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Third-order correlation function and ghost imaging of chaotic thermal light
in the photon counting regime
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In a near-field three-photon correlation measurement, we observed the third-order temporal and spatial
correlation functions of chaotic thermal light in the single-photon counting regime. In the study, we found
that the probability of jointly detecting three randomly radiated photons from a chaotic thermal source by three
individual detectors is 6 times greater if the photodetection events fall in the coherence time and coherence area
of the radiation field than if they do not. From the viewpoint of quantum mechanics, the observed phenomenon
is the result of three-photon interference. By making use of this property, we measured the three-photon thermal
light lensless ghost image of a double spot and achieved higher visibility compared with the two-photon thermal
light ghost image.
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I. INTRODUCTION

In 1995, Pittman et al. demonstrated the ghost-imaging
phenomenon by using entangled photon pairs of sponta-
neous parametric down-conversion (SPDC) [1]. The important
physics explored in the ghost-imaging experiment is the
nonlocal, point-to-point correlation in the joint detection of
the entangled signal-idler photon pair:

g(2)( �ρo, �ρi) ∼ δ( �ρo + �ρi/m), (1)

where g(2)( �ρo, �ρi) is the normalized second-order correlation
function; �ρo and �ρi are the transverse coordinates on the object
plane and the image plane, respectively; and m is the mag-
nification factor of the image. The observed ghost image
in the integrated coincidences is the result of a convolution
between the aperture function and the nonfactorizable, point-
to-point image-forming correlation function. In the language
of Einstein-Podolsky-Rosen (EPR), in this measurement,
neither the signal photon nor the idler photon knows where
to go in the course of its propagation (nondeterministic);
however, if the signal is observed at a certain point on the
image plane, the idler must be measured at a unique point on
the object plane simultaneously, despite the distance between
them.

Ten years after the ghost-imaging experiment of Pittman
et al., Valencia et al. found that the natural, nonfactorizable,
point-to-point image-forming correlation is not only the
property of entangled photon pairs [2,3]. It can be realized in
the joint detection of an arbitrary pair of randomly distributed
photons of chaotic thermal radiation in a lensless near-field
configuration, except with a 50% constant background noise:

g(2)( �ρo, �ρi) ∼ 1 + δ( �ρo − �ρi). (2)

The jointly measured photon pair in thermal light ghost imag-
ing are just two independent, randomly distributed photons
that fall into the coincidence time window only by chance. To
obtain an observable ghost image with recognizable visibility,
the natural, nonfactorizable, point-to-point image-forming
correlation of thermal light must be observable at the quantum
level. In the language of EPR, in this measurement, neither
photon 1 nor photon 2 knows where to go in the course of
its propagation (nondeterministic); however, if photon 1 is

observed at a certain point on the image plane, photon 2 has
twice the probability of being measured at a unique point on
the object plane simultaneously, despite the distance between
them.

The point-to-point image-forming correlation of ghost
imaging can be simulated classically to reproduce ghost
images in a deterministic manner [4]. There have been several
classical approaches to simulate the point-to-point ghost
image-forming correlation. Bennink et al. [5] and Gatti et al.
[6] suggested two types of classical simulations to reproduce
ghost-imaging effects. One uses correlated laser beams, and
the other uses two sets of correlated identical classical images
of “speckles” of the light source. Different from the randomly
distributed and propagated chaotic light or entangled photon
pairs in ghost imaging, in these classical simulations, the light
knows “where to go” during the course of its propagation: The
radiations are prepared in such a way that each light beam or
intensity “speckle” is propagated to a precise chosen “spot”
of the object. For each detection, the coordinate on the object
�ρobj, which is chosen by the light source, is recorded against the

counting rate of the bucket detector at that coordinate, which is
proportional to the aperture function |A( �ρobj)|2. The aperture
function A( �ρobj) is thus calculated after a large number of such
records.

One of the disadvantages of second-order thermal light
ghost imaging compared with ghost imaging of entangled
photon pairs is the low image contrast, which is always below
50%. On the other hand, the contrast of entangled photon
ghost imaging can achieve 100% under the condition of “no
more than one coincidence event” within the coincidence time
window. It is the contrast that distinguishes classical from
quantum correlation like ghost imaging, ghost interference,
where quantum schemes usually give very high contrast but
at low counting rates [5,7–9]. In this article, we will find
that measuring the third-order instead of the second-order
correlation function may help to boost the contrast in classical
schemes. The more appealing aspect is that in theory, by
measuring the N th-order correlation, we could expect the
contrast to achieve 100% using a thermal light source [10].

It is also the aim of this article to provide a basic picture and
understanding of the higher order correlation of thermal light in
the photon-counting regime. In this article, we report the direct
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measurement of the temporal and spatial distributions of the
third-order correlation function of pseudothermal light using
single photon detectors. One important difference between
this article and other publications on high-order correlation
function measurements [11] is that we directly measure the
third-order correlation function of thermal light in the photon-
counting regime. In this article, we also report the third-order
thermal light lensless ghost imaging by making use of this
property. In the measurement, the visibility of ghost imaging
was significantly improved compared to second-order ghost
imaging.

The article is organized as follows. First we will introduce
the quantum theory about the third-order correlation function
of thermal light in Sec. II. In Sec. III and Sec. IV, we
report the measurement of the third-order temporal and spatial
correlation functions of pseudothermal light, respectively. In
Sec. V, we present the third-order lensless thermal light ghost
imaging and the comparison between it and the second-order
ghost imaging. The conclusion is in Sec. VI.

II. THEORY

In classical theory, the far-field Hanbury Brown and Twiss
effect (HBT) is interpreted as the result of intensity fluctuation
correlation: When the two detectors D1 and D2 measure the
same mode of the radiation field, the intensities they measure
have the same fluctuation, and 〈�I1�I2〉 has a maximum
value. However, in the photon-counting regime where the light
is so weak that only a few photons are in the field, we can
still find the photons arriving in a correlated way by photon
counting. Classical theory faces difficulty because there is no
“intensity fluctuation” there. This is not a trivial phenomenon
given that the chaotic source emits photons randomly and
the quantum mechanical interpretation is more reasonable.
From the quantum mechanical point of view, the HBT effect
comes from the coherent superposition of two probability
amplitudes, nonclassical entities corresponding to different yet
indistinguishable alternative ways of triggering a two-photon
joint-detection event [3,12].

In a similar way, the third-order correlation of thermal
light comes from a coherent superposition of six different yet
indistinguishable probability amplitudes, as shown in Fig. 1.
There are three independent photons a, b, and c and three
detectors D1, D2, and D3. There are six different ways for the
three photons to trigger the three detectors. For example, in
the first case, photon a triggers detector D1, photon b triggers
detector D2, and photon c triggers detector D3. This is one
of the ways to trigger a three-photon joint-detection event,
named as probability amplitude AI . The definitions of other
probability amplitudes are similar.

The probability of a three-photon joint detection event
happening is the modulus square of the sum of all six
probability amplitudes:

P3CC = |AI + AII + AIII + AIV + AV + AVI|2. (3)

When the six probability amplitudes superpose coherently,
the probability of having a triple coincidence count achieves
a maximum with the contribution from the cross-terms in
Eq. (3). The prerequisite of the coherent superposition of
the six different probability amplitudes is that the amplitudes
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FIG. 1. Three independent photons a, b, and c have six alternative
ways of triggering a joint-detection event between detectors D1,
D2, and D3. At equal distances from the source, the probability
of observing a three-photon joint-detection event at space-time
(r1,r2,r3) is determined by the superposition of the six three-photon
amplitudes. At r1 = r2 = r3, six amplitudes superpose constructively.
G(3)(r1,r2,r3) achieves its maximum value because of constructive
interferences.

have the same phase or, equivalently, the three photons have
momenta and positions belonging to the same elementary
cell in phase space [13,14]. In this case, all three photons
in the same cell are in principle indistinguishable from one
another. To describe the triple joint detection event triggered
by the three identical and indistinguishable photons which
are bosons, the effective wave function must have a symmetric
form. This is the key to understanding the quantum interference
of three-photon amplitudes: The symmetrized effective wave
function, which is equivalent to the coherent superposition of
probability amplitudes, leads to the constructive interference.
The constructive interference leads to the cross-terms in Eq. (3)
being not zero, so there are 36 terms altogether.

On the other hand, if the three photons are from different
elementary cells in phase space, the six probability amplitudes
in Fig. 1, which are in principle distinguishable from each
other, do not superpose coherently. The cross-terms in Eq. (3)
are equal to zero, and the probability of triple coincidence
counts reduces to

P3CC = |AI|2 + |AII|2 + |AIII|2 + |AIV|2 + |AV|2 + |AVI|2.
(4)

We notice that in Eq. (3), there are 36 terms, and there
are only 6 terms in Eq. (4), so the ratio is 6 to 1: When
the three photons are from the same elementary cell in phase
space, the probability of having a triple coincident count is
6 times greater than when the three photons are from different
elementary cells in phase space.

In the preceding, we have the intuitive description of the
third-order correlation function of thermal light. To calculate
it in detail, we need to start from Glauber’s definition of
the correlation function [15]:

G(3)(r1,r2,r3)

= 〈Ê(−)
1 (r1)Ê(−)

2 (r2)Ê(−)
3 (r3)Ê(+)

3 (r3)Ê(+)
2 (r2)Ê(+)

1 (r1)〉,
(5)
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where 〈· · ·〉 denotes an expectation value operation based on
the quantum state of the measured electromagnetic field and
r1, r2, and r3 stand for different space times that detectors are
triggered. Thermal radiation is in mixed states. The generalized
density operator for a chaotic thermal field can be written
as [14]

ρ̂ =
∑
{n}

p{n} |{n}〉〈{n}|, (6)

where p{n} is the probability that the thermal field is in the state

|{n}〉 ≡
∏

k

|nk〉 = |nk〉|nk′ 〉 · · · |nk′′···′ 〉.

where k is the wave vector. The summation of Eq. (6) includes
all possible modes k, all possible occupation numbers nk
for the mode k, and all possible combinations of occupation
numbers for different modes in a set of {n}. In the following, we
will calculate the third-order temporal and spatial correlation
function of thermal light.

A. The third-order temporal correlation function

To calculate the third-order temporal correlation function,
we assume that the three detectors are placed in the same co-
herent area and fixed in the transverse plane. Furthermore, we
simplify the problem to 1-D (temporal) with one polarization.
In this case, the density matrix to describe the thermal radiation
is

ρ̂a,b,c =
∑
a,b,c

Pa,b,c|ψa,b,c〉〈ψa,b,c|, (7)

where Pa,b,c is the probability of finding the radiation in the
state |ψa,b,c〉 and will be assumed constant in the following.
The state |ψa,b,c〉 is the tensor product of three independent
multimode single photon states [16]:

|ψa,b,c〉 = |ψa〉|ψb〉|ψc〉
=

∫
dωaf (ωa)e−iωat0a a†(ωa)|0〉

×
∫

dωbf (ωb)e−iωbt0ba†(ωb)|0〉

×
∫

dωcf (ωc)e−iωct0c a†(ωc)|0〉, (8)

where the f (ω) is the spectral distribution function and t0a, t0b,
and t0c are the creation times of the individual photons,
respectively.

In Eq. (5), the quantized field operators take the following
form:

Ê
(−)
j (tj ) =

∫
dωj g(ωj ,tj ) â†(ωj ) (j = 1,2,3), (9)

where g(ωj ,tj ) is the Green’s function which propagates each
longitudinal mode ωj of the field from the source to the j th
detector in the longitudinal direction and t1, t2, and t3 stand
for the times when detectors D1, D2, and D3 are triggered,
respectively.

Combining Eq. (5), Eq. (7), and Eq. (9), and assuming that
the thermal field contains very few photons (our experiments
are done in a photon-counting regime), Eq. (5) can be

written as

G(3)(t1,t2,t3)

= Tr{ρ̂a,b,cÊ
(−)
1 (t1)Ê(−)

2 (t2)Ê(−)
3 (t3)

× Ê
(+)
3 (t3)Ê(+)

2 (t2)Ê(+)
1 (t1)}

=
∑
a,b,c

Pa,b,c|〈0|Ê(+)
3 (t3)Ê(+)

2 (t2)Ê(+)
1 (t1)|ψa,b,c〉|2, (10)

where 〈0|Ê(+)
3 (t3)Ê(+)

2 (t2)Ê(+)
1 (t1)|ψa,b,c〉 is defined as a three-

photon detection effective wave function.
Substituting Eq. (8) and Eq. (9) into Eq. (10), for continuous

and random distribution of t0a , t0b, and t0c, after the ensemble
average, the third-order temporal correlation function of
thermal light is [10]

G(3)(t1,t2,t3) ∝
∫

dωa dωb dωc|f (ωa)|2|f (ωb)|2|f (ωc)|2

×
∣∣∣∣ 1√

6
[g(ωa,t1)g(ωb,t2)g(ωc,t3)

+ g(ωa,t1)g(ωc,t2)g(ωb,t3)

+ g(ωb,t1)g(ωa,t2)g(ωc,t3)

+ g(ωb,t1)g(ωc,t2)g(ωa,t3)

+ g(ωc,t1)g(ωa,t2)g(ωb,t3)

+ g(ωc,t1)g(ωb,t2)g(ωa,t3)]

∣∣∣∣
2

, (11)

where g(ωk,tj ) ∝ e−iωktj (k = a,b,c; j = 1,2,3) is the
Green’s function which propagates mode ωk of photon k

to detector j (assuming that the three detectors are in the
same coherence area). Equation (11) is the key equation
to understanding the three-photon interference nature of the
third-order correlation. The six effective wave functions in
Eq. (11) correspond to six different alternative ways for three
independent photons to trigger a threefold joint-detection event
(see Fig. 1). Since the three detectors are at an equal distance
from the source, the six amplitudes superpose constructively
at t1 = t2 = t3, and consequently, G(3)(t1,t2,t3) achieves its
maximum value.

On the other hand, when t1 	= t2 	= t3 and the difference
is bigger than the coherence time of light field [as shown
in Eq. (13)], the cross-terms equal zero, and consequently,
G(3)(t1,t2,t3) reduces to

G(3)(t1,t2,t3) ∝
∫

dωa dωb dωc|f (ωa)|2|f (ωb)|2|f (ωc)|2

× 1

6
[|g(ωa,t1)g(ωb,t2)g(ωc,t3)|2

+ |g(ωa,t1)g(ωc,t2)g(ωb,t3)|2
+ |g(ωb,t1)g(ωa,t2)g(ωc,t3)|2
+ |g(ωb,t1)g(ωc,t2)g(ωa,t3)|2
+ |g(ωc,t1)g(ωa,t2)g(ωb,t3)|2
+ |g(ωc,t1)g(ωb,t2)g(ωa,t3)|2]. (12)

Comparing Eq. (11) with Eq. (12), we know that from the
quantum mechanical point of view, it is the three-photon
interference that causes the three randomly distributed photons
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to have 6 times more chance of being detected at t1 = t2 = t3
than at t1 	= t2 	= t3.

To evaluate Eq. (11), we simplify the calculation by taking
the spectral function f (ω) as a constant within the narrow
bandwidth �ω of the thermal light field; the normalized third-
order correlation function g(3)(t1,t2,t3) is

g(3)(t1,t2,t3)

= 1 + sinc2

[
�ω(t1 − t2)

2

]
+ sinc2

[
�ω(t2 − t3)

2

]

+ sinc2

[
�ω(t3 − t1)

2

]
+ 2 sinc

[
�ω(t1 − t2)

2

]

× sinc

[
�ω(t2 − t3)

2

]
sinc

[
�ω(t3 − t1)

2

]
. (13)

From Eq. (13), we can see that when t1 = t2 = t3,
g(3)(t1,t2,t3) = 6, the third-order correlation function achieves
a maximum contrast of 6 to 1 (visibility ∼71%). Phenomeno-
logically, we may name the three-photon correlation “three-
photon bunching.” From the quantum mechanical point of
view, this bunching is the result of three-photon interference,
the coherent superposition of three-photon probability ampli-
tudes.

B. The third-order spatial correlation function

The calculation of the third-order spatial correlation func-
tion is similar to that of the temporal correlation function.
To simplify the calculation, we assume that the thermal light
source is quasimonochromatic and that the three detectors
are placed the same distance from the light source in the
longitudinal direction; also, the light has a single polarization
mode. Furthermore, we assume that the three detectors have
the same y coordinate values in the transverse plane to simplify
the problem to 1-D. The density matrix to describe the thermal
field is

ρ̂a,b,c =
∑
a,b,c

Pa,b,c|1qa
1qb

1qc
〉〈1qa

1qb
1qc

|, (14)

where Pa,b,c is the probability of finding the radiation in
the state |1qa

1qb
1qc

〉 and will be assumed constant in the
following: qa , qb, and qc stand for transverse wave vectors
in the x direction for photons a, b, and c, respectively.

The quantized field operators take the following form:

Ê
(−)
j (xj ) =

∫
dkx g(kx,xj ) â†(kx) (j = 1,2,3), (15)

where g(kx, xj ) is the Green’s function which propagates the
transverse mode kx from the source to the j th detector. The xj

is the coordinate of the j th detector. The calculation of Green’s
function can be found in Refs. [10,17]:

g(kx,xj ) ∝ −i
ω

2πc

ei ω
c
z

z

∫
dxsψ

(
|xs − xj |, ω

cz

)
eikxxs ,

(16)

where ψ(|xs − xj |, ω/cz) = ei(ω/2cz)|xs−xj |2 , z is the distance
between the source and the detectors, and xs is the coordinate
on the source plane.

The following calculation is similar to that shown in
Eq. (10) and Eq. (11). Finally, the normalized third-order

spatial correlation function of thermal light is [10]

g(3)(x1,x2,x3)

= 1 + sinc2

[
π�θ

λ
(x1 − x2)

]
+ sinc2

[
π�θ

λ
(x2 − x3)

]

+ sinc2

[
π�θ

λ
(x3 − x1)

]
+ 2sinc

[
π�θ

λ
(x1 − x2)

]

× sinc

[
π�θ

λ
(x2 − x3)

]
sinc

[
π�θ

λ
(x3 − x1)

]
, (17)

where x1, x2, and x3 are the transverse positions of detectors
D1, D2, and D3, respectively; �θ is the angular size of the
source viewed from the detectors. From Eq. (17), we can
see that when x1 = x2 = x3, the six amplitudes superpose
coherently, and g(3)(x1, x2, x3) achieves its maximum value of
6. On the other hand, when x1 	= x2 	= x3 and the differences
are bigger than the transverse coherence length λ/�θ , the
six amplitudes do not superpose coherently, the cross-terms
become equal to zero, and g(3)(x1, x2, x3) achieves the lowest
value of 1. From the quantum mechanical point of view,
it is the interference of three-photon probability amplitudes
that causes the three randomly distributed photons to have
6 times more chance of being captured at x1 = x2 = x3 than of
being captured at x1 	= x2 	= x3, where the distances between
detectors are bigger than the transverse coherence lengths in
the x direction.

III. MEASURING THE THIRD-ORDER
TEMPORAL CORRELATION FUNCTION

OF PSEUDOTHERMAL LIGHT

The experimental setup for measuring the third-order
temporal correlation function of pseudothermal light is shown
schematically in Fig. 2. The light source is a standard pseudo-
thermal source which contains a cw laser beam, a fast-rotating
diffusing ground glass, and a focal lens (with a 25.4-mm focal
length). The 632.8-nm laser beam is focused by the lens onto
the rotating ground glass. The diameter of the light spot on
the glass is less than 100 µm. The coherent laser beam is
scattered by the fast-rotating ground glass to simulate a thermal
field with ∼0.2-µs coherence time. The coherence time of
pseudothermal light is determined by the angular speed of the
disk, the curvature of the focused laser beam, and the transverse
distance between the pinhole and the laser beam; the detailed

BS2BS1

 Rotating 
Ground Glass

Pinhole

3

3 C.C

 Pseudo-Thermal 
       Source

D

1D

2Df=25.4mm

FIG. 2. (Color online) Schematic for measuring the third-order
temporal correlation function of pseudothermal light.
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FIG. 3. (Color online) (a, b) Measured and (c, d) calculated third-order temporal correlation function of thermal light. The 3-D three-photon
joint detection histogram is plotted as a function of t13 ≡ t1 − t3 and t23 ≡ t2 − t3. The simulation function is calculated from Eq. (13).

discussion can be found in Ref. [18]. Effectively, the rotating
ground glass produces a large number of independent point
subsources (3–5 µm in diameter) with independent random
phases. A pinhole with a diameter size ∼1 mm is placed
800 mm away from the ground glass to select a small portion of
the radiation within its spatial coherence area. At this distance,
the size of the coherent area is ∼10 mm. The pseudothermal
light passes through beam splitters BS1 and BS2. The
transmitted radiation is detected by photon detector D3, and the
reflected radiations are detected by photon detectors D1 and
D2. To simplify the discussion, we achieved equal intensities
in the three paths by manipulating the transmission-reflection
coefficients of the two beam splitters and had equal distances
between the light source and the three photon detectors.
D1, D2, and D3 are fast avalanche photodiodes working in
the photon-counting regime. The photo-detection response
time is on the order of a few hundred picoseconds, which
is much shorter than the ∼0.2-µs coherence time of the
radiation. The output pulses from D1, D2, and D3 are sent
to a threefold coincidence counting circuit which provides
a three-photon counting histogram as a function of t2 − t3
and t1 − t3, where tj ,j = 1,2,3, is the registration time of
the photodetection event at D1, D2, and D3, respectively. In
addition, the single-detector counting rates for D1, D2, and D3

are all monitored to be constant during the measurement.
The experimentally measured and simulated 3-D third-

order temporal correlation functions are reported in the upper
and lower parts of Fig. 3, respectively. The simulation is
calculated based on Eq. (13). It is easy to see that (1) the
randomly radiated photons have 6 times greater chance of

being jointly detected in triples when t1 = t2 = t3 than when
t1 	= t2 	= t3 and (2) the measured correlation function is close
to the simulation.

From Eq. (13), we know that in order to claim that the
measured correlation is the third-order effect, the contrast
between the peak and the background should be larger than 4
to 1, corresponding to a visibility larger than 60%. To compare
the joint counting rate at t1 = t2 = t3 with the joint counting
rate at t1 	= t2 	= t3, a sliced cross section of the measured
3-D histogram is illustrated in Fig. 4. The plot is a 2-D cross
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350 Data
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ri
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FIG. 4. (Color online) Cross section of the three-photon coinci-
dence counting histogram, which is sliced from the top left corner to
the bottom right corner of Fig. 3(b). The contrast between the max-
imum counting rate and the constant background is 4.9 ± 0.25 to 1,
indicating a nontrivial third-order correlation with visibility of ∼66%.
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section of Fig. 3(b) sliced from the top left corner to the bottom
right corner. The contrast between the maximum counting rate,
which occurs at t1 = t2 = t3, and the constant background is
4.9 ± 0.25 to 1, indicating the third-order correlation function
with visibility of ∼66%, which is greater than the 2 to
1 contrast (33% visibility) of HBT. This result shows that
thermal light has a much greater chance of bunching in triples
rather than in pairs. The theoretically expected contrast is 6
to 1 (71% visibility). We think the reason for observing a
lower visibility than the theoretical prediction may be the finite
size of the detector. We hope to achieve higher visibility by
simulating ideal point detectors.

IV. MEASURING THE THIRD-ORDER SPATIAL
CORRELATION FUNCTION OF PSEUDOTHERMAL

LIGHT

The experimental scheme for measuring the third-order
spatial correlation function of pseudothermal light is given
in Fig. 5. The pseudothermal source comprises a He-Ne laser,
a focal lens with 25.4 mm focus length, and a rotating ground
glass. The diameter of the focused spot on the ground glass
is about 2 mm. The pseudothermal beam is divided into three
by two beam splitters BS1 and BS2. We simulate three point
detectors D1, D2, and D3 using three avalanche single photon
detectors with fiber tips (the diameter of the fiber tips is
about 6 µm). To simplify the discussion, we achieved equal
intensities in the three paths by manipulating the transmission-
reflection coefficients of the two beam splitters and had equal
distances (∼870 mm) between the light source and the three
photon detectors. The spatial correlation function is measured
in the near-field of thermal light (�θ ∼ 7λ/d).

The third-order spatial correlation function of thermal light
described in Eq. (17) is the function of variables x1 − x2,
x2 − x3, and x3 − x1, where x1, x2, and x3 stand for the
transverse positions in the x direction of detectors D1, D2,
and D3, respectively. (Because the three variables are not
independent, only two are enough to describe the correlation
function.) To measure it in our experiment, we keep the
detector D1 always fixed and move detectors D2 and D3 to
sample the correlation function. If both detectors D1 and D2

are fixed at position zero, that is, x1 = x2 = 0, and we scan
the detector D3 to record the triple coincidence counts, that
is equivalent to sampling the correlation function along line I
in the x13 and x23 planes, as shown in Fig. 6. (The x13 stands
for the variable x1 − x3 and x23 stands for variable x2 − x3,
respectively.) If we keep detector D1 at position zero (x1 = 0)
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X3
BS1 BS2
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D3

FIG. 5. (Color online) Schematic for measuring the third-order
spatial correlation function of pseudothermal light.
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FIG. 6. To measure the third-order spatial correlation function of
pseudothermal light, which is a function of the variables x1 − x2,
x2 − x3, and x3 − x1 (x1, x2, and x3 stand for the transverse positions
of detector D1, D2, and D3, respectively), we keep the detector D1

always fixed and move detectors D2 and D3 to sample the spatial
correlation function. For example, both detectors D1 and D2 are
fixed at position zero, i.e., x1 = x2 = 0, and we scan the detector
D3 to record the triple coincidence counts, which is equivalent
to sampling the correlation function along line I in the x13 and
x23 planes. If we keep detector D1 at position zero (x1 = 0), if
we keep detector D2 at position 1 (x2 = 1), and if we scan the
detector D3 to record the triple coincidence counts, that is equivalent
to sampling the correlation function along line II in the x13 and
x23 planes. If we keep detector D1 at position zero (x1 = 0), if
we keep detector D2 at position −1 (x2 = −1), and if we scan the
detector D3 to record the triple coincidence counts, that is equivalent
to sampling the correlation function along line III in the x13 and
x23 planes. In the scanning, the single counting rate of detector D3 is
constant.

and detector D2 at position 1 (x2 = 1) and we scan the detector
D3 to record the triple coincidence counts, that is equivalent to
sampling the correlation function along line II in Fig. 6. If we
keep detector D1 at position zero (x1 = 0) and detector D2 at
position −1 (x2 = −1) and we scan the detector D3 to record
the triple coincidence counts, that is equivalent to sampling the
correlation function along line III in Fig. 6. By so doing, we
measure the spatial distribution of the third-order correlation
function.

The measured and simulated third-order spatial correlation
functions of pseudothermal light are shown in Fig. 7 (top) and
Fig. 7 (bottom), respectively. The simulated result is based on
Eq. (17). The contrast of the measured third-order correlation
function is about 4.8 ± 0.2 to 1. In order to get enough triple
coincidences in the measurement, we need the coincidence
window to be big, which may decrease the visibility of
the correlation function.

Although the measured contrast is not as high as the
theoretical prediction (6 to 1), it is still higher than that of the
second-order correlation (2 to 1). More interesting, the contrast
of the N th-order correlation function of thermal light can be N !
to 1 [10], which means that one can expect higher contrast of
the image in third-order or higher thermal light ghost imaging.
This is appealing since thermal light ghost imaging may have
important applications in the future [19]. In the next section, we
present the thermal light three-photon lensless ghost-imaging
experiment in the single photon-counting regime.
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FIG. 7. (Color online) (a, b) Measured and (c, d) calculated third-order spatial correlation function of thermal light. The 3-D three-photon
joint detection histogram is plotted as a function of x13 ≡ x1 − x3 and x23 ≡ x2 − x3. The simulation function is calculated from Eq. (17). In
addition, the single-detector counting rates for D1, D2, and D3 are monitored to be constant in measurement.

V. MEASURING THE THREE-PHOTON THERMAL LIGHT
LENSLESS GHOST IMAGE OF A DOUBLE SPOT

The experimental scheme of the three-photon thermal
light lensless ghost-imaging setup is shown in Fig. 8. The
pseudothermal light source is composed of a He-Ne laser, a
focal lens (with 25.4 mm focal length), and a rotating diffusing
ground glass. The laser beam is focused onto the ground
glass with ∼1 mm diameter by the focal lens. The ground
glass scatters the focused laser beam and introduces extremely
complex and irregular distortion to the incident wavefront,
which creates pseudothermal light. The pseudothermal light
passes through the beam splitter and splits into two beams. The
reflected beam, usually called the “object beam,” is coupled
into a 2 × 1 fiber coupler and input to the single photon detector
D1. The fiber tip t1 is about 0.7 mm left of center, and the
fiber tip t2 is about 0.7 mm right of center of the reflected
beams. Effectively, the 2 × 1 fiber coupler and detector D1

function as a bucket detector, and the two fiber tips function
as a double spot. The transmitted beam, usually called the
“reference beam,” is collected by the fiber tip t3 on the plane
X2 and then splits into two beams in the 1 × 2 fiber splitter
and is sent to single photon detectors D2 and D3. The distance
between the ground glass and the planes X1 and X2 is 870 mm.
To simplify the discussion, we achieve equal single-counting
rates for all the detectors. In the measurement, the fiber tips
t1 and t2 are fixed in the plane X1, and we scan the fiber tip
t3 in the plane X2. The output of the detectors is input into
the triple coincidence circuit. To compare the three-photon

lensless ghost imaging with the two-photon lensless ghost
imaging, we just need to turn of detector D2 and measure
the coincidence counts between detectors D1 and D3 during
scanning.

3 C.C

X1

X2
BS

He-Ne Laser

Ground Glass

f=25.4mm

D3

D2

D1

2x1 Fiber Coupler

1x2 Fiber Splitter

t1 t2

t3

FIG. 8. (Color online) A 2 × 1 fiber coupler is used to simulate
the double spot. Fiber tip t1 on plane X1 is about 0.7 mm left of
center, and fiber tip 2 is about 0.7 mm right of center of the reflected
beams. Effectively, the fiber coupler and detector D1 function as a
bucket detector, and the two fiber tips function as a double spot. The
transmitted beam is collected by fiber tip 3 on plane X2 and then
is split into two beams in the 1 × 2 fiber splitter and sent to single
photon detector D2 and D3. In the experiment, we scan fiber tip 3
on plane X2 and record the triple coincidence counts to measure the
three-photon ghost image. We can also measure the two-photon ghost
image by turning off detector D2 and recording the joint coincidence
counts between detectors D1 and D3 during scanning.
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FIG. 9. (Color online) The three-photon lensless ghost image of a
double spot. The y axis stands for triple coincidence counts collected
in 180 s, and the x axis stands for the coordinates of the fiber tip on
the X2 plane. The single counting rates of detectors D2 and D3 are
constant during scanning. The visibility of the three-photon lensless
ghost image is ∼25%.

The measurement result of the three-photon lensless ghost
imaging is shown in Fig. 9. In Fig. 9, the y axis stands for triple
coincidence counts collected in 180 s, and the x axis stands
for the coordinate of the fiber tip on the detection plane X2.
The circles in the figure stand for the data and the solid line is
the fit curve. In the measurement, the single-counting rates of
detectors D2 and D3 are monitored as constant when fiber tip
t3 scans. The data show that the visibility of the three-photon
lensless ghost image is ∼25%.

To compare the visibility of three-photon lensless ghost
imaging with the visibility of two-photon lensless ghost
imaging, we turned off the detector D2 and measured the
joint coincidence counts between detectors D1 and D3 during
scanning. The two-photon lensless ghost image is shown in
Fig. 10.

In the figure, the y axis stands for joint coincidence counts
collected in 10 s, and the x axis stands for the coordinate of
the fiber tip on the detection plane X2. The circles in the figure
stand for the data and the solid line is the fit curve. The single-
counting rate of detector D3 is monitored as constant when
fiber tip t3 is scanning. The visibility of the two-photon lensless
ghost imaging is ∼12%. The experimental data in Figs. 9
and 10 show that the visibility of the three-photon lensless
ghost imaging is significantly improved compared with that
of the two-photon lensless ghost imaging in the photon
counting regime.
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FIG. 10. (Color online) The two-photon lensless ghost image of
double spots. The y axis stands for joint coincidence counts collected
in 10 s, and the x axis stands for the coordinates of the fiber tip on the
X2 plane. The single counting rate of detector D3 is constant when
we scan fiber tip t3. The visibility of the two-photon lensless ghost
image is ∼12%.

VI. CONCLUSION

In this article, we report the direct measurement of the
third-order temporal and spatial correlation functions of pseu-
dothermal light in the photon-counting regime. The studies
show that the probability of jointly detecting three randomly
radiated photons from a chaotic thermal source by three
individual detectors is 6 times greater if the photodetection
events fall in the coherence time and coherence area of the
radiation field than if they do not. Phenomenologically, we may
name the three-photon correlation “three-photon bunching.”
From the quantum mechanical point of view, this three-
photon bunching is the result of interference between different
yet indistinguishable three-photon probability amplitudes. By
making use of this property, we measured the three-photon
thermal light lensless ghost image and found that the visibility
of a ghost image is significantly improved compared with the
two-photon ghost image. The studies show that the contrast of
thermal light ghost imaging can be improved by higher order
detection in the single photon-counting regime.
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