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Ringing phenomenon in coupled cavities: Application to modal coupling
in whispering-gallery-mode resonators
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We present a simple model to describe the transient response of two coupled resonators probed by a
monochromatic wave whose frequency is rapidly swept across the resonances with respect to their characteristic
photon lifetimes. The model is applied to analyze the dynamic behavior of the modal coupling between
two degenerate resonances of the same cavity. In particular, this can be used to describe the coupling of
counterpropagating whispering gallery modes (WGMs) by Rayleigh scattering. The theory is successfully
compared to experiments carried out in silica microspheres. These results show that this ringdown technique
can be extended to accurately measure linear properties and frequency splittings of high-quality factor WGM
microresonators.
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I. INTRODUCTION

Optical high-quality-factor (Q) microcavities are of great
interest for applications in different fields such as opto-
electronics, metrology or fundamental physics [1–3]. They
can be used, for instance, for optical filtering, all-optical
switching [4], low-threshold nonlinear optics [5,6], narrow
linewidth laser applications [7,8], all-optical buffering [9,10],
biosensing [11], and quantum information processing or
cavity quantum electrodynamics [12]. The coupling of optical
microresonators offers supplementary degrees of freedom and
can also be used for the same purposes as single resonators
with additional functionalities. Using coupled microrings, high
order optical filtering can be achieved [13] and all-optical
regeneration could be miniaturized [14]. The coupling of
nonlinear microrings leads to the implementation of new
phase-matching schemes [15–17] for frequency conversion or
to the reduction of multistability threshold [18]. It has been
shown that the dispersion high orders of coupled resonators
optical waveguides [19,20] can be canceled by optimizing the
coupling between microresonators. This could have potential
applications in optical delay lines integration [21,22].

When a single high-Q resonator is excited using an input
field whose frequency is linearly swept across the resonance
with a duration shorter than the cavity lifetime, its transmission
response shows oscillations [23,24]. It has already been
demonstrated that this ringing phenomenon can be used to
accurately measure the resonator characteristics for passive
Fabry-Pérot resonators [25,26]. In the case of microresonators
this “self-homodyne method” has been used to measure Q
factors greater than 1010 without a highly stabilized laser
[27,28]. The method can also be extended in order to measure
thoroughly the coupling regime and even the external gain
in the case of active resonators [29] and to take into account
microresonator thermal properties [30]. Finally, it has been
shown that ringing of a single resonator description can also be
applied for two coupled resonators under a particular coupling
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configuration where one of the resonator acts as a purely
dispersive medium [31,32].

In this paper we present, in the general case, a simple
model for the calculation of the transient linear response of
coupled cavities excited by a field whose carrier frequency is
linearly swept in time. We also experimentally demonstrate,
for the first time in coupled resonators, the ringing effect
coming from this linear frequency sweeping. We also show
that the comparison of experiment results with calculations
allows the linear parameters and coupling characteristics of the
coupled cavity system to be inferred. The experimental results
are obtained in a single whispering gallery mode (WGM)
microsphere where Rayleigh backscattering couples the two
frequency degenerated clockwise (CW) and counterclockwise
(CCW) modes [33,34]. This phenomenon often referred to as
modal coupling [35] has already been studied in the stationary
regime and all the authors have reported a resonance splitting
in the transmission spectrum coming from the coupling of
the two CW and CCW modes [7,33,36]. Weiss et al. [33]
have also reported time domain observation of the beat note
of the two split resonance frequencies using a frequency
locked laser. Modal coupling must be well analyzed not
only to accurately characterize bare WGM resonators [37,38]
but also to investigate the spectral properties of WGM
coupled to single subwavelength scatterer or emitter [39–41].
From an application point of view, Rayleigh backscattering
in high-Q resonators has been used as optical feedback
for narrow linewidth laser diode or Erbium doped fiber
laser [7,43,44].

The paper is organized as follows. In Sec. II we present
a simple model for ringing phenomenon in coupled cavities
in the general case. The model is deeply developed in the
case of modal coupling in a single traveling wave resonator.
Sec. III is devoted to the experimental validation of the
proposed model. We have used high-Q silica microsphere
where Rayleigh scattering can be experimentally observed.
The comparison between theory and experiments is carried
out using a numerical procedure. We check the validity and
the robustness of our method using the stationary regime
comparison and different coupling regimes. Finally we discuss
the interests of the proposed method.
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FIG. 1. (Color online) Schematic representation of two single-
mode coupled cavities. Cavity 2 is coupled to the input/output port
whereas cavity 1 is only coupled to one output port.

II. THEORETICAL DESCRIPTION OF RINGING EFFECT
IN COUPLED CAVITIES

A. General formalism

The generic system is described in Fig. 1. It consists of
two coupled cavities of resonant angular frequencies ω1 and
ω2. The mutual coupling of the two cavities is characterized
by a lifetime γ . The coupling with the access lines are also
described by two lifetimes τe1 and τe2. τ01 and τ02 are the
intrinsic lifetimes of the two cavities. We assume for simplicity
that the input signal sin(t) = s0e

jϕ(t) is directly coupled to
cavity 2. The mode amplitude evolutions for two cavities are
given by integrating the following equations [33,35,45]:

u̇1 = a1u1(t) + bu2(t)
(1)

u̇2 = bu1(t) + a2u1(t) + f (t),

where for i ∈ {1, 2} we have ai = jωi − 1
τi

, τ−1
i = τ−1

0i + τ−1
ei ,

b = j

2γ
, and f (t) =

√
2

τe2
sin(t). The outputs are calculated

from the mode amplitude expressions:

sout(t) = −sin(t) +
√

2

τe2
u2(t)

(2)

rout(t) =
√

2

τe1
u1(t).

It is now possible to define the amplitude transmission
coefficient x = sout/sin and the amplitude reflection coefficient
y = rout/sin which are related to the intensity transmission (T )
and reflection (R) coefficients by T = |x|2 and R = |y|2. In
order to obtain the solutions of system (1), we can write its
eigenvalues:

�± = jωM ±
√

δ2 + 4b2

2
, (3)

where jωM = a1+a2
2 and δ = a2 − a1. Thus, the differential

system (1) can be solved by using the new variables:

u±(t) = −δ ± √
δ2 + 4b2

2b
u1(t) + u2(t), (4)

and by integrating

du±
dt

= �±u± + f (t). (5)
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FIG. 2. (Color online) Schematic sketch of modal coupling due
to enhanced backscattering in a single resonator.

The response of the coupled cavities can be calculated for any
arbitrary input field f (t). In particular, using an input phase
ϕ(t) = ωt it is possible to obtain the stationary response of the
system at the angular frequency ω. In the next section we will
apply this general formalism to the particular case of modal
coupling.

B. Application to modal coupling

Numerous authors have reported the observation of split
resonances in the transmission spectrum of high-finesse
traveling wave resonators [7,33,36]. This resonant frequency
splitting is generally attributed to the coupling of two degen-
erate modes propagating in the opposite direction [33]. In our
physical picture (see Fig. 2), the CW mode is modeled by u2

and the CCW mode by u1. The origin of this coupling can come
from enhanced Rayleigh backscattering or nanoscale isolated
scatterers [40]. The general formalism proposed in the previous
section can be applied assuming the following simplifications:
ω1 = ω2 = ω0, τ01 = τ02 = τ0, τe1 = τe2 = τe, τ1 = τ2 = τ ,
and thus a1 = a2 = a. Consequently, the system (1) is also
simplified and we then obtain: ωM = ω0, δ = 0, �± = a ± b.
Consequently u±(t) = u2(t) ± u1(t) and Eq. (5) reduces to

du±
dt

= (a ± b)u±(t) + f (t). (6)

The mode amplitude u1(t) and u2(t) are easily calculated
noticing that u2 = (u+ + u−) /2 and u1 = (u+ − u−) /2.

1. Stationary behavior

First, assuming a stationary excitation, we have ϕ(t) = ωt

and the solutions of Eq. (6) are given by

u±(t) =
√

2

τe

s0e
jωt

jω − a ∓ b
. (7)

As proposed in Ref. [34], the amplitude transmission coeffi-
cient can be written:

x(ω) = b2 − (jω − a)2 + 2 (jω − a) /τe

(jω − a)2 − b2
, (8)

whereas the amplitude reflection coefficient can be obtained
by

y(ω) = 2b/τe

(jω − a)2 − b2
. (9)
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The inspection of the denominators of Eq. (9) shows that if
γ < τ/2 the coupled system has two new resonant frequencies
separated by a quantity:

2δC = 1

2πγ

√
1 −

(
2γ

τ

)2

, (10)

which constitutes the modal coupling splitting frequency
experimentally observed in the reflected signal [38].

2. Frequency sweeping

Now we consider a linear frequency sweeping with an
angular frequency speed VS , thus the phase of the input signal
can be now written:

ϕ(t) = ωit + VS

2
t2, (11)

where ωi is the frequency at t = 0 since the instantaneous
angular frequency reads ϕ̇(t) = ωi + VSt . Solving Eq. (6) we
find

u±(t) =
(

A± +
∫ t

0
f (t ′)e−(a±b)t ′dt ′

)
e(a±b)t , (12)

where A± is obtained using the stationary solution [given in
Eq. (7)] for an angular frequency ωi :

A± =
√

2

τe

s0

jωi − a ∓ b
, (13)

and ∫ t

0
f (t ′)e−(a±b)t ′dt ′ = g±(t) − g±(0), (14)

where g±(t) can be analytically expressed using the complex
error function erf(z) with z ∈ C:

g±(t) = −s0

√
jπ

τeVS

exp

(
j (a ± b − jωi)2

2VS

)
× erf

(
−j (a ± b) + VSt + ωi√

2jVS

)
. (15)

As it has already been reported in Ref. [31] for single
resonators, the present method based on coupled mode theory
is more convenient to describe ringing phenomenon than the
summation of partial fields. In the case of coupled resonators
the use of partial fields would be much more fastidious than
the proposed method.

C. Numerical simulations

The calculation procedure presented in the previous section
is used to simulate the coupled cavity ringing phenomenon
for a cavity under modal coupling in different examples.
As it has already been proposed in Ref. [35] we define
� = τ0/(2γ ) and K = τ0/τe to characterize the coupling and
the cavity quality. This definition allows the critical coupling
x(ω0) = 0 to be defined by K = √

1 + �2 [34,35]. All the
frequency scanning speeds ṼS = VS/(2π ) are compared to the
normalized frequency speed Ṽ0 = 2/(πτ 2) which corresponds
to one resonance of frequency width 1/(πτ ) scanned during
the ringdown time τ/2 [29].

FIG. 3. (Color online) Variations of the transmission (T ) and
the reflectivity (R) for a cavity under modal coupling in the case
of � = 15 and critical coupling (K = √

1 + �2). The input signal
is linearly swept with several sweeping speeds: (a) ṼS = 0.01Ṽ0,
(b) ṼS = 0.3Ṽ0, (c) ṼS = Ṽ0, and (d) ṼS = 12Ṽ0. The abscissas are
normalized for τ .

1. Critical coupling

We start by showing in Fig. 3 the ringing effect in the case of
the critical coupling in the particular case of � = 15 arbitrarily
chosen. For low scanning speeds (here ṼS = 0.01Ṽ0) we
find the stationary response of the system as represented in
Fig. 3(a). The transmission drops to zero at resonance and
the reflection is maximal [35]. When the scanning speed
is increased as is the case in Figs. 3(b) and 3(c), ringing
oscillations appear as is the case for single resonators [25]. For
high scanning speed (ṼS = 12Ṽ0) it is possible to distinguish
a modulation of the oscillation amplitude coming from the
beating of the split frequencies [Fig. 3(d)].

2. � > 1 and K < 1

We now consider a case where we have chosen � = 7
and K = 1/3 (see Fig. 4). The quasistationary (ṼS = 0.01Ṽ0)
response given in Fig. 4(a) shows two resonances with an
associated transmission greater than 50%. When the sweeping
speed (ṼS = 0.3Ṽ0) is increased, we obtain two transient
profiles looking as the response of an undercoupled single res-
onator in good agreement with the value of K < 1 [Fig. 4(b)].
For higher sweeping speeds shown in Figs. 4(c) and 4(d), the
beating of the two resonance frequencies is much more visible
than in the critical case.

3. � � 1 and K > 1

For the last example shown in Fig. 5 we have chosen � = 50
and K = 10. For ṼS = 0.01Ṽ0, the quasistationary response
of Fig. 5(a) consists of two dips with zero transmission. Since
K > 1, for ṼS = 0.3Ṽ0 we obtain the transient response of two
overcoupled single resonators [Fig. 5(b)]. For high sweeping
speeds as represented in Figs. 5(c) and 5(d) we observe a strong
beating between the two resonant frequencies.
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FIG. 4. (Color online) Variations of the transmission (T ) and the
reflectivity (R) for a cavity under modal coupling in the case of
� = 7 and K = 1/3. The input signal is linearly swept with several
sweeping speeds: (a) ṼS = 0.01Ṽ0, (b) ṼS = 0.3Ṽ0, (c) ṼS = Ṽ0, and
(d) ṼS = 12Ṽ0. The abscissas are normalized for τ .

III. EXPERIMENTAL VALIDATION USING SILICA
MICROSPHERES

In this section we test the simple model previously
developed using a silica microsphere-based system. As is the
case for single resonators, we will show that it is possible to
infer, from theory and experiment comparisons, the value of
τe, τ0, and ṼS from time domain measurements. In the present
case we will show that we can also obtain the value of γ . The
system consists of a microsphere coupled to a fiber taper by
evanescent waves [46]. A tuning of the gap between the sphere
and the taper allows the coupling configuration to be modified.

FIG. 5. (Color online) Variations of the transmission (T ) and the
reflectivity (R) for a cavity under modal coupling in the case of
� = 50 and K = 10. The input signal is linearly swept with several
sweeping speeds: (a) ṼS = 0.025Ṽ0, (b) ṼS = 0.3Ṽ0, (c) ṼS = Ṽ0,
and (d) ṼS = 12Ṽ0. The abscissas are normalized for τ .
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FIG. 6. (Color online) Experimental setup used to test silica
microspheres. The probe is a tunable 1550-nm laser diode (linewidth
150 kHz) whose central frequency is linearly swept with a control-
lable period. I, optical isolator; PC, polarization controller; C, 3dB
coupler; Ta, tapered fiber. D1 and D2 are two optical detectors whose
bandwidth is around 10 MHz.

A. Experimental setup and method

Figure 6 represents the microsphere system we used in the
experiments. The probe signal is a continuously tunable narrow
line (≈150 kHz) external cavity laser diode. The frequency of
the probe is almost linearly swept using an electrical waveform
generator. Depending on the period of the waveform we can
obtain either a slow or a fast sweeping of the frequency.
The slow sweeping gives us the stationary response of the
microresonator. The fast scanning allows the transient response
to be obtained. The diameter of the tapered fiber is reduced
to 4 µm. We have tested different spheres with diameters D

between 80 and 120 µm. The spheres are fabricated by melting
the tip of silica rods using a fiber splicer. The probe whose
wavelength is chosen around λ = 1550 nm is coupled into
the sphere using the taper which also allows the transmission
and reflection signals to be extracted. The outcoupled signals
from the sphere are sent to two photodetectors: D1 is used
to measure T (t) and D2 to obtain R(t). The transmission
T (t) is normalized using the off-resonance value. Then we
are able to obtain the experimental time domain variations of
the transmission Tmes, which was compared to the theoretical
value Ttheo by using the least square method:

σ 2(τ0, τe, VS, γ ) =
N∑

i=1

[Tmes,i − Ttheo,i(τ0, τe, VS, γ )]2, (16)

where N is the number of time domain sampling points. The
value of σ 2 is minimized by automatically changing the value
of τ0, τe, VS , and γ to obtain the best fit [29].

B. Experimental results

1. Simultaneous measurement of T and R

First we check the consistency between the transmission
and the reflection signals. In this experiment we used a D =
120 µm microsphere. For two given split resonances, we have
measured the time domain variations of the transmission signal
and have fitted it using the method previously described (see
Fig. 7). With these parameters we have checked that we were
able to simultaneously fit the reflection signal only adjusting
artificially the amplitude level which strongly depends on the
taper losses and photodiode D2 sensitivity. We can observe
a very good quantitative agreement between calculations and
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FIG. 7. (Color online) Transmission (a) and reflection (b) signals
for a D = 120 µm microsphere. From the calculations we inferred the
following values: τ0 = 267 ns, τe = 1309 ns, ṼS = 4.47 MHz/µs,
and 1/(2πγ ) = 2.38 MHz.

experiments for the two signals. We can notice that the reflected
signal is strongly resonant which insures that it comes from
the resonator itself instead of back-reflection in any other part
of our experimental setup.

2. Comparison to the stationary regime

In a second set of experiments we have compared the
parameters inferred from time domain experiments obtained
with a fast scanning of the frequency (ṼS > 3 MHz/µs) to
stationary results obtained using a slow sweeping of the
frequency (ṼS ≈ 0.5 MHz/µs). Figure 8(a) represents the
transient response of a split resonance observed with a D =
110 µm microsphere and Fig. 8(b) is the stationary response
of the same split resonances. The theoretical calculations
are carried out as follows: from the dynamic experiment
we obtained τ0, τe, and γ ; using this set of parameters we
calculate the expected stationary response and we compare it
with the experimental data. Since it is difficult to accurately
measure the frequency sweeping speed in the slow scanning
regime, we used γ to calibrate the frequency axis. Note
that we report here the better stationary result we have
obtained. Indeed, in most of the cases we had to adjust
the value of τe to reach a good agreement between fast
and slow sweeping experiments. Nevertheless the agreement
was always satisfying since the intrinsic values τ0 and γ

were consistent between dynamic and stationary experiments.
The discrepancy for τe must come from the taper position
fluctuations in time.

3. Influence of the coupling efficiency

We have also tested the validity of the method by recording
several transient responses for the same split resonances only
varying the coupling strength. The experiments are carried

FIG. 8. (Color online) Fast (a) and slow (b) scanning experiments
for a D = 110 µm microsphere. From the calculations given in
(a) we inferred the following values: τ0 = 338 ns, τe = 1243 ns,
ṼS = 3.15 MHz/µs, and 1/(2πγ ) = 2.26 MHz. These values are
used to calculate the theoretical stationary response given in (b).

out by slightly changing the gap between the taper and the
sphere of diameter D = 110 µm. The corresponding results
are given in Fig. 9. For three positions indexed in Fig. 9 by
(a), (b), and (c) we give the inferred linear parameters (τ0, τe,
VS , and γ ) in Table I. From position (a) to position (c) the
taper is brought closer to the sphere and thus the coupling is
increased which is in good agreement with the results given
in Table I. Indeed, the numerical procedure gives almost the
same values of τ0 and γ which intrinsically characterize the
studied resonance. The sweeping speed is also constant as it is
also found from the experimental measurements. On the other
hand, the least-square method gives a decreasing τe which
shows that the coupling increases.

4. Supplementary experiments

Still using the sphere with a diameter D = 120 µm but
for increased input powers we observed some thermal effects
which lead to a drift of the resonance for a given frequency
sweeping [27]. If the frequency sweeping is carried out in the
same direction as the thermal drift, a resonance broadening
is observed. For the opposite frequency scanning, since the

TABLE I. Inferred linear parameters for different taper relative
positions. Positions (a), (b), and (c) are those discussed in Fig. 9.

Taper position τ0 τe 1/(2πγ ) ṼS

(a) 308 ns 7996 ns 1.51 MHz 4.81 MHz/µs
(b) 334 ns 5649 ns 1.52 MHz 4.71 MHz/µs
(c) 318 ns 2286 ns 1.45 MHz 4.88 MHz/µs
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FIG. 9. (Color online) Temporal profile of the transmission for
the same split resonance of a D = 110 µm microsphere. From (a)
to (c) the gap between the taper and the sphere decreased and thus
the coupling increased. The parameters obtained using the numerical
procedure are given in Table I.

thermal effect shifts the resonance in the opposite way than
the frequency sweeping the resonance looks narrower than it
is [27,47]. With our method this last case may be analyzed
assuming that the thermal effect only increased the apparent
sweeping speed. The results are shown in Fig. 10. We observe
much more oscillations than in the previous cases which
show that for almost the same sphere quality factor (here
we have τ0 = 232 ns) we have carried out a faster frequency
sweeping across the resonance (with almost the same sweeping
speed of the laser frequency). This is confirmed by the
numerical procedure which gives a greater sweeping speed
ṼS = 19.5 MHz/µs. We have also tested another microsphere
sizes. For D = 80 µm we have easily found some more
split resonances (this will be discussed later in Sec. III B5).
Figure 11 is an example of a typical experimental result
for a small sphere. The numerical procedure gives a fre-
quency splitting around 4.5 MHz. This last result shows the

FIG. 10. (Color online) Temporal profile of the transmission
of a D = 120 µm microsphere in the case where we observed
thermal effect. τ0 = 232 ns, τe = 1606 ns, ṼS = 19.5 MHz/µs, and
1/(2πγ ) = 3.1 MHz.

potentiality of the method even in the case of more spectrally
separated resonances.

5. Discussion

The time domain calculations are in good agreement with
both transmission and reflection experimental results. The
measurement procedure based on numerical fitting have been
checked in the stationary regime. Our experimental method
allows all the linear parameters τ0, τe, and γ to be obtained
in one set of measurement. We have also checked that the
numerical procedure gives relevant results when only the
coupling configuration is changed. In this subsection we
compare experimentally obtained frequency splittings and
Q-factor values to theoretical predictions and to other author
results.

(a) Frequency splitting. First we check that the frequency
splittings measured in this work are consistent with Rayleigh

FIG. 11. (Color online) Example of a time domain profile of
the transmission of a D = 80 µm microsphere. τ0 = 282 ns, τe =
3829 ns, ṼS = 3.7 MHz/µs, and 1/(2πγ ) = 4.49 MHz.
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TABLE II. Structural parameters and associated theoretical val-
ues of the frequency splitting for the studied microspheres.

D 80 µm 110 µm 120 µm
� 235 323 353
V 2070 µm3 3720 µm3 4360 µm3

1/(2πγ ) 6.0 MHz 4.5 MHz 4.1 MHz

scattering. It has been established that [33]

1

2πγ
= c

λ

√
ρscᾱ2

V , (17)

where ρsc is the scatterer number density, ᾱ their average linear
polarizability, and V the WGM volume. Assuming WGM with
a radial order n = 1, angular and azimuthal numbers (�,m)
[49,50] the mode volume can be written [2,27]:

V = 3.4π3/2

(
λ

2πN

)3

�11/6
√

2(� − m) + 1. (18)

With � ≈ πDN/λ, a sphere refractive index N ≈ 1.45 and
assuming m = � we obtain the V values given in Table II for
the microsphere diameters we used. Considering ρscᾱ

2 = 2 ×
10−12 µm3 for silica [48] we obtain maximal values for the fre-
quency splitting between 4.1 MHz and 6.0 MHz (see Table II)
in good qualitative agreement with our experimental results.

Note that we found the largest splitting in the smallest
sphere conforming to Eqs. (17) and (18). The lowest values
obtained in the present work must correspond to values of m

such as � > m. Indeed, in this case, the mode volume increases
and thus the frequency splitting decreases.

(b) Q factors. By analogy with a single resonance, we can
define an intrinsic Q factor by Q0 = πcτ0/λ. We can identify
three main contributions to this intrinsic Q factor:

1

Q0
= 1

Qrad
+ 1

Qmat
+ 1

Qs

. (19)

The first term Qrad refers to curvature losses, for our values
of �, with n = 1 we obtain Qrad > 1034 [48]. Its contribution
to Q0 is totally negligible. Qmat is associated with absorption
and bulk Rayleigh backscattering. In silica at λ = 1.55 µm
the attenuation coefficient is α = 0.17 dB/km, which leads to
Qmat = 1.5 × 1011 considering that

Qmat = 4.3 × 103

α
× 2πN

λ
. (20)

Considering Rayleigh backscattering as the only contribution
to Qmat, we can write [33]

Qmat = 3Nλ3

4π2ρscᾱ2
. (21)

With the value of ρscᾱ
2 we have used for the frequency

splitting estimation, we obtain Qmat = 2 × 1011 which shows
that this assumption is consistent with silica attenuation. The
intrinsic Q factors Q0 measured in the present work range
from 1.4 × 108 to 2.1 × 108. Considering Eq. (10), with
our values we had to keep τe � τ0 in order to observe the
coupled-cavity ringing phenomenon. We have Qrad � Q0 and
Qmat � Q0, thus Q0 seems to be limited by surface effects
characterized by Qs . If Q0 was limited by other stronger

surface scattering processes we would have found some larger
frequency splittings [35,41]. Consequently we can think that
in our experiments, the intrinsic Q factor is limited by surface
absorption. In the infrared (here λ = 1.55 µm) this absorption
is attributed to chemosorption of OH− ions and water on the
surface of the sphere [2,51]. In this regime the Q0 obtained
here is consistent with other experiments carried out with silica
WGM resonators [41].

(c) Interests of the method. In Ref. [28], the authors have
shown that the ringdown technique allows one to circumvent
the drawbacks of usual stationary characterizations of very
high-Q WGM resonators [i.e., (i) the use of highly stabilized
lasers, and (ii) detrimental nonlinear effects such as Raman
scattering or thermal drift are enhanced due to the large buildup
factor of the microresonator]. Our results show that by taking
into account the interaction between two counterpropagating
modes, this method can be extended to WGM doublets which
was not possible using a straightforward analysis of the
ringdown signal as reported in Ref. [28]. From the beating
between the input and output fields, the proposed method
intrinsically gives an accurate evaluation of the frequency
speed which avoids any calibration. As is the case for single
resonators, the method gives a direct measurement of Q0

without any assumptions [29]. We can also note that this
method gives the value of γ instead of δC even in the case of
weak values of frequency splitting. Furthermore, the proposed
method is strongly sensitive and would allow very low values
of 1/(2πγ ) of the same magnitude as the intrinsic linewidth of
the resonator to be measured. The latest property could be used
in single nanoparticle sizing based on frequency splitting in a
high-Q microresonator as proposed by J. Zhu et al. in Ref. [42].

IV. CONCLUSION

We have theoretically studied the ringing phenomenon
in coupled cavities and applied it to the particular case
of modal coupling. We have presented calculations of the
transient profile of a coupled resonator transmission signal
obtained with a linearly swept excitation frequency. From
an experimental point of view, the analysis of the time
domain profile allows one to fully and accurately describe the
split resonances of high-Q WGM resonators without (i) any
calibration of the frequency sweeping speed and (ii) the use of
highly stabilized lasers. The method has been applied to the
modal coupling characterization in silica microspheres. The
proposed simple method is expected to find some applications
in the characterization of ultra-high-Q-factor microresonators.
It could be generalized in order to study lift of degeneracy
whose origin comes from other physical mechanisms such
as additional microresonator coupling and single emitter or
nanoparticule scattering [42]. Finally, it could find some
applications in quantum optics since it has recently shown
that a thorough analysis of frequency splitting under strong
backscattering can be used to measure the Purcell factor [41].
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