 0 and µ > 0
since the nonlinear polarization produces a positive overall effective permittivity. The considered nonlinear waves
exhibit, in addition to the mentioned features, a number of interesting properties like hyperfocusing induced by
the phase difference between the field components.
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I. INTRODUCTION

Electromagnetic propagation through metamaterials has
stimulated, since the early 2000s, intense research activ-
ity with two main purposes: the identification of artificial
structures exhibiting anomalous values of the permittivity ε

and the permeability µ [1,2] and the investigation of the
electromagnetic phenomenology resulting from the unusual
electromagnetic properties. Leading examples of the class
of phenomena supported by metamaterials are superlens-
ing [3,4], optical cloaking [5,6], and photonic circuits [7].
Recently, a good deal of attention has been devoted to the
investigation of metamaterials characterized by a very small
dielectric permittivity (ε-near-zero materials) since they host
an electromagnetic regime where the magnetic field displays
static features [8] and the tunneling of electromagnetic energy
through subwavelength channels has been proposed [9] and
experimentally observed [10,11]. Metamaterials exhibiting
remarkable nonlinear properties have been investigated as
well [12] and various soliton manifestations [13–16] have
been considered. The investigation of metamaterial nonlinear
properties is particularly important in that it can lead to
overcoming one of the fundamental limits of nonlinear optics:
the fact that most of the optical materials have a relatively
weak nonlinear response. The main idea is that the local
electromagnetic fields of the inclusions in the metamaterial
can be much larger than the average value of the field thus
producing an enhancement of the nonlinear response [17–19].
The problem of achieving a substantial enhancement of
the nonlinear response has also been considered within the
more general subject of composite structures homogenization
[20–24], and the strategy is always that of conceiving a
microscopic inhomogeneous structure concentrating the field
within the nonlinear constituents.

The full exploitation of the nonlinear response is possible
only if the nonlinear polarization is not a small perturbation
to the linear part of the electric displacement field, and
generally this is achieved through nonlinearity enhancement

or by means of resonant processes or photorefractive processes
where the large nonlinearities come at the cost of a large time
response. However, as shown in this article, the interplay
between the linear part of the electric displacement field
and the nonlinear polarization can be made efficient even
by following the opposite route, i.e., by reducing the linear
polarization. We therefore devise a nonlinear medium with
a very small linear dielectric constant since it is a natural
setting for the observation of the electromagnetic regime
where the nonlinear response does not play the role of a mere
perturbation.

In this article we consider a periodic layered composite
whose slabs are filled either with linear media with arbitrary
permittivity and permeability or by standard isotropic focusing
or defocusing Kerr media. Exploiting a suitable extension of
the well-known technique generally used for describing the
homogenization of linear layered composites, we show that
the homogenized medium is characterized by effective consti-
tutive relations formally coinciding with those of a standard
Kerr medium. We note that the parameters characterizing
such an effective response can be simply tailored through
a suitable choice of the composite underlying constituents
and that, due the large freedom in choosing both constituent
media and their volume filling fraction, the design of linear
and nonlinear properties can be independently performed.
Therefore our composite medium allows a full and efficient
engineering of the Kerr nonlinear response. More interestingly,
we prove that the effective response parameters span very wide
ranges encompassing values not available in standard media.
The standard isotropic Kerr response (in the the frequency
domain) generally depends on two parameters usually denoted
with A and B [25] in term of which we define χ = A and
γ = B/2A and the available values of γ belong to the range
0 < γ < 3 (depending on the actual mechanism supporting
the Kerr response). In this article we prove that the parameter
γ appearing in the effective Kerr nonlinear response can, in
principle, assume any value (encompassing negative and very
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large values) and we discuss the impact of the exotic values of
γ on the electromagnetic phenomenology.

Confining our attention to transverse magnetic (TM) fields,
we show that it is possible to design a nonlinear Kerr medium
whose linear dielectric permittivity is much smaller than 1
and therefore able to host the electromagnetic regime where
nonlinearity cannot be regarded as a perturbation (extreme
nonlinear regime). As a first general electromagnetic effect
characteristic of the extreme nonlinear regime, we discuss
the transverse power flow reversing, i.e., the fact that, for
an electromagnetic beam, the Poynting vector on the beam
propagation axis can be antiparallel to Poynting vector on the
beam lateral sides [26]. Within the extreme nonlinear regime,
the full exploitation of the nonlinear response can be achieved
and, in order to discuss the consequent electromagnetic
phenomenology, we consider a class of nonlinear guided waves
admitting full analytical treatment. A number of the obtained
nonlinear guided waves exhibit, as expected, transverse power
flow reversing. We prove that, in the situation where ε < 0,
µ > 0 and χ > 0 (or in the equivalent case ε > 0, µ < 0
and χ < 0) these waves are allowed to propagate through
the medium if −1 < γ < 0, in striking contrast to the fact
that, in a linear medium with the same permittivity and
permeability, any wave would be evanescent. This is possible
since nonlinearity overcomes the linear contribution to the
electric displacement field producing an effective nonlinear
dielectric permittivity able to support propagating waves.
In addition we identify a mechanism which, combining the
extreme nonlinear regime with the properties of the effective
medium response with γ � −1, produces a hyperfocusing
of the considered nonlinear guided waves. In the situation
ε > 0, µ > 0 and χ < 0 (or in the equivalent case ε < 0,
µ < 0 and χ > 0) the nonlinear guided waves exist in the
wider range −∞ < γ < −1 and 0 < γ < +∞ thus allowing
to probe the Kerr nonlinear response for large values of |γ |.
Since the phase difference between the components of the
considered waves is π/2, we predict that, for γ → +∞, an
extreme compensation occurs (within the effective nonlinear
polarization) and supports a field whose transverse Ex and
longitudinal Ez components are such that |Ex | � |Ez|, i.e.,
they share the same profile.

The article is organized as follows. In Sec. II we investigate
the homogenization of a one-dimensional periodic layered
medium comprising both linear (metamaterials) and nonlinear
(Kerr media) slabs and we derive the constitutive relations
characterizing the effective medium. In Sec. III we focus on
the transverse magnetic field configuration and we discuss
the effective nonlinear response engineering and the allowed
extreme nonlinear regime, together with the transverse power
flow reversing effect. In Sec. IV we investigate a class of
nonlinear guided waves belonging to the extreme nonlinear
regime and we discuss a number of their peculiar properties.
The existence of the considered nonlinear guided waves is
investigated in Appendix.

II. HOMOGENIZATION OF A 1D NONLINEAR
LAYERED MEDIUM

Consider a monochromatic electromagnetic field [whose
time dependence is exp(−iωt)] propagating through a meta-

material layered medium consisting of periodically repeating,
along the y axis, N layers of different media of thicknesses
dj (j = 1 . . . N), so that the structure spatial period is d =∑N

i=j dj (see Fig. 1 where the case N = 4 is depicted). Each
one of these N media can be either a linear metameterial with
arbitrary dielectric and magnetic properties or a cubic standard
nonlinear medium so the electromagnetic response of the j th
medium is modeled by the general constitutive relations

Dj = ε0εj Ej + ε0χj [(Ej · E∗
j )Ej + γj (Ej · Ej )E∗

j ],
(1)

Bj = µ0µj Hj ,

where ε0 and µ0 are the vacuum permittivity and permeability
constants, whereas Ej , Dj , Hj , Bj are the complex amplitude
of the local electromagnetic field vectors, εj and µj are
the relative permittivity and permeability of the j th layer,
χj and γj are the standard parameters characterizing the
isotropic cubic nonlinear response of the j th layer [25].
Evidently, χj = 0 if the j th layer is filled by a linear medium
and µj = 1 for a nonlinear dielectric. The linear dielectric
constants εj are here regarded as arbitrary complex numbers
since the layers can be filled with lossy and active media.
If the field vacuum wavelength is much greater than the
spatial period (λ = 2πc/ω � d) the considered periodically
nonlinear stratified medium can be homogenized, i.e., its
electromagnetic response can be shown to coincide with that
of a suitable homogeneous medium. In order to obtain the
overall effective response, note that any component of the
local electromagnetic field can be assumed, within each layer,
independent on y since the layers are extremely small (d � λ).
Although this is a very reasonable physical assumption, it
can be rigorously proven exploiting the well-known powerful
two-scale expansion method [27,28]. Each of the physical
observable (macroscopic) electromagnetic field vectors, say V
(V = E,D,B,H), is obtained by averaging (along the y axis)
the layer local fields over the period d, so

V ≡ 〈Vj 〉 =
N∑

j=1

fj Vj , (2)

where fj = dj/d is the volume filling fraction of the j th
medium (

∑N
j=1 fj = 1) and the averaging has been performed

by exploiting the uniformity along y of the local fields Vj .
Within each unit cell (of thickness d), at each plane interface
between the j th and (j + 1)th layer, the local fields have to
satisfy the electromagnetic boundary conditions (continuity of
the tangential component of electric and magnetic fields and
continuity of the normal components of the displacement and
magnetic induction fields) so the local fields are joined by the
relations

Ejx = E(j+1)x, Hjx = H(j+1)x,

Ejz = E(j+1)z, Hjz = H(j+1)z, (3)

Djy = D(j+1)y, Bjy = B(j+1)y,

where j = 1 . . . (N − 1). Averaging the local fields Bjx , Bjz

and Hjy and exploiting the second of Eqs. (1) together with
magnetic boundary conditions of Eqs. (3), it is straightforward
to prove that the macroscopic fields B = 〈Bj 〉 and H = 〈Hj 〉

043839-2



EXTREME NONLINEAR ELECTRODYNAMICS IN . . . PHYSICAL REVIEW A 81, 043839 (2010)

are related by

B = µ0µ
(eff)H, (4)

where the relative magnetic permeability µ(eff) is the diagonal
tensor µ(eff) = diag[〈µj 〉,〈µ−1

j 〉−1,〈µj 〉], which is a very well-
established result concerning the homogenization of layered
media [29]. As far as the dielectric response is concerned,
exploiting the first of Eqs. (1) together with the fact that
Ejx = 〈Ejx〉 = Ex , Ejz = 〈Ejz〉 = Ez and Djy = 〈Djy〉 =
Dy [obtained by combining the electric boundary conditions
of Eqs. (3) and Eq. (2)] we obtain

D⊥ = ε0〈εj 〉E⊥
+ ε0[〈χj 〉(E⊥ · E∗

⊥)E⊥ + 〈χjγj 〉(E⊥ · E⊥)E∗
⊥]

+ ε0[〈χj |Ejy |2〉E⊥ + 〈
χjγjE

2
jy

〉
E∗

⊥],

(5)
Dy = ε0εjEjy

+ ε0χj [(E⊥ · E∗
⊥)Ejy + γj (E⊥ · E⊥)E∗

jy]

+ ε0χj [(1 + γj )|Ejy |2Ejy],

where D⊥ = Dx êx + Dzêz and E⊥ = Ex êx + Ezêz are the
transverse parts of the macroscopic displacement and electric
fields, respectively, and Dy is the y component of the
macroscopic displacement field. Note that in the second of
Eqs. (6) no averaging has been performed. As a consequence
of the layers nonlinear dielectric behavior, the first of Eqs. (6)
contains terms where the squares of Ejy is suitably averaged.
In order to derive the effective medium response, the second
of Eqs. (6) has to be solved to express Ejy (j = 1 . . . N ) as
a function of the macroscopic fields E⊥ and Dy . This can be
pertubatively done by noting that, since we are considering the
standard Kerr effect for each nonlinear layer [25], the terms
containing χj are much smaller than the term ε0εjEjy so up
to the first order in the field cubic terms, from the second of
Eqs. (6), we obtain

ε0Ejy = 1

εj

Dy − χj

ε2
j

[(E⊥ · E∗
⊥)Dy + γj (E⊥ · E⊥)D∗

y ]

−χj

1 + γj

ε2
0ε

4
j

|Dy |2Dy. (6)

Averaging Eq. (6) we obtain a relation joining the macroscopic
field Ey and the fields E⊥ and Dy so this relation, if its
nonlinear contributions are much smaller than the leading
linear term, can be inverted to perturbatively yield Dy as a
function of E⊥ and Ey . Therefore, up to the first order in the
field cubic terms, we obtain

Dy = ε0
〈
ε−1
j

〉−1
Ey

+ ε0

[〈
χjε

−2
j

〉
〈
ε−1
j

〉2 E⊥ · E∗
⊥ +

〈
χj (1 + γj )ε−4

j

〉
2
〈
ε−1
j

〉4 |Ey |2
]

Ey

+ ε0

[〈
χjγj ε

−2
j

〉
〈
ε−1
j

〉2 E⊥ · E⊥ +
〈
χj (1 + γj )ε−4

j

〉
2
〈
ε−1
j

〉4 E2
y

]
E∗

y .

(7)

Substituting the fields Ejy of Eqs. (6) into the first of Eqs. (6)
and using Eq. (7) (neglecting everywhere the terms containing
powers of χj higher than one) we obtain

D⊥ = ε0〈εj 〉E⊥

+ ε0

[
〈χj 〉E⊥ · E∗

⊥ +
〈
χjε

−2
j

〉
〈
ε−1
j

〉2 |Ey |2
]

E⊥

+ ε0

[
〈χjγj 〉E⊥ · E⊥ +

〈
χjγj ε

−2
j

〉
〈
ε−1
j

〉2 E2
y

]
E∗

⊥. (8)

Equations (7) and (8) are the constitutive dielectric relations
characterizing the effective medium obtained by the homog-
enization of the considered 1D layered medium since they
solely contain the macroscopic fields. Equations (7) and (8)
can be written as⎛

⎝Dx

Dy

Dz

⎞
⎠ = ε0

⎛
⎜⎝

ε(eff)
xx ε(eff)

xy ε(eff)
xz

ε(eff)
yx ε(eff)

yy ε(eff)
yz

ε(eff)
zx ε(eff)

zy ε(eff)
zz

⎞
⎟⎠

⎛
⎜⎝

Ex

Ey

Ez

⎞
⎟⎠ , (9)

where the components of the effective nonlinear permittivity
tensor ε(eff) are

ε(eff)
xx = 〈εj 〉 + (〈χj 〉 + 〈χjγj 〉)|Ex |2 +

〈
χjε

−2
j

〉
〈
ε−1
j

〉2 |Ey |2

+〈χj 〉|Ez|2,

ε(eff)
yy = 〈

ε−1
j

〉−1 +
〈
χjε

−2
j

〉
〈
ε−1
j

〉2 |Ex |2 +
〈
χjε

−4
j (1 + γj )

〉
〈
ε−1
j

〉4 |Ey |2

+
〈
χjε

−2
j

〉
〈
ε−1
j

〉2 〉|Ez|2,

ε(eff)
zz = 〈εj 〉 + 〈χj 〉|Ex |2 +

〈
χjε

−2
j

〉
〈
ε−1
j

〉2 |Ey |2

+ (〈χj 〉 + 〈χjγj 〉)|Ez|2,
(10)

ε(eff)
xy =

〈
χjγj ε

−2
j

〉
〈
ε−1
j

〉2 E∗
xEy,

ε(eff)
yx =

〈
χjγj ε

−2
j

〉
〈
ε−1
j

〉2 ExE
∗
y ,

ε(eff)
xz = 〈χjγj 〉E∗

xEz,

ε(eff)
zx = 〈χjγj 〉ExE

∗
z ,

ε(eff)
yz =

〈
χjγj ε

−2
j

〉
〈
ε−1
j

〉2 E∗
yEz,

ε(eff)
zy =

〈
χjγj ε

−2
j

〉
〈
ε−1
j

〉2 EyE
∗
z ,

From Eq. (9) we note that the effective medium behaves
like an anisotropic Kerr medium whose nonlinear properties
can be tailored by suitably choosing the underlying layered
composite. Note that, in the specific case of linear layers (i.e.,
χj = 0 for all j ), the effective permittivity reduces to the
diagonal tensor εeff = diag[〈εj 〉,〈ε−1

j 〉−1,〈εj 〉], reproducing
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a well-known result concerning homogenization of linear
layered media [29–31].

III. EXTREME ELECTRODYNAMICS OF TM FIELDS

Electromagnetic propagation through the homogenized
medium of Sec. II is described by the macroscopic Maxwell
equations

∇ × E = iωB,
(11)

∇ × H = −iωD

and the constitutive relations of Eqs. (4), (7), and (8). Hereafter,
we focus on transverse magnetic (TM) electromagnetic fields
(see Fig. 1) of the form

E = Ex(x,z)êx + Ez(x,z)êz,
(12)

H = Hy(x,z)êy.

Substituting the field of Eqs. (12) into Eqs. (9) and (4) we
obtain

D = ε0εE + ε0χ [(E · E∗)E + γ (E · E)E∗],
(13)

B = µ0µH,

where D = Dx(x,z)êx + Dz(x,z)êz, B = By(x,z)êy , and the
effective parameters

ε =
N∑

j=1

fjεj , µ =
⎡
⎣ N∑

j=1

fiµ
−1
j

⎤
⎦

−1

,

(14)

χ =
N∑

j=1

fjχj , γ = 1

χ

N∑
j=1

fjχjγj .

The parameters ε, χ , and γ of Eqs. (14) are easily deduced
by Eqs. (10) by setting Ey = 0, whereas the parameter µ

of Eqs. (14) is simply the yy component of the relative
magnetic permeability µ(eff) of Eq. (4). Therefore the effective
dielectric response experienced by a TM field coincides with
the standard isotropic Kerr response. Analogously to what
happens in linear layered media, we note, from Eqs. (14), that
the permittivity ε and the permeability µ are the weighted
and harmonic weighted means, respectively, so the former is
bounded by the minimum and maximum of its microscopic
values, whereas the latter is unbounded since some µj can

z

d

d
1d

2d
3

12

d
4

3
4

x

E
z

E
x

y

H
y

FIG. 1. Geometry of the nonlinear layered composite and TM
electromagnetic field configuration.

be negative. It is worth stressing that the averaging of the
microscopic linear parameters additionally allows an efficient
loss management since, combining lossy and gain media, one
can design an effective medium whose effective parameters
ε and µ have negligible imaginary parts [32]. On the other
hand, χ is the weighted mean of the constituents nonlinear
Kerr coefficients and this is in agreement with the results
of Ref. [33–35]. More interestingly, γ is generally not the
weighted mean of its microscopic values since some χj can
be negative (corresponding to defocusing nonlinear layers),
so γ can assume any positive and negative value. This result
is particularly interesting since, for standard cubic isotropic
materials, there is, in general, a small number of available
γ (depending on the physical mechanism supporting the
nonlinear response [25]), whereas, for composite materials,
it has been shown in Ref. [22] that γ can span the whole range
0 < γ < 3.

Even though Eqs. (13) formally coincide with the standard
isotropic Kerr response, the considered layered material can
support a nonlinear electromagnetic phenomenology that
differs substantially from that observed in a standard Kerr
medium, as discussed in the following three subsections.

A. Extreme nonlinear regime

Consider a layered medium for which ε is such that
0 < Re(ε) � 1, |Im(ε)| � Re(ε) and the effective nonlinear
coefficient χ is of the same order of magnitude of underly-
ing coefficients χj (i.e., |χ | ∼ |χj |). An effective dielectric
permittivity with a very small real part and a negligible
imaginary part can be achieved by combining positive and
negative standard dielectric layers (|Re(εj )| > 1) together with
gain media (generally unavoidable since absorption due to
negative dielectrics can not be in principle neglected [32]).
For the sake of simplicity let us consider the case γ = 0. If the
electromagnetic field propagating through the medium is such
that

|Ex |2 + |Ez|2 ∼
∣∣∣∣ ε

χ

∣∣∣∣ , (15)

we have |χj (E · E∗)| ∼ |ε| � |εj | so, in the first of Eqs. (1),
the nonlinear part is much smaller than the linear contribution
ε0εj Ej . Therefore, the nonlinear layers are in the presence of
a field whose intensity is sufficiently small for their response
to be purely cubic and, as a consequence, the microscopic
responses of Eqs. (1) hold and the macroscopic constitutive
relation in the first of Eqs. (13), holds as well. On the other
hand, combining Eq. (15) and the first of Eq. (13) we conclude
that, as opposed to what happens in standard nonlinear
materials, the considered layered medium is able to support
the extreme nonlinear regime where the electromagnetic field
is such that the linear contribution εE and the nonlinear term
χ (E · E∗)E in the overall dielectric response have the same
order of magnitude. It is evident that the same argument,
with some slight changes, allows to prove that the extreme
nonlinear regime is observable for any value of γ . Even
though the advantages of such an extreme nonlinear regime
are self-evident, it is worthwhile to compare it to the standard
paraxial nonlinear optical situation where the overall refractive
index is n0 + δn, where n0 is the background linear refractive
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index and δn = n2I � n0 is the Kerr nonlinear term (where I

is the optical intensity). In this situation the field satisfies the
equation

∇2E + k2
0

(
n2

0 + 2n0δn
)
E = 0 (16)

(k0 = ω/c) and, within the paraxial regime, the field is of
the form E = eikzA. At this point one chooses k = k0n0

since, substituting the paraxial field into Eq. (16) the term
k2

0n
2
0E (responsible for the fast spatial variation of the field) is

removed and the paraxial equation i ∂A
∂z

+ 1
2k

∇2
⊥A = − k

n0
δnA

is readily obtained by neglecting the term containing ∂2
z A.

Therefore, in standard paraxial nonlinear optics, δn can play
an important role in Eq. (16) since the large linear contribution
proportional to n2

0 is suppressed by the presence of the carrier
plane wave. In other words, the nonlinear Kerr contribution
ε0χ |E|2E is not requested to compete against the whole linear
part, ε0εE, of the dielectric response. However, in the case of
the extreme nonlinear regime discussed in this section, this
competition can happen and therefore the nonlinearity is not
confined to solely drive the slowly varying amplitude A.

B. Transverse power flow reversing

The extreme nonlinear regime can support propagation of
beams characterized by exotic properties such as the reversing
of the electromagnetic power flow along the beam transverse
profile [26]. In order to discuss this phenomenon, consider a
TM field describing a beam mainly propagating along the z

axis, i.e., a field of the form Hy(x,z) = eiKzA(x,z) with the
requirement |∂zA| � K|A| (K being a wave vector depending
on the actual electromagnetic configuration). In this case
Maxwell equations of Eqs. (11) yield

Hy = ω

K
Dx,

(17)

Hy = 1

ωµ0µ

(
KEx + i

∂Ez

∂x

)
,

where it has been assumed that ∂zHy � iKHy and ∂zEx �
iKEx . Exploiting Eqs. (17), the z component of the time-
averaged Poynting vector Sz = (1/2)Re(HyE

∗
x ) can be ex-

pressed through the equivalent relations

Sz = ω

2K
Re(DxE

∗
x )

(18)

Sz = 1

2ωµ0µ
Re

[(
KEx + i

∂Ez

∂x

)
E∗

x

]
.

If, for example, ε > 0, µ > 0, χ < 0, and γ = 0, for an
electromagnetic beam whose peak electric field strength is
greater than

√|ε/χ | (extreme nonlinear regime), it is evident
from the first of Eqs. (13) that Dx and Ex are antiparallel
around the propagation axis (i.e., where |χ (E · E∗)| > ε) and
parallel elsewhere so that, from the first of Eqs. (18), Sz is
negative near the beam axis and positive elsewhere. In other
words the beam is characterized by a power flow whose
direction reverses its sign along the transverse profile and
this is due to sign flipping of Dx along the wave transverse
profile while Ex does not change its sign. Note that the sign
flipping of Dx corresponds to a sign flipping of Hy [see the
first of Eqs. (17)] so, considering the second of Eqs. (17),

this can happen without sign flipping of Ex only if ∂Ez/∂x

is not negligible with respect KEx . Therefore power flow
reversing can take place only if the field has a transverse size
comparable with 1/K . It is worth stressing that the discussed
power flow reversing differs from the effect that, in left-handed
metamaterials, the Poynting vector is antiparallel to the carrier
wave vector which is a consequence of the fact that, in such
media, ε < 0 and µ < 0 (with n < 0). On the other hand, in
our case, µ > 0 and the sign of the power flow is not uniform
being controlled by the field intensity through the nonlinearity.

C. Linear and nonlinear parameters design

In order to discuss the impact of the wide ranges of the
parameters of Eqs. (14), made possible by linear and nonlinear
design, on electromagnetic phenomenology, we consider the
situation where the effective dielectric permittivity ε and
magnetic permeability µ are real, so, after substituting the
expression for the TM field of Eqs. (12) into Eqs. (11),
eliminating the magnetic field and using Eqs. (13) we get

∂2Uz

∂ξ∂ζ
− ∂2Ux

∂ζ 2
= σεσµUx + σµ[(1 + γ )|Ux |2Ux

+ (UxU
∗
z + γU ∗

x Uz)Uz],
(19)

∂2Ux

∂ξ∂ζ
− ∂2Uz

∂ξ 2
= σεσµUz + σµ[(1 + γ )|Uz|2Uz

+ (UzU
∗
x + γU ∗

z Ux)Ux],

where dimensionless variables and fields have been introduced
according to

x = 1√|εµ|k0
ξ, z = 1√|εµ|k0

ζ,

(20)

Ux =
√∣∣∣χ

ε

∣∣∣Ex, Uz =
√∣∣∣χ

ε

∣∣∣Ez,

and k0 = ω/c, whereas σε = sgn(εχ ) and σµ = sgn(µχ ) are
the signs of the products εχ and µχ , respectively. As opposed
to the linear regime where electric field behavior solely
depends on the sign of εµ [1], from Eqs. (19) we note that,
in the present approach, the nonlinear dynamics separately
depends on the signs of εχ and µχ , i.e., the presence of the
nonlinearity breaks the symmetry between the roles played by
the signs of ε and µ [36,37]. From Eqs. (20) we note that
ε, µ, and χ scale the actual physical size and amplitude of
the field so, since the effective parameters can in principle
be independently chosen [see Eqs. (14)], for each solution of
Eqs. (19), a suitable layered medium can be designed in such
a way that the actual electromagnetic field has a prescribed
geometrical size and intensity [see Eqs. (20)]. As an example,
in the case of beam propagation, such an electromagnetic
scaling freedom can allow to observe nonparaxial feature
of a beam whose transverse width is much greater than
the vacuum wavelength (if |εµ| � 1) or, on the contrary,
to observe the standard paraxial phenomenology for beams
whose transverse width is much smaller than the vacuum
wavelength (if |εµ| � 1) and, remarkably, this can be done
by avoiding any unfeasible requirement on the intensity.

The parameter γ plays a role that differs fundamen-
tally since it cannot be generally removed from Eqs. (19)
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with a field transformation. Setting Ux = Axe
iφx and Uz =

Aze
iφz (where Ax , Az, φx , and φz are real), the non-

linear terms of Eqs. (19), namely Nx = (1 + γ )|Ux |2Ux +
(UxU

∗
z + γU ∗

x Uz)Uz and Nz = (1 + γ )|Uz|2Uz + (UzU
∗
x +

γU ∗
z Ux)Ux , can be written as

Nx = [
(1 + γ )A2

x + (1 + γ e−2i(φx−φz))A2
z

]
Axe

iφx ,
(21)

Nz = [
(1 + γ e2i(φx−φz))A2

x + (1 + γ )A2
z

]
Aze

iφz ,

from which we note that γ is responsible for a nonlinear
coupling between the two field components which is highly
sensitive to the phase difference φx − φz. The case γ =
−1 is particularly interesting since in Eqs. (21) the terms
proportional to (1 + γ ) vanish so that each field component
is nonlinearly driven only by the other component and such
coupling is fully sensitive the phase difference. Also intriguing
is the regime |γ | � 1 since two major opposite situations exist.
If the phases of Ux and Uz are equal, from Eqs. (21) it is
evident that the overall nonlinear polarization is proportional
to (1 + γ ) so that, if |γ | � 1, the effective nonlinear response
can be enhanced. If, on the other hand, the phase difference
between Ux and Uz is π/2, the overall nonlinear response of
Eqs. (21) solely contains the terms (A2

x + A2
z) and γ (A2

x − A2
z),

so, if |γ | � 1 (for realistic bounded fields), the compensation
A2

x ∼ A2
z has to occur in order to prevent the divergence of the

term proportional to γ in Eqs. (19).

IV. NONLINEAR GUIDED WAVES

As explained in the above section, the nonlinear response
of the proposed Kerr metamaterial is easy to manage and,
since the accesible ranges of its parameters are very wide,
one can devise situations where the medium supports a
nonlinear electrodynamical phenomenology. In order to probe
the regime, we consider here a class of fields which are
sufficiently simple to allow a full analytical treatment and,
at the same time, rigged with enough structure to show many
of the effects. More specifically, we consider nonlinear guided
waves propagating along the z axis of the form

Ux(ξ,ζ ) = eiβζ ux(ξ ),
(22)

Uz(ξ,ζ ) = eiβζ iuz(ξ ),

where β is a real constant and the amplitudes ux and uz are
real. Substituting the field of Eqs. (22) into Eqs. (19) we obtain

−β
duz

dξ
+ β2ux = σµ [σε + �x] ux,

(23)

β
dux

dξ
− d2uz

dξ 2
= σµ [σε + �z] uz,

where

�x(ξ ) = (1 + γ )u2
x(ξ ) + (1 − γ )u2

z(ξ ),
(24)

�z(ξ ) = (1 − γ )u2
x(ξ ) + (1 + γ )u2

z(ξ ).

Using Eqs. (24), it is worth noting that, from the first of
Eqs. (13), the vector D can be expressed as

Dx = ε0χ

√∣∣∣∣ ε

χ

∣∣∣∣
3

(σε + �x) uxe
iβζ ,

(25)

Dz = ε0χ

√∣∣∣∣ ε

χ

∣∣∣∣
3

(σε + �z) iuze
iβζ ,

from which we note that

ε(NL)
x = |ε|sgn(χ ) (σε + �x)

(26)
ε(NL)
z = |ε|sgn(χ ) (σε + �z)

act, for the fields of Eqs. (22), as effective nonlinear dielectric
permittivity. The quantities of Eqs. (24) play a fundamental
role in our discussion since it is evident that, if the conditions
|�x | � 1 and |�z| � 1 do not hold along the profile of a
nonlinear guided wave, the linear and nonlinear contribution
in Eq. (25) are comparable, i.e., the considered nonlinear
guided wave belongs to the extreme nonlinear regime we have
discussed in Sec. III A.

We consider solutions of Eqs. (23) with definite parity
where ux and uz are spatially even [ux(ξ ) = ux(−ξ )] and odd
[uz(ξ ) = −uz(−ξ )], respectively, and, as a consequence, we
adopt the boundary conditions

ux(0) = ux0, uz(0) = 0,

ux(+∞) = ux∞, uz(+∞) = uz∞.
(27)

It is worth stressing that, due to the feasible possibility of ar-
bitrary choosing the effective linear and nonlinear parameters
characterizing the effective nonlinear medium, we consider
here solutions of Eqs. (23) and (27) for σε = ±1, σµ = ±1,
and, remarkably, for any real γ . In the appendix we show
that the system of Eqs. (23) is integrable and we derive
the existence conditions characterizing the nonlinear guided
waves satisfying Eqs. (27), i.e, for each possible combinations
of σε and σµ, we derive a γ -dependent range of u2

x∞ [i.e.,
u2

min(γ ) < u2
x∞ < u2

max(γ )] corresponding to nonlinear waves
existence. The resulting phenomenology is reported in Table I.
For each obtained nonlinear guided wave the propagation
constant β and the asymptotical value uz∞ are given by (see
the appendix)

β2 = 2γ σµ

1 + γ

(
σε + 2u2

x∞
) = σµ [σε + �x(+∞)] ,

(28)

u2
z∞ = −σε − (1 − γ )u2

x∞
1 + γ

,

where the second expression for β is obtained from the first by
exploiting the first of Eqs. (24). It is worth noting that, for each
ux∞, these values of β and uz∞ are obtained by requiring that
the nonlinear guided wave is asymptotically spatially uniform
(i.e., by annulling the derivatives in Eqs. (23) for ξ → ∞) and,
exploiting Eqs. (26), this implies that

ε(NL)
x (+∞) = |εµ|

µ
β2,

(29)
ε(NL)
z (+∞) = 0.
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TABLE I. Guided waves existence ranges of u2
x∞ depending on

γ , σε , and σµ.

σε = −1 σµ = 1 σε = −1 σµ = −1

γ > 0 γ

γ 2+4γ+1
< u2

x∞ < 1
2

−1 < γ < 0 u2
x∞ < 1

2
γ < −1 1

1−γ
< u2

x∞ < 1
2

From a physical point of view, the second of Eqs. (29) states
that the considered nonlinear waves can propagate through
the medium only if, asymptotically, the nonlinear term exactly
balances the linear one to yield an overall vanishing dielectric
constant, i.e.,

�z(+∞) = −σε. (30)

This proves that the nonlinear guided waves we are considering
always belong to the extreme nonlinear regime, i.e., they
cannot be observed in standard Kerr media. It is worth stressing
that the subfamily of nonlinear guided waves with uz∞ = 0 do
not require such an asymptotical compensation mechanisms
since, for ξ → ∞, the second of Eqs. (23) vanishes together
with uz∞. To sum up, an asymptotically spatially uniform
wave can exist only if Dz(∞) = 0 (since ∂xHy = −iωDz)
and this can be achieved by requiring either uz∞ = 0 or
ε(NL)
z (+∞) = 0, the second situation being investigated in the

present article.
Since the waves we are investigating always belong to the

extreme nonlinear regime, power flow reversing discussed in
Sec. III B is expected. For the field of Eqs. (22), the time-
averaged Poynting vector S = (1/2)Re[E × H∗] is given by

S = S0sgn(µ)

[(
βux − duz

dξ

)
ux

]
êz,

(31)

S = S0
sgn(χ )

β
(σε + �x) u2

x êz,

where S0 =
√

(ε0|ε|3)/(4µ0|µ||χ |2) and the second
expression is obtained from the first one by exploiting the first
of Eqs. (23) to eliminate the derivative of uz and the the first
of Eqs. (24). Note that Eqs. (31) coincide with Eqs. (18) (with
the identification K = √|εµ|k0β), the difference lying in the
fact that, for the nonlinear guided waves we are considering,
Eqs. (31) are exact due to the waves propagation invariance.

A. Nonlinear guided waves for σε = −1 and σµ = 1

The situation σε = −1 and σµ = 1 is very intriguing
since sgn(εµ) = σεσµ = −1 and, therefore, in the absence
of nonlinearity, no propagation can occur since the medium
can support only evanescent waves. On the contrary, we have
shown that, in this situation (see first column of Table I),
the nonlinear Kerr metamaterial can support propagating
nonlinear guided waves (i.e., with real propagation constant β).
In order to grasp this fact, we note, from the first of Eqs. (28),
for σε = −1 and σµ = 1, we obtain

β2 = −1 + �x(+∞), (32)

from which it is evident that, in the absence of the nonlin-
earity, β2 = −1, i.e., only evanescent waves exist. However,
combining the first of Eqs. (24) and the second of Eqs. (28),
we obtain

�x(+∞) = 1 − 2γ

1 + γ

(
1 − 2u2

x∞
)
, (33)

from which it is evident that, for −1 < γ < 0 and u2
x∞ < 1/2

(see the first column of Table I), �x(+∞) > 1 so β2 > 0 and
the nonlinear wave can propagate through the medium. From
a physical point of view, the same result can be understood by
regarding the nonlinear guided wave as a background infinite
plane wave with a distortion around ξ = 0. The background
nonlinear plane wave can propagate through the medium since
its amplitude is such that �x(+∞) > 1 so that the effective
nonlinear dielectric permittivity in the first of Eqs. (26) is
such that µε(NL)

x = |εµ|[−1 + �x(+∞)] > 0. In other words,
in the extreme nonlinear regime, the nonlinear polarizability
overcomes the linear dielectric contribution in such a way
that the sign of the effective overall dielectric permittivity is
opposed to that of the linear dielectric permittivity and the
waves are consistently not evanescent.

In Fig. 2 we plot various profiles of ux(ξ ) and uz(ξ ) for
γ = −1/2 and for u2

x∞ < 1/2. In Fig. 3 we plot the profiles
of ux(ξ ) and uz(ξ ) for different nonlinear guided waves,
in the range −0.8 < γ < −0.1, each characterized by the
same asymptotical value ux∞ = √

0.4. As explained in the
appendix, more than one nonlinear guided wave (for a given
γ ) can be generally found for each ux∞ and, in the situation
of Fig. 3, there are specifically two waves, the first being
reported in Figs. 3(a) and 3(b) and the second in Figs. 3(c)
and 3(d). The most striking feature emerging from Fig. 3 is
that, for a given ux∞ the closer γ to −1, the sharper the
profile of ux , i.e., γ produces a hyperfocusing effect for this
waves when it approaches the value γ = −1. As expected
(see the discussion of Sec. III C), the situation γ = −1 is

−5
0

50.2 0.4 0.6

0.2

0.6

1

ξ
u

x∞

u x(ξ
)

−5
0

50.2 0.4 0.6

−1

0

1

ξ
u

x∞

u z(ξ
)

(a)

(b)

FIG. 2. (Color online) Nonlinear guided waves transverse profile
of (a) ux(ξ ) and (b) uz(ξ ) at different values of ux∞ for σε = −1,
σµ = 1, γ = −1/2.
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0
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2
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)
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0
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u z(ξ
)
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1
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u z(ξ
)
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FIG. 3. (Color online) Profiles of ux and uz of various nonlinear
guided waves with σε = −1 and σµ = 1 and with γ spanning the
range −0.8 < γ < −0.1. All the waves are characterized by the same
asymptotical value ux∞ = √

0.4. For each γ two waves exist, the first
shown in Figs. 3(a) and 3(b) and the second in Figs. 3(c) and 3(d).

peculiar, displaying a phenomenology absent for other values
of γ . From a physical point of view, the hyperfocusing effect
results from the combination of two different mechanisms.
For the first one, we note that, since ε(NL)

z (+∞) = 0 [see the
second of Eqs. (29)], if γ is very close to −1, from the second
of Eqs. (26) and the second of Eqs. (24), we conclude that
uz∞ is much greater than 1 [in agreement with the second of
Eqs. (28) evaluated for γ � −1]. Therefore, |uz(ξ )| is much
greater than 1 everywhere apart from a small region around
ξ = 0 where uz is very small [since uz(0) = 0] and duz/dξ is
very large. The second mechanism supporting hyperfocusing
is based on the fact that, for γ � −1, the field x component
(ux) is nonlinearly driven solely by uz (see the discussion of
Sec. III C). Therefore, in the region where uz is very small
and duz/dξ is very large, from the first of Eqs. (23), it is
evident that ux(ξ ) displays a very pronounced peak, i.e., ux

is tightly squeezed by uz for γ � −1. In Fig. 4 we report the
z component of the normalized Poynting vector Sz/S0 [see
Eqs. (31)] evaluated for the waves reported in Fig. 3. Note that
the above-discussed hyperfocusing effectively corresponds to
a tight energy localization around ξ = 0 for γ close to −1.
This effect is particularly evident from the inset of Fig. 4(a)
where we plot the peak width � of Sz/S0 as a function of
γ . The power flows reported in Fig. 4(b) clearly displays the
transverse power flow reversing discussed in Sec. III B since
there is a region around ξ = 0 where Sz/S0 < 0, whereas
Sz/S0 > 0 elsewhere. Note that the power flows reported in
Fig. 4(a) does not exhibit transverse power flow reversing and
this can be easily understood considering the structures of the
two waves reported in Fig. 3. The z component of the first wave
is such that duz/dξ < 0 [see Fig. 3(b)] so, from the first of
Eq. (31), the two bell-shaped contributions u2

x and −uxduz/dξ

are both positive, yielding the Sz/S0 > 0. On the other hand,
the second wave is such that duz/dξ > 0 [see Fig. 3(b)] and,
therefore, in the first of Eqs. (31), the two contributions have
different signs and Sz/S0 can flip its sign along the transverse
profile.

FIG. 4. (Color online) Profile of the normalized Poynting vector z

component Sz/S0 evaluated for the nonlinear guided waves of Fig. 3.
Here sgn(ε) = −1, sgn(µ) = 1, and sgn(χ ) = 1. (a) Sz/S0 evaluated
for the waves reported in Figs. 3(a) and 3(b). (b) Sz/S0 evaluated
for the waves reported in Figs. 3(c) and 3(d). In the inset of (a), the
width � (root-mean-square deviation) of the various Sz/S0 reported in
(a) is plotted as a function of γ .

B. Nonlinear guided waves for σε = −1 and σµ = −1

For σε = −1 and σµ = −1, waves are allowed to propagate
in the linear regime and the nonlinear guided waves can
propagate if

β2 = 1 − �x(+∞) > 0, (34)

[see the first of Eqs. (28)], i.e., the background nonlinear
plane wave cannot produce a nonlinear dielectric response
overcoming the linear part. As opposed to the case discussed in
Sec. IV A, in the present situation there are two distinct families
of nonlinear guided waves corresponding to the ranges γ > 0
and γ < −1 (see the second column of Table I). In Fig. 5
we report different nonlinear guided wave profiles together
with their power flows for different values of γ > 0 and for
ux∞ = √

0.4. From Fig. 5(a) we note that, in this regime, the
profile of ux has a peak and a hole (around ξ = 0) for small
and large values of γ , respectively. This behavior is easily
understood since for γ = 0 we have β = 0 [from the first of
Eqs. (28)] and ux(0) = 1 > ux∞ (from the first of Eqs. (23)
evaluated at ξ = 0 and for σε = −1) whereas, for γ → +∞
we have β → √

2(1 − 2u2
x∞) and ux(0) = 0 < ux∞ [from the

limit γ → +∞ of the first of Eqs. (23) for σε = −1]. As
a consequence there must be a value of γ for which ux is
uniform. Requiring that ux(ξ ) = ux∞, Eqs. (23) can be cast in
the form

β
duz

dξ
= (1 − γ )

(−u2
z∞ + u2

z

)
ux∞,

(35)
d2uz

dξ 2
= (1 + γ )

(−u2
z∞ + u2

z

)
uz
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FIG. 5. (Color online) Profiles of (a) ux , (b) uz, and (c) Sz/S0

of various nonlinear guided waves with σε = −1 and σµ = −1 and
γ > 0. All the waves are characterized by the same asymptotical
value ux∞ = √

0.4.

so the solution of the second of Eqs. (35) fulfilling the boundary
conditions of Eqs. (27) is

uz(ξ ) = uz∞tanh

[√
1 + γ

2
uz∞ξ

]
(36)

or, in other words, the longitudinal component uz is an exact
electromagnetic dark soliton. However, the obtained uz has to
satisfy the full Maxwell system so that, substituting the field
in Eq. (36) into the first of Eqs. (35), it is straightforward to
prove that this is possible only if

γ± = 1

2u2
x∞

[
1 ±

√
1 − 4u4

x∞

]
. (37)

For ux∞ = √
0.4 we obtain γ+ = 2 which is the value of γ

at which ux is uniform in Fig. 5(a). Note that the situation
where ux is uniform and uz is a dark soliton is possible only in
the extreme nonlinear regime where the nonlinearity �z can
compensate the linear part in the second of Eqs. (23). From
Fig. 5(c) it is evident that every considered waves exhibit the
transverse power flow reversing discussed in Sec. III B. The
reversing of the power flow along the transverse profile of
the nonlinear guided waves is particularly evident from Fig. 6
where we draw the vector field S on the plane (ξ,ζ ) for one of
the fields of Fig. 5.

In Fig. 7 we report different nonlinear guided waves profiles
together with their power flows for different values of γ < 0
and for ux∞ = √

0.4. Let us consider, in this case, the behavior
of the nonlinear guided waves for large values of |γ |. From
Figs. 6(a) and Figs. 6(b) it is evident that a kind of saturation
occurs, i.e., ux and uz approaches their asymptotic profiles for
γ → −∞. This is consistent with the fact that, taking the limit
γ → −∞ of Eqs. (28) we obtain

β2 = 2
(
1 − 2u2

x∞
)

(38)
u2

z∞ = u2
x∞,

FIG. 6. (Color online) Plot of the field S/S0 (arrows) in the plane
(ξ,ζ ) corresponding to the nonlinear guided wave with γ = 1 of
Fig. 5. The color is related to the local value of Sz/S0. Note the
reversing of S along the transverse ξ axis.

i.e., β2 and u2
z∞ asymptotically approaches two finite asymp-

totic values and it is relevant that u2
z∞ → u2

x∞. In order to
obtain the asymptotic profiles of ux and uz, we note that, taking
the limit γ → −∞ of Eqs. (23) and consistently assuming that
the profiles remains everywere finite, consistency requires that
u2

x(ξ ) = u2
z(ξ ) so that, asymptotically, ux(ξ ) = uz(ξ ) for ξ < 0

and ux(ξ ) = −uz(ξ ) for ξ > 0 (since ux and uz are spatially
even and odd, respectively). Exploiting this property, Eqs. (23)
yields, for γ → −∞, the equation

d2uz

dξ 2
= 4

(−u2
x∞ + u2

z

)
uz (39)

so that, the asymptotic nonlinear guided wave profiles are

ux(ξ ) = |ux∞tanh(
√

2ux∞ξ )|,
(40)

uz(ξ ) = −ux∞tanh(
√

2ux∞ξ ).
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FIG. 7. (Color online) Profiles of (a) ux , (b) uz, and (c) Sz/S0

(c) of various nonlinear guided waves with σε = −1 and σµ = −1 and
γ < −1. All the waves are characterized by the same asymptotical
value ux∞ = √

0.4.
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FIG. 8. (Color online) Profiles of ux and uz (solid lines) of
nonlinear guided waves for ux∞ = √

0.4 and γ = −2, − 10, − 500.
The asymptotical (γ → −∞) profiles of Eqs. (40) are also reported
(dotted line).

Note that the asymptotic profile of ux is singular at ξ = 0 (i.e.,
it continuous but not differentiable) as a consequence of the
unrealistic assumption γ → −∞. Even though the profiles
of Eqs. (40) are not physical, they show that both u2

x and u2
z

asymptotically approaches the square of an electromagnetic
dark solitons and they provide a very good description of the
above-mentioned saturation for γ < 0. The profiles of ux and
uz for ux∞ = √

0.4 and γ = −2, − 10, − 500 together with
the asymptotical profiles of Eqs. (40) are plotted in Fig. 8, from
which it is evident that, for γ < −10, the asymptotical profiles
of Eqs. (40) accurately describe the actual field profiles (apart
from a small region around ξ = 0 for ux). We conclude that,
in the extreme nonlinear regime, the compensation between
�x and �z and the linear terms, if |γ | � 1, forces u2

x and u2
z

almost to coincide.

V. CONCLUSIONS

In conclusion, we have investigated the effective response
of a nonlinear Kerr metamaterial obtained by homogenizing
a one-dimensional layered periodic structure. The effective
response formally coincides with that of a standard nonlinear
Kerr medium with the important difference that its parameters
(both linear and nonlinear) can be independently designed and
that they can assume even values not achievable in standard
material. As a consequence we can choose the linear dielectric
permittivity to be much smaller than 1, thus allowing the
observation of the regime where the nonlinear polarization
can not be regarded as a small perturbation (extreme nonlinear
regime). As a leading general phenomenon characterizing the
extreme nonlinear regime we have discussed the transverse
power flow reversing effect, i.e., the fact that the power flow can
change its sign along the transverse beam profile. Combining
the extreme nonlinear regime and the fact the effective
Kerr response can be tailored in an unconventional way, we
have discussed a number of phenomena exploiting a class
of fields (nonlinear guided waves) admitting full analytical
description. Examples of such effects are the fact that the
nonlinear waves can propagate even if the medium linear
properties (dielectric permittivity and magnetic permeability)
would forbid propagation, hyperfocusing induced by the phase
difference between the field components (in the case γ = −1),
and extreme compensation between the field components if
they are π/2 out of phase in the limiting situation γ � 1.

APPENDIX: NONLINEAR GUIDED WAVES EXISTENCE

In order to derive the existence conditions of nonlinear
waves satisfying Eqs. (23) and Eqs. (27), it is convenient to
cast Eqs. (23) into the standard form of a first-order system
of differential equations. Differentiating the first of Eqs. (23)
and substituting the obtained expression of d2uz/dξ 2 into the
second of Eqs. (23), we obtain, after some algebra,

β
duz

dξ
= (β2 − σεσµ)ux − σµ

[
(1 + γ )u2

x + (1 − γ )u2
z

]
ux,

(A1)

β
dux

dξ
= β2σε + (1 − γ )

{
(2σεσµ − β2) + 2σµ

[
(1 + γ )u2

x + (1 − γ )u2
z

]}
u2

x + β2(1 + γ )u2
z

σε + [
3(1 + γ )u2

x + (1 − γ )u2
z

] uz,

which is a system of ordinary differential equations equivalent
to Maxwell equations provided the relation

σε + [
3(1 + γ )u2

x + (1 − γ )u2
z

] �= 0 (A2)

holds along the whole profile ux(ξ ), uz(ξ ) [38]. The system of
Eqs. (A1) can be fully analytically investigated since it admits
the first integral

F (ux,uz) = [
(β2 − σεσµ)u2

x − σεσµu2
z

]
− 1

2
σµ(1 + γ )

(
u4

x + u4
z

) − σµ(1 − γ )u2
xu

2
z

− 1

β2

{
(β2 − σεσµ) − σµ

[
(1 + γ )u2

x

+ (1 − γ )u2
z

]}2
u2

x (A3)

or, in other words, the relation

d

dξ
F (ux(ξ ),uz(ξ )) = 0 (A4)

holds for any solution ux(ξ ),uz(ξ ) of Eqs. (A1). Considering
the boundary conditions of Eqs. (27), since ux(ξ ) and uz(ξ )
have to asymptotically approach two constant values, their first
and second derivatives vanish for ξ → +∞ so that we require
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the right-hand sides of Eqs. (A1) to vanish at ux = ux∞ and
uz = uz∞. As a consequence we obtain

β2 = 2γ σµ

1 + γ

(
σε + 2u2

x∞
)
,

(A5)

u2
z∞ = −σε − (1 − γ )u2

x∞
1 + γ

,

which are the relations expressing the propagation constant
β and the asymptotical amplitude uz∞ as functions of the
asymptotical amplitude ux∞. In addition, exploiting the fact
that the F (ux,uz) is constant along the wave profile, the
relation

F (ux0,0) = F (ux∞,uz∞), (A6)

in which β and uz∞ have been eliminated using Eqs. (A5),
is a cubic equation for u2

x0 which can be solved to yield the
peak amplitude ux0 as a function of the asymptotical amplitude
ux∞.

For each ux∞, the existence of the corresponding guided
waves has to be assured by a number of requirements. In
first place β and uz∞ have to be real so, from Eqs. (A5),

we obtain

γ σµ

(
σε + 2u2

x∞
)

1 + γ
� 0,

(A7)−σε − (1 − γ )u2
x∞

1 + γ
� 0,

which are necessary inequalities for guided waves existence.
Analogously, it is necessary that ux0, obtained by Eq. (A6),
is real. On the other hand, the above boundary conditions for
ξ → +∞ imply that, after substituting the expression of β2 of
the first of Eqs. (A5) into Eq. (A3), the function F (ux,uz) has
a stationary point at (ux∞,uz∞). Therefore, since the curve
(ux(ξ ),uz(ξ )) of the plane (ux,uz) has to reach the point
(ux∞,uz∞), it has to be required that F (ux,uz) has a saddle
point at (ux∞,uz∞) and this leads to the necessary inequality[(

γ 2 + 4γ + 1

1 + γ

)
u2

x∞ + γ σε

1 + γ

]
× [

2(1 − γ )u4
x∞ + σε(3 − γ )u2

x∞ + 1
]

> 0. (A8)

We conclude that the existence of the nonlinear guided waves
we are considering is assured by the condition of Eq. (A2),
together with the reality of ux0 [obtained by solving Eq. (A6)]
and the inequalities of Eqs. (A7) and (A8). The fulfillment of all
these requirements leads to the existence conditions reported
in Table I.
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