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Transverse coherence of photon pairs generated in spontaneous parametric down-conversion
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Coherence properties of the down-converted beams generated in spontaneous parametric down-conversion are
investigated in detail using an iCCD camera. Experimental results are compared with those from a theoretical
model developed for pulsed pumping with a Gaussian transverse profile. The results allow us to tailor the shape of
correlation area of the signal and idler photons using pump-field and crystal parameters. As an example, splitting
of a correlation area caused by a two-peak pump-field spectrum is experimentally studied.
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I. INTRODUCTION

Light emitted from spontaneous parametric down-
conversion in a nonlinear crystal is composed of photon pairs.
Two photons comprising a photon pair are called a signal
and an idler photon for historic reasons. The first theoretical
investigation of this process has been done in year 1968 [1].
Already this study has revealed that frequencies and emission
directions of two photons in a pair are fully determined by the
laws of energy and momentum conservations. For this reason,
there occurs a strong correlation (entanglement) between
properties of the signal and idler photons. In an ideal case of
infinitely long and wide nonlinear crystal and monochromatic
plane-wave pumping, a plane-wave signal photon at frequency
ωs belongs just to one plane-wave idler photon at frequency
ωi that is determined by the conservation of energy. Emission
angles of these photons are given by the momentum conser-
vation that forms phase-matching conditions. Possible signal
(and similarly idler) emission directions lie on a cone which
axis coincides with the pump-beam direction of propagation.

However, real experimental conditions have enforced the
consideration of crystals with finite dimensions [2,3], pump
beams with nonzero divergence [4,5], as well as pulsed
pumping [6–9]. During this investigation, the approximation
based on a multidimensional Gaussian spectral two-photon
amplitude has been found extraordinarily useful [10,11]. The
developed models have revealed that spatial characteristics of a
pump beam are transferred to certain extent to these of a photon
pair generated in a nonlinear crystal, especially in case of
short crystals [12–15]. These models have also been useful in
quantifying real effects in applied experimental setups utilizing
photon pairs [16,17]. They have also been recently extended
to photonic [18,19] and wave-guiding [20–25] structures. Also
effects at nonlinear boundaries have been taken into account
[26,27].

In this article, we continue the previous investigations of
spatial photon-pair properties [28–31] by experimental study
of transverse profiles of the down-converted beams as well
as correlation areas of the signal and idler photons using an
iCCD camera [32–34]. Special attention is paid to the role of
pump-beam parameters. Experimental results are compared
with a theoretical model that considers Gaussian spectrum and
elliptical pump-beam profile. We note that also sensitive CCD
cameras have been found useful in investigations of spatial
properties of more intense twin beams [35–37].

The article is organized as follows. A theoretical model is
presented in Sec. II. Section III brings theoretical analysis of
parameters of a correlation area as well as spectral properties
of the down-converted fields. An experimental method based
on the use of an iCCD camera is discussed in detail in Sec. IV.
The experimentally observed dependence of parameters of
the correlation area on pump-beam characteristics and crystal
length is reported in Sec. V. Sec. VI is devoted to splitting of the
correlation area and its experimental observation. Conclusions
are drawn in Sec. VII.

II. THEORY

The process of spontaneous parametric down-conversion
is described by the following interaction Hamiltonian Ĥint

[2,16,38]:

Ĥint(t) = ε0

∫
V

drχ (2) : E(+)
p (r,t)Ê(−)

s (r,t)Ê(−)
i (r,t) + H.c.,

(1)

where E(+)
p is the positive-frequency part of the pump electric-

field amplitude, whereas Ê(−)
s (Ê(−)

i ) stands for the negative-
frequency part of the signal (idler) electric-field amplitude
operator. Symbol χ (2) means the second-order susceptibility
tensor and : is shorthand for tensor reduction with respect to
its three indices. Susceptibility of vacuum is denoted as ε0,
interaction volume as V and H.c. substitutes the Hermitian-
conjugated term.

We further consider parametric down-conversion in a LiIO3

crystal with an optical axis perpendicular to the z axis of
fields’ propagation direction and type-I interaction. The pump
field is assumed to be polarized vertically (it propagates
as an extraordinary wave), whereas the signal and idler
fields are polarized horizontally (they propagate as ordinary
waves). In this specific configuration, scalar optical fields are
sufficient for the description. The interacting optical fields can
then be decomposed into monochromatic plane waves with
frequencies ωa and wave vectors ka:

Ê(+)
a (r,t) =

∫
dkaÊ

(+)
a (ka) exp(ikar − iωat) + H.c.;

(2)
a = p,s,i.

The signal and idler fields at a single-photon level have to be
described quantally and so their spectral amplitudes Ê(+)

a (ka)
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can be expressed as Ê(+)
a (ka) = i

√
h̄ωa/

√
2ε0cAna(ωa)âa(ka)

using annihilation operators âa(ka) that remove one photon
from a plane-wave mode ka in field a. Symbol h̄ stands for
the reduced Planck constant, c is speed of light in vacuum, A
transverse area of a beam, and na means index of refraction in
field a.

Under these conditions, the interaction Hamiltonian Ĥint in
Eq. (1) takes the form [10]:

Ĥint(t) = An

(
ω0

s ,ω
0
i

) ∫
dks

∫
dki

∫
dkpE(+)

p (kp)

× exp{i[ω(kp) − ω(ks) − ω(ki)]t}
×

∫
V

dr exp[−i(kp − ks − ki)r]

× â†
s (ks)â

†
i (ki) + H.c. (3)

We have assumed in deriving Eq. (3) that the function
An(ωs,ωi) = −h̄

√
ωsωiχ

(2)/(2cA
√

ns(ωs)ni(ωi) is a slowly
varying function of frequencies ωs and ωi and can be
approximated by its value taken at the central frequencies ω0

s

and ω0
i .

A quantum state |�〉 of a generated photon pair can be
obtained after solving the Schrödinger equation up to the first
power of the interaction constant that results in the formula:

|�〉 = − i

h̄

∫ ∞

−∞
dtĤint(t)|vac〉; (4)

where |vac〉 means the vacuum state. Substitution of the
interaction Hamiltonian Ĥint from Eq. (3) into Eq. (4) provides
the following form for the quantum state |�〉 [4,16,39–41]:

|�〉 =
∫

dks

∫
dkiS(ks ,ki)â

†
s (ks)â

†
i (ki)|vac〉, (5)

where the newly introduced two-photon amplitude S takes the
form:

S(ks ,ki) = A′
n

∫
dkpE(+)

p (kp)δ(ωp − ωs − ωi)

×
∫

V

dr exp[−i(kp − ks − ki)r] (6)

and A′
n = −2πi/h̄An(ω0

s ,ω
0
i ). We note that squared modulus

|S(ks ,ki)|2 of the two-photon amplitude gives us the probabil-
ity density of simultaneous generation of a signal photon with
wave vector ks and its twin with wave vector ki .

Spectral resolution is usually not found in experiments
with photon pairs and then the photon-pair coincidence-count
rate is linearly proportional to the fourth-order correlation
function Gs,i defined as:

Gs,i(ξs,δs,ξi,δi)

= sin(ξs) sin(ξi)

c6

∫
dωsω

2
s

×
∫

dωiω
2
i |h(ωs)h(ωi)|2|S(ξs,δs,ωs,ξi,δi,ωi)|2; (7)

S(ξs,δs,ωs,ξi,δi,ωi) ≡ S(ks ,ki). The propagation direction of
a photon is parameterized by radial emission angles ξa (deter-
mining declination from the z axis) and azimuthal emission
angles δa (describing rotation around the z axis starting from
the x axis); a = s,i (see also Fig. 8 later). Functions hs and

hi introduced in Eq. (7) describe amplitude spectral and/or
geometrical filtering of photons in front of detectors.

More detailed information is contained in intensity spec-
trum Ss of a signal field assuming photon pairs emitted into
the fixed signal- and idler-photon directions given by angles
ξs , δs , ξi , and δi :

Ss(ωs ; ξs,δs,ξi,δi)

= sin(ξs) sin(ξi)ω2
s |h(ωs)|2

c6

×
∫

dωiω
2
i |h(ωi)|2|S(ξs,δs,ωs,ξi,δi,ωi)|2. (8)

If the signal-photon emission direction described by angles
ξs and δs is not resolved, an integrated signal-field emission
spectrum S int

s is observed:

S int
s (ωs ; ξi,δi) =

∫ π/2

−π/2
dξs

∫ π

−π

dδsSs(ωs ; ξs,δs,ξi,δi). (9)

Similar formulas as given in Eqs. (8) and (9) can be derived
also for the idler field.

On the other hand, excluding resolution in emission
directions, spectral correlations between the signal and idler
fields are characterized by a two-photon spectral amplitude
�s,i which squared modulus is defined as:

|�s,i(ωs,ωi)|2 = ω2
s ω

2
i

c6

∫
dδs

∫
dξs

∫
dδi

∫
dξi sin(ξs)

× sin(ξi)|h(ωs)h(ωi)|2|S(ξs,δs,ωs,ξi,δi,ωi)|2.
(10)

We further consider a Gaussian pump beam with the
electric-field amplitude E(+)

p in the from:

E(+)
p (r,t) =

∫
dωpAp(ωp) exp(ikpzz − iωpt)

× 1

Wpx(z)
exp

[
− x2

W 2
px(z)

]
exp

[
−ikp

x2

2R2
px(z)

]

× 1

Wpy(z)
exp

[
− y2

W 2
py(z)

]
exp

[
−ikp

y2

2R2
py(z)

]

× exp[iζp(z)]; (11)

kp = |kp|. The functions Wpa , Rpa , and ζp are defined as:

Wpa(z) = W 0
pa

√√√√1 + z2(
z0
pa

)2 , W 0
pa =

√
2z0

pa

kp

, (12)

Rpa(z) = z

[
1 + (z0

pa)2

z2

]
, a = x,y, (13)

ζp(z) = [
arctan

(
z/z0

px

) + arctan
(
z/z0

py

)]/
2. (14)

The function Ap introduced in Eq. (11) gives the pump-field
amplitude temporal spectrum. Constants z0

px and z0
py describe

positions of waists with radii W 0
px and W 0

py in the x and
y directions, respectively. Function Wpx(z) [Wpy(z)] gives a
radius of the beam in the x [y] direction and with wavefront
curvature Rpx(z) [Rpy(z)] at position z.
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We assume that the nonlinear crystal is sufficiently short so
that changes of the pump-field amplitude E(+)

p in the transverse
plane along the z axis can be neglected. In this case, the
pump-field amplitude E(+)

p can be characterized both by its
temporal spectrum Ap(ωp) and spatial spectrum Fp(kpx,kpy)
in the transverse plane:

E(+)
p (r,t) =

∫
dωpAp(ωp)

∫
dkpx

∫
dkpyFp(kpx,kpy)

× exp(ikpxx) exp(ikpyy) exp(ikpzz) exp(−iωpt).

(15)

The spatial spectrum Fp corresponding to the Gaussian beam
written in Eq. (11) and propagating along the z axis can be
expressed as:

Fp(kpx,kpy) = 1

Wpx(z0)Wpy(z0)

2

W̄pxW̄py

× exp

[
− k2

px

W̄ 2
px

]
exp

[
− k2

py

W̄ 2
py

]
exp[iζp(z0)],

(16)

where the position z0 lies inside the crystal. Complex spectral
half-widths W̄px and W̄py of the spatial spectrum in the
transverse plane are given as follows:

W̄pa = 2

√
1

W 2
pa(z0)

+ ikp

2R2
pa(z0)

, a = x,y. (17)

In the following we consider a Gaussian chirped pump pulse
which temporal amplitude spectrum Ap can be expressed in
the form:

Ap(ωp) = ξp

τp√
2(1 + iap)

exp

[
− τ 2

p

4(1 + iap)
ω2

p

]
. (18)

In Eq. (18), τp denotes pump-pulse duration, ap stands for
a chirp parameter, and ξp is the pump-field amplitude. We
note that the amplitude width �ωp (given as full width at
1/e of the maximum) of the pulse written in Eq. (18) equals
4
√

(1 + a2
p)/τp.

Considering the pump-field amplitude E(+)
p as given in

Eq. (15) the two-photon amplitude S defined in Eq. (6) can
be recast into the form:

S(ξs,δs,ωs,ξi,δi,ωi)

= cAp(ωs + ωi)Fp(ksx + kix ,ksy + kiy)

×Lzsinc

{
[kpz(ωs + ωi) − ksz(ωs) − kiz(ωi)]Lz

2

}

× exp

{
−i

[kpz(ωs + ωi) − ksz(ωs) − kiz(ωi)]Lz

2

}
;

(19)

sinc(x) = sin(x)/x. In deriving Eq. (19), we have assumed
that the crystal extents from z = −Lz to z = 0, Lz being the
crystal length. The transverse profile of crystal is also assumed
to be sufficiently wide.

III. CORRELATION AREA, SPECTRAL PROPERTIES

Correlation area is defined by the profile of probability
density of detecting a signal photon in the direction described
by angles (ξs,δs) provided that its idler twin has been detected
in a fixed direction given by angles (ξi,δi). In coherence
theory, this probability is given by the fourth-order correlation
function Gs,i defined in Eq. (7). Because the correlation
function Gs,i is usually a smooth function of its arguments, it
can be conveniently parameterized using angular widths (given
as full-widths at 1/e of maximum) in the radial (�ξs) and
azimuthal (�δs) directions. In general, parameters of the cor-
relation area depend on properties of crystal material as well as
crystal length, pump-field spectral bandwidth, and transverse
pump-beam profile. The last two parameters allow us to tailor
characteristics of the correlation area in wide ranges.

In the theoretical analysis of Sec. III, we use radial (ξ ) and
azimuthal (δ) angles inside a nonlinear crystal. The reason
is that we want to exclude the effect of mixing in spatial
and frequency domains at the output plane of the crystal in
the discussion. However, starting from Sec. IV radial (ξ ) and
azimuthal (δ) angles outside the nonlinear crystal are naturally
used in the presentation of experimental results.

In radial direction, crystal length and pump-field spectral
bandwidth as well as transverse pump-beam profile play a
role. The dependence of radial width of the correlation area
on the crystal length Lz emerges through the phase-matching
condition in the z direction. This condition is mathematically
described by the expression sinc(�kzLz/2) in Eq. (19);
�kz = kpz − ksz − kiz. Actual radial width is determined by
this condition and conservation of energy (ωp = ωs + ωi).
According to the formula in Eq. (17), the longer the crystal,
the smaller the radial width. Analytical theory also predicts
narrowing of the signal- and idler-field spectra with an increas-
ing crystal length. If pulsed pumping is considered, the wider
the pump-field spectrum, the greater the radial width and also
the greater the signal-field spectral width [compare Figs. 1(c)
and 1(d) with Figs. 1(a) and 1(b). This can be understood
as follows: more pump-field frequencies are present in a
wider pump-field spectrum and so more signal- and idler-field
frequencies are allowed to obey the phase-matching conditions
in the z direction and conservation of energy. In more detail
and following the graphs in Figs. 1(c) and 1(d), signal-field
photons with different wavelengths are emitted into different
radial emission angles ξs . Superposition of photon fields
emitted into different radial emission angles ξs then broadens
the overall signal-field spectrum. It is important to note that
all idler-field photons have nearly the same wavelengths,
which means that signal-field photons emitted into different
radial emission angles ξs use different wavelengths of the
pulsed-pump spectrum. The transverse pump-beam profile
affects the radial width through the phase-matching condition
in the radial plane. This radial phase-matching condition is
an additional requirement that must be fulfilled by a generated
photon pair. Qualitatively, the more the pump beam is focused,
the wider its spatial spectrum in radial direction and so the
weaker the radial phase-matching condition. However, this
dependence is quite small in radial angles, as follows from the
comparison of graphs in Figs. 1(a) and 1(b) with Figs. 1(e)
and 1(f). On the other hand, focusing of the pump beam leads
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HAMAR, PEŘINA JR., HADERKA, AND MICHÁLEK PHYSICAL REVIEW A 81, 043827 (2010)

FIG. 1. Contour plots of signal- [Ss(λs)] and idler-field [Si(λi)]
intensity spectra as they depend on radial signal-field emission angle
ξs ; idler-field emission angle ξi is fixed. Spectra are determined
for cw plane-wave pumping (a and b), pulsed plane-wave pumping
(c and d; �λp = 2.8 nm), cw focused pumping (e and f; W 0,f

p =
20 µm) and pulsed focused pumping (g and h, �λp = 2.8 nm,
W 0,f

p = W 0,f
px = W 0,f

py = 20 µm) for Lz = 5 mm.

to considerable broadening of the signal- and idler-field spectra
in all radial emission directions. Finally, if a focused pulsed
pump beam is assumed [see Figs. 1(g) and 1(h)], broadening
of the correlation area in radial direction as well as broadening
of the overall signal- and idler-field spectra is observed due to
a final pump-field spectral width. On the top, broadening of
the signal- and idler-field spectra corresponding to any radial
emission angle ξs occurs as a consequence of pump-beam
focusing. This behavior is related to the fact that indexes of
refraction of the interacting fields are nearly constant inside the
correlation area. We can say, in general, that spectral widths
of the signal and idler fields behave qualitatively in the same
way as the radial width of correlation area.

Comparison of the signal- and idler-field spectra in
Figs. 1(c) and 1(d) valid for pulsed pumping with those in
Figs. 1(a) and 1(b) for cw pumping leads to a remarkable
observation. Photon pairs generated into different signal-
photon radial emission angles ξs use different pump-field
frequencies. There occurs spectral asymmetry between the
signal and idler fields that originates in different detection

FIG. 2. Contour plots of squared modulus |�s,i |2 of two-photon
spectral amplitude for (a) cw and (b) pulsed (�λp = 8.5 nm) plane-
wave pumping; Lz = 5 mm.

angles considered; whereas the idler-field detection angle is
fixed, the angle of a signal-photon detection varies. This
asymmetry determines the preferred direction of the signal-
and idler-field frequency correlations as they are visible in
the shape of squared modulus |�s,i |2 of two-photon spectral
amplitude introduced in Eq. (10) [a large signal-field detector
is assumed]. Contour plot of the squared modulus |�s,i |2 of
two-photon amplitude has a typical cigar shape. In the cw case,
the main axis of this cigar is rotated 45◦ counterclockwise
with respect to the λi axis [see Fig. 2(a)] in order to describe
perfect frequency anticorrelation. If pulsed pumping is taken
into account, the cigar axis tends to rotates clockwise; the
broader the pump-field spectrum, the greater the rotation angle.
Even states with positively correlated signal- and idler-field
frequencies can be observed for sufficiently broad pump-field
spectra [see Fig. 2(b)]. We note that different dispersion
properties at different propagation angles have been fully
exploited in the method of achromatic phase matching that
allows us to generate photon pairs with an arbitrary orientation
of the two-photon spectral amplitude [15,42,43].

The azimuthal width of correlation area is determined pre-
dominantly by a pump-beam transverse profile for geometric
reasons. To be more specific, it is the pump-beam spatial
spectrum in azimuthal direction that affects the azimuthal
extension of the correlation area through the phase-matching
conditions in the azimuthal direction. As material dispersion
characteristics of the crystal are rotationally symmetric with
respect to the z axis (signal and idler fields propagate as
ordinary waves), the azimuthal width of spatial pump-beam
spectrum does not practically influence spectral properties of
the signal and idler fields.

We illustrate the dependence of correlation area on pump-
beam focusing using a 5-mm-long crystal and both cw and
pulsed pumping in Fig. 3. We can see in Fig. 3(a) that the
signal-field azimuthal width �δs is inversely proportional
to the width W

0,f
p (full width at 1/e of the maximum;

W
0,f
p ≡ W

0,f
px = W

0,f
py ) of the pump-beam waist whereas the

radial width �ξs does not practically depend on the width W
0,f
p

of the pump-beam waist. This is caused by the fact that the
phase-matching condition in the z direction is much stronger
than that in radial direction for a 5-mm-long crystal and so the
radial width �ξs is sensitive only to the pump-field spectral
width in this case. Pulsed pumping gives a broader correlation
area in radial direction as well as broader signal-field spectrum
compared to cw case [see Fig. 3(b)]. Increasing pump-beam
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(a)

(b)

FIG. 3. (a) Radial (�ξs , solid curves) and azimuthal (�δs , dashed
curves) widths of correlation area and (b) signal-field spectral width
�ωs as they depend on width W 0,f

p of the pump-beam waist for pulsed
(�λp = 5 nm, triangles) and cw (�λp = 0.03 nm, circles) pumping;
Lz = 5 mm. Logarithmic scales on the x and y axes are used.

focusing releases phase-matching conditions and naturally
leads to a broader signal-field spectrum.

Contrary to the azimuthal width, the radial width �ξs

depends on the pump-field spectral width �λp. The larger
the pump-field spectral width �λp the greater the radial
width �ξs and also the greater the signal-field spectral width
�ωs , as documented in Fig. 4 for a focused pump beam. We
can also see in Fig. 4(a) that the radial width �ξs reaches
a constant value for sufficiently narrow pump-field spectra.
This value is determined by the phase-matching condition in
the z direction for the central pump-field frequency ω0

p and
so depends on the crystal length Lz (together with material
dispersion properties of the crystal). The longer the crystal
the smaller the radial width �ξs .

The above described dependencies allow to generate photon
pairs with highly elliptic profiles of the correlation area
provided that the pump-beam profile in the transverse plane
is highly elliptic. As an example, we consider a pump beam
having W

0,f
py /W

0,f
px = 10. The dependence of the radial (�ξs)

and azimuthal (�δs) widths and signal-field spectral width
�ωs on the central azimuthal signal-photon emission angle δs0

is shown in Fig. 5 in this case. Whereas the radial and azimuthal
widths are comparable for the azimuthal signal-field emission
angle δs0 = π/2, their ratio �δs/�ξs equals approx. 20 for

(a)

(b)

FIG. 4. (a) Radial width �ξs of correlation area and (b) signal-
field spectral width �ωs as functions of pump-field spectral width
�λp for a 5-mm-long (circles) and 10-cm-long (triangles) crystal
assuming a focused pump beam; W 0,f

p = 200 µm. Logarithmic
scales on the x and y axes are used.

δs0 = 0. Focusing the pump beam from 200 to 20 µm in radial
direction results in doubling the signal-field spectral width
�ωs as documented in Fig. 5(b) [see also Figs. 1(a) and 1(e)].

IV. EXPERIMENTAL SETUP

We have used a negative uniaxial crystal made of LiIO3

cut for noncritical phase matching, i.e., the optical axis was
perpendicular to the pump-beam propagation direction. We
have considered crystals of two different lengths (Lz = 2 mm
and 5 mm) pumped both by cw and pulsed lasers. As for
cw pumping, a semiconductor laser Cube 405 (Coherent)
delivered 31.6 mW at 405 nm and with spectral bandwidth
�λp = 1.7 nm. The second-harmonic field of an amplified
femtosecond Ti:sapphire system (Mira+RegA, Coherent)
providing pulses at 800 nm and ∼250 fs long was used in
the pulsed regime. The mean SHG power was 2.5 mW at the
crystal input for a repetition rate of 11 kHz. Spectral bandwidth
was adjusted between 4.8 and 7.4 nm by fine tuning of the
SHG process. A dispersion prism was used to separate the
fundamental and SHG beams (for details, see Fig. 6).

Transverse profile of the pump beam and its divergence
were controlled by changing the focal length of converging
lens L1 or using a beam expander (BE2X, Thorlabs). The
used focal lengths fL1 of lens L1 laid in the interval from 30 to
75 cm. As we wanted the pump beam to be as homogeneous as
possible along the z axis, we chose the distance zL1 between the
lens L1 and the nonlinear crystal such that the beam waist was
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(a)

(b)

FIG. 5. (a) Radial (�ξs , solid curve) and azimuthal (�δs , dashed
curve) widths of correlation area and (b) signal-field spectral width
�ωs as they depend on central azimuthal signal-field emission angle
δs0 for a highly elliptic pulsed pump beam (W 0,f

px = 200 µm, W 0,f
py =

20 µm, �λp = 5 nm); Lz = 5 mm.

placed far behind the crystal, i.e., zL1 < fL1. Spatial spectrum
of the pump beam in the transverse plane as a very important
parameter in our experiment was measured by a CCD camera
(Lu085M, Lumenera) placed at the focal plane of a converging
lens L3. Spatial spectra in horizontal and vertical directions
were determined as marginal spectra and parameters W̃px and
W̃py characterizing their widths were found after fitting the ex-
perimental data. A fiber-optic spectrometer (HR4000CG-UV-
NIR, Ocean Optics) was used to obtain the pump-beam tempo-
ral spectrum after propagation through the nonlinear crystal.

The experiment was done with photon pairs degenerate
in frequencies (λs0 = λi0 = 800 nm) and emitted in opposite
parts of a cone layer (the central radial emission angle was
33.4◦ behind the crystal). As shown in Fig. 6(b) the signal
beam was captured directly by a detector, whereas the idler
beam propagated to the detector after being reflected on
a high-reflectivity mirror. Both beams were detected on a
photocathode of an iCCD camera with image intensifier
(PI-MAX:512-HQ, Princeton Instruments). Before detection,
both beams were transformed using a converging lens L2, one
narrow-bandwidth filter, and two high-pass edge filters. The
geometry of the setup was chosen such that the lens L2 mapped
the signal and idler photon emission angles to positions at the
photocathode; the photocathode was placed in the focal plane
of lens L2. For convenience, lenses L2 with different focal

FIG. 6. Experimental setup used for the determination of angular
widths. (a) Entire setup that includes both cw and pulsed pumping
as well as pump-beam diagnostics (for more details, see the text).
(b) Detail of the setup showing paths of the signal and idler beams.

lengths (fL2 = 12.5, 15, and 25 cm) were used. The applied
bandwidth filter was 11 nm wide and centered at 800 nm.
Edge filters (Andover, ANDV7862) had high transmittances
at 800 nm (98%) and blocked wavelengths below 666 nm.

An active area of the photocathode in the form of a
rectangle, 12.36 mm wide (see Fig. 7), was divided into
512 × 512 pixels. Spatial resolution of the camera was
38 µm (FWHM) and its main limitation came from imperfect
contrast transfer in the image intensifier. In order to make
data acquisition faster the resolution was further decreased
by grouping 4 × 4 or 8 × 8 pixels into one superpixel in
the hardware of the camera. Consequently, several tens of
camera frames were captured in 1 s. The overall quantum
detection efficiency including components between the crystal
and photocathode was 7%, as derived from covariance of the
signal and idler photon numbers. Widths of the signal and
idler strips are given by the bandwidth filter and lens L2 focal
length. As for timing, a 10-ns-long gate of the camera was used
synchronously with laser pulses. In the cw case, a 2-µs-long
gate was applied together with internal triggering. This timing
together with appropriate pump-field intensities assured that

043827-6



TRANSVERSE COHERENCE OF PHOTON PAIRS . . . PHYSICAL REVIEW A 81, 043827 (2010)

FIG. 7. Photocathode with registered photons after (a) illumi-
nation by light coming from 20 000 consecutive pump pulses and
(b) one pump pulse. The signal and idler strips image small sections
of the cone layer and are slightly curved. The curvatures are oriented
in the same sense in both strips because the idler beam is reflected on
a mirror.

the probability of detecting two photons in a single superpixel
was negligible. In other words, the number of detection events
divided by quantum detection efficiency had to be much lower
than the number of superpixels.

The level of noise was monitored in the third narrow
strip; 1.82% of detection events came from noise. Detailed
analysis has shown that 90% of noise photons were red photons
originating from fluorescence inside the crystal. Scattered
pump photons contributed by 8.4% and only 1.6% of noise
counts were dark counts of the iCCD camera.

The experimental signal-idler correlation functions gx and
gy in the transverse plane described by horizontal (x ′) and
vertical (y ′) coordinates of the reference system in this plane
have been determined after processing many experimental
frames. The formula for the determination of correlation
function gx can be written as follows [see also Fig. 7(b)]:

gx(x ′
s ,x

′
i) =

N∑
p=1

Mp∑
m=1

Lp∑
l=1

δ
(
x ′pm

s − x ′
s

)
δ
(
x

′pl

i − x ′
i

)
. (20)

In Eq. (20), p indexes frames (N gives the number of frames)
and m (l) counts signal (idler) detection events [up to Mp

(Lp) in the p-th frame]. Symbol x ′pl
s (x ′pl

i ) denotes horizontal
position of the l-th detection in the signal (idler) strip of
the p-th frame. Correlations in the vertical direction given
by the correlation function gy can be determined similarly.
The formula in Eq. (20) takes into account all possible
combinations of pairwise detection events. Only some of them
correspond to detection of both photons from one pair. The
remaining combinations are artificial in the sense that they do
not correspond to detection of a photon pair. This poses the
following restriction to the method. The number of artificial
combinations that occur at random positions has to be large
enough in order to create a plateau in a 2D graph of correlation
function gx(x ′

s ,x
′
i). Real detections of photon pairs are then

visible on the top of this plateau (see Fig. 9 later).
Cartesian coordinates x ′

j and y ′
j , j = s,i, in the transverse

plane can be conveniently transformed into angles βj and γj

FIG. 8. Sketch showing the geometry of signal and idler beams.
The photon emission direction is described by radial (ξ ) and azimuthal
(δ) emission angles. In detector plane, Cartesian coordinates x ′ and
y ′ are useful. Photons propagation directions are then conveniently
parameterized by angles β and γ .

measured from the middle (x ′cent
j , y ′cent

j ) of the j -th strip and
defined in Fig. 8 using the formulas:

γj = arctan
[(

x ′
j − x ′cent

j

)/
fL2

]
,

(21)
βj = arctan

[(
y ′

j − y ′cent
j

)/
fL2 cos(γj )

]
, j = s,i;

fL2 means the focal length of lens L2. Angles βj and γj

are related to radial and azimuthal angles ξj and δj by the
following transformation:

βj = arcsin[sin(ξj ) sin(δj )],
(22)

γj = arctan[tan(ξj ) cos(δj )] − ξj,det, j = s,i,

where the radial angle ξj,det describes the position of a detector
in beam j .

V. EXPERIMENTAL DETERMINATION OF PARAMETERS
OF CORRELATION AREA

In the experiment, spatial and temporal spectra of the pump
beam have been characterized first. Typical results are shown
in Figs. 9(a) and 9(b) and have been used in the model for
the determination of expected parameters of the correlation
area. The correlation area, or more specifically its radial and
angular profiles, have been characterized using histograms
gx(x ′

s ,x
′
i) and gy(y ′

s ,y
′
i). Histogram gx(x ′

s ,x
′
i) [gy(y ′

s ,y
′
i)] gives

the number of paired detections with a signal photon detected
at position x ′

s [y ′
s] together with an idler photon registered

at position x ′
i [y ′

i]. These histograms usually contain exper-
imental data from several hundreds of thousands of frames.
As graphs in Figs. 9(c) and 9(d) show detections of correlated
photon pairs lead to higher values in histograms gx and gy

around diagonals going from upper-left to lower-right corners
of the plots. Finite spreads of these diagonals have their origin
in nonperfect phase matching and can be characterized by their
widths �x ′

s and �y ′
s . Or more conveniently by uncertainties

in the determination of angles βs and γs ; �βs ≈ �y ′
s/fL2

and �γs ≈ �x ′
s/fL2. As detailed inspection of the histogram

gx (gy) in Fig. 9(c) [Fig. 9(d)] has shown, cuts of this
histogram along the lines with constant values of x ′

i (y ′
i) do
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(a)

(c)

(e)

(f)

(d)

(b)

FIG. 9. Typical measurement of a correlation area for pulsed
pumping having 327 600 frames; Lz = 5 mm. (a) Spatial spectrum
of the pump beam determined in the focal plane of lens L3.
(b) Temporal intensity spectrum of the pump beam as determined by a
spectrometer (diamonds), solid line represents a multipeak Gaussian
fit. Experimental histograms (c) gx(x ′

s ,x
′
i) and (d) gy(y ′

s ,y
′
i). Exper-

imental (e) radial 〈Gs,i〉βs
and (f) azimuthal 〈Gs,i〉γs

cross sections
of the correlation area (rectangles, circles) together with theoretical
predictions (solid lines).

not depend on the value of x ′
i (y ′

i). This reflects the fact
that idler photons detected at different positions inside the
investigated area on the photocathode have identical (signal-
photon) correlation areas. This allows us to combine the
data obtained for idler photons detected at different positions
together and increase the measurement precision this way.
This approach thus provides the radial cross section 〈Gs,i〉βs

of the correlation area along the radial angle γs as a mean
value over all possible values of the signal-field azimuthal
angle βs . Moreover, consideration of different idler-photon
detection positions means averaging over the angles γi and βi .
The averaging is indicated by symbol 〈〉. Mathematically, the

radial cross section 〈Gs,i〉βs
expressed in the coordinate x ′

s can
be derived along the formula

〈Gs,i〉βs
(x ′

s) =
∑
x ′

i

g
[
x ′

s − x ′mid
s (x ′

i),x
′
i

]
, (23)

where the function x ′mid
s (x ′

i) gives the central position (given as
a locus) of the cut of the histogram g(x ′

s ,x
′
i) for a fixed value of

the coordinate x ′
i . In the theory, the radial cross section 〈Gs,i〉βs

is determined using the fourth-order correlation function Gs,i

written in Eq. (7), substitution of angles ξs , δs , ξi , and δi

by angles γs , βs , γi , and βi [inverse transformation to that
in Eq. (22)], and, finally, integration over the angles βs , γi ,
and βi . Similarly, the azimuthal cross section 〈Gs,i〉γs

of the
correlation area along the azimuthal angle βs arises after
averaging over the angles γs , γi , and βi and can be determined
by a formula analogous to that given in Eq. (21). The radial and
azimuthal cross sections 〈Gs,i〉βs

and 〈Gs,i〉γs
corresponding

to the pump beam with characteristics defined in Figs. 9(a)
and 9(b) are plotted in Figs. 9(e) and 9(f). Solid lines in
Figs. 9(e) and 9(f) refer to the results of numerical model
and are in a good agreement with the experimental data.

The radial width 〈�γs〉βs
(measured as full width at 1/e of

the maximum) of radial cross section 〈Gs,i〉βs
depends mainly

on the pump-beam spectral width �λp. It holds that the greater
the pump-beam width �λp the larger the radial width 〈�γs〉βs

,
as documented in Fig. 10 for crystals 2 and 5 mm long. In the
experiment, 11-nm-wide frequency filters have been applied
to cut noise. However, certain amount of photons comprising a
photon pair has also been blocked. According to the theoretical
model, this has also resulted in a small narrowing of the
radial cut of the correlation area (compare solid and dashed
curves in Fig. 10). The theoretical curve in Fig. 10 has been
experimentally confirmed for several values of the width W

0,f
px

of pump-beam waist both for cw and pulsed pumping.

FIG. 10. Radial width 〈�γs〉βs
as a function of pump-beam

spectral width �λp . Experimental points have been obtained for Lz =
5 mm, W 0,f

px > 140 µm (triangles), Lz = 5 mm, W 0,f
px < 140 µm

(diamonds), Lz = 2 mm, W 0,f
px > 140 µm (crosses), and Lz =

2 mm, W 0,f
px < 140 µm (circles) both for cw and pulsed pumping.

The theoretical model gives the same dependence for both crystal
lengths Lz in cases without (solid curve) as well as with (dashed
curve, 11-nm wide) spectral filters.
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FIG. 11. Angular width 〈�βs〉γs
as it depends on width W 0,f

py

of the pump-beam waist for pulsed (crosses and triangles) and cw
(diamonds) pumping. Two-mm-long (triangles and diamonds) and
5-mm-long (crosses) crystals were used in experiment. The theo-
retical model predicts the same dependence for both crystals (solid
curve). The dashed horizontal line indicates the resolution limit given
by the camera superpixel size.

On the other hand, and in our geometry, it is the width
W

0,f
py of the pump-beam waist that determines the angular

width 〈�βs〉γs
of angular cross section 〈Gs,i〉γs

. Predictions of
the model for 2- and 5-mm-long crystals are shown in Fig. 11
by a solid curve. This curve has been checked experimentally
for several values of the width W

0,f
py of the pump-beam waist

both for cw and pulsed pumping. We note that these curves
do not depend on the pump-beam spectral width �λp. We
can see in Fig. 11 that the measured points agree with the
theoretical curve for smaller values of the width W

0,f
py . Larger

values of the width W
0,f
py lead to small angular widths 〈�βs〉γs

that could not be correctly measured because of the limited
spatial resolution of the iCCD camera.

VI. ENGINEERING THE SHAPE OF A
CORRELATION AREA

As the above results have shown parameters of a correlation
area can be efficiently controlled using pump-beam parame-
ters, namely temporal spectrum and transverse profile. Even
the shape of correlation area can be considerably modified.
Splitting of the correlation area into two parts that occurs as a
consequence of splitting of the pump-field temporal spectrum
can serve as an example. Using our femtosecond pump system,
we were able to experimentally confirm this behavior. We have
generated a pump beam with the spatial spectrum given in
Fig. 12(a). Its temporal spectrum containing two peaks, as
was acquired by a spectrometer, is plotted in Fig. 12(b). The
experimental radial width 〈�γs〉βs

of cross section 〈Gs,i〉βs

given in Fig. 12(c) shows that the two-peak structure of the
pump-field spectrum resulted in splitting of the correlation
area into two parts. On the other hand, and in agreement
with the theory, the angular cross section 〈Gs,i〉γs

was not
affected by the pump-field spectral splitting [see Fig. 12(d)].
For comparison, the theoretical profile of the correlation area
given by the correlation function Gs,i and appropriate for
the pump-beam parameters given in Figs. 12(a) and 12(b)

(a) (b)

(c)

(d)

(e) (f)

FIG. 12. Determination of a correlation area for pulsed pumping
composed of two spectral peaks; Lz = 5 mm. (a) Spatial spectrum
of the pump beam. (b) Temporal pump-field intensity spectrum
(experimental points are indicated by diamonds, solid line represents
a multipeak Gaussian fit). Experimental (c) radial 〈Gs,i〉βs

and
(d) azimuthal 〈Gs,i〉γs

cross sections of the correlation area (rectan-
gles and circles) together with theoretical predictions (solid line).
(e) Contour plot of the theoretical correlation function Gs,i .
(f) Contour plot of the squared modulus |�s,i |2 of the theoretical
two-photon spectral amplitude.

is plotted in Fig. 12(e). It indicates a good agreement of the
model with experimental data. Moreover, the squared modulus
|�s,i |2 of theoretical two-photon spectral amplitude reveals
that splitting of the correlation area is accompanied by splitting
of the signal-field spectrum [see Fig. 12(f)].

VII. CONCLUSIONS

We have developed a method for the determination of
profiles of a correlation area using an intensified CCD camera.
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Single detection events in many experimental frames are
processed and provide histograms from which cross-sections
of the correlation area can be recovered. This method has been
used for investigations of the dependence of parameters of
the correlation area on pump-beam characteristics and crystal
length. The experimentally obtained curves have been success-
fully compared with a theoretical model giving fourth-order
correlation functions. Radial profile of the correlation area
depends mainly on pump-field spectrum and crystal length.
On the other hand, azimuthal profile of the correlation area

is sensitive only to the transverse profile of the pump beam.
Splitting of the correlation area caused by a two-peak structure
of the pump-field spectrum has also been experimentally
observed.
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IAA100100713 of GA AV ČR, 1M06002, and COST OC
09026 of the Ministry of Education of the Czech Republic.

[1] T. G. Giallorenziho and C. L. Tang, Phys. Rev. 166, 225 (1968).
[2] C. K. Hong and L. Mandel, Phys. Rev. A 31, 2409 (1985).
[3] L. J. Wang, X. Y. Zou, and L. Mandel, Phys. Rev. A 44, 4614

(1991).
[4] T. P. Grayson and G. A. Barbosa, Phys. Rev. A 49, 2948 (1994).
[5] O. Steuernagel and H. Rabitz, Opt. Commun. 154, 285 (1998).
[6] T. E. Keller and M. H. Rubin, Phys. Rev. A 56, 1534 (1997).
[7] G. Di Giuseppe, L. Haiberger, F. De Martini, and A. V.

Sergienko, Phys. Rev. A 56, R21 (1997).
[8] W. P. Grice and I. A. Walmsley, Phys. Rev. A 56, 1627 (1997).
[9] J. Perina Jr., A. V. Sergienko, B. M. Jost, B. E. A. Saleh, and

M. C. Teich, Phys. Rev. A 59, 2359 (1999).
[10] A. Joobeur, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 50,

3349 (1994).
[11] A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, Phys.

Rev. A 53, 4360 (1996).
[12] M. B. Nasr, A. F. Abouraddy, M. C. Booth, B. E. A. Saleh,

A. V. Sergienko, M. C. Teich, M. Kempe, and R. Wolleschensky,
Phys. Rev. A 65, 023816 (2002).

[13] C. H. Monken, P. H. Souto Ribeiro, and S. Padua, Phys. Rev. A
57, 3123 (1998).

[14] S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H.
Monken, Phys. Rev. A 69, 023811 (2004).

[15] G. Molina-Terriza, S. Minardi, Y. Deyanova, C. I. Osorio,
M. Hendrych, and J. P. Torres, Phys. Rev. A 72, 065802 (2005).

[16] Y. Shih, Rep. Prog. Phys. 66, 1009 (2003).
[17] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903 (2004).
[18] M. Centini, J. Perina Jr., L. Sciscione, C. Sibilia, M. Scalora,

M. J. Bloemer, and M. Bertolotti, Phys. Rev. A 72, 033806
(2005).

[19] J. Perina Jr., M. Centini, C. Sibilia, M. Bertolotti, and M. Scalora,
Phys. Rev. A 73, 033823 (2006).

[20] J. Perina Jr., Phys. Rev. A 77, 013803 (2008).
[21] Y. J. Ding, S. J. Lee, and J. B. Khurgin, Phys. Rev. Lett. 75, 429

(1995).
[22] A. De Rossi and V. Berger, Phys. Rev. Lett. 88, 043901 (2002).
[23] M. C. Booth, M. Atature, G. Di Giuseppe, B. E. A. Saleh, A. V.

Sergienko, and M. C. Teich, Phys. Rev. A 66, 023815 (2002).
[24] Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and

M. C. Teich, Phys. Rev. A 67, 053810 (2003).

[25] Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich,
Phys. Rev. A 70, 052317 (2004).

[26] J. Perina Jr., A. Luks, O. Haderka, and M. Scalora, Phys. Rev.
Lett. 103, 063902 (2009).

[27] J. Perina Jr., A. Luks, and O. Haderka, Phys. Rev. A 80, 043837
(2009).

[28] B. E. A. Saleh, A. Joobeur, and M. C. Teich, Phys. Rev. A 57,
3991 (1998).

[29] J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys.
Rev. Lett. 92, 210403 (2004).

[30] M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, Phys. Rev.
Lett. 92, 233601 (2004).

[31] E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, Phys. Rev.
A 69, 023802 (2004).

[32] B. M. Jost, A. V. Sergienko, A. F. Abouraddy, B. E. A. Saleh,
and M. C. Teich, Opt. Express 3, 81 (1998).

[33] O. Haderka, J. Perina Jr., and M. Hamar, J. Opt. B: Quantum
Semiclass. Opt. 7, S572 (2005).

[34] O. Haderka, J. Perina Jr., M. Hamar, and J. Perina, Phys. Rev. A
71, 033815 (2005).

[35] Y. Jiang, O. Jedrkiewicz, S. Minardi, P. Di Trapani,
A. Mosset, E. Lantz, and F. Devaux, Eur. Phys. J. D 22, 521
(2003).

[36] O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache,
L. A. Lugiato, and P. Di Trapani, Phys. Rev. Lett. 93, 243601
(2004).

[37] O. Jedrkiewicz, E. Brambilla, M. Bache, A. Gatti, L. A. Lugiato,
and P. di Trapani, J. Mod. Opt. 53, 575 (2006).

[38] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics
(Wiley, New York, 1991).

[39] Z. Y. Ou, L. J. Wang, and L. Mandel, Phys. Rev. A 40, 1428
(1989).

[40] L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, UK, 1995),
Chap. 22.4.7.

[41] M. H. Rubin, Phys. Rev. A 54, 5349 (1996).
[42] J. P. Torres, F. Macia, S. Carrasco, and L. Torner, Opt. Lett. 30,

314 (2005).
[43] J. P. Torres, M. W. Mitchell, and M. Hendrych, Phys. Rev. A 71,

022320 (2005).

043827-10

http://dx.doi.org/10.1103/PhysRev.166.225
http://dx.doi.org/10.1103/PhysRevA.31.2409
http://dx.doi.org/10.1103/PhysRevA.44.4614
http://dx.doi.org/10.1103/PhysRevA.44.4614
http://dx.doi.org/10.1103/PhysRevA.49.2948
http://dx.doi.org/10.1016/S0030-4018(98)00319-8
http://dx.doi.org/10.1103/PhysRevA.56.1534
http://dx.doi.org/10.1103/PhysRevA.56.R21
http://dx.doi.org/10.1103/PhysRevA.56.1627
http://dx.doi.org/10.1103/PhysRevA.59.2359
http://dx.doi.org/10.1103/PhysRevA.50.3349
http://dx.doi.org/10.1103/PhysRevA.50.3349
http://dx.doi.org/10.1103/PhysRevA.53.4360
http://dx.doi.org/10.1103/PhysRevA.53.4360
http://dx.doi.org/10.1103/PhysRevA.65.023816
http://dx.doi.org/10.1103/PhysRevA.57.3123
http://dx.doi.org/10.1103/PhysRevA.57.3123
http://dx.doi.org/10.1103/PhysRevA.69.023811
http://dx.doi.org/10.1103/PhysRevA.72.065802
http://dx.doi.org/10.1088/0034-4885/66/6/203
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevA.72.033806
http://dx.doi.org/10.1103/PhysRevA.72.033806
http://dx.doi.org/10.1103/PhysRevA.73.033823
http://dx.doi.org/10.1103/PhysRevA.77.013803
http://dx.doi.org/10.1103/PhysRevLett.75.429
http://dx.doi.org/10.1103/PhysRevLett.75.429
http://dx.doi.org/10.1103/PhysRevLett.88.043901
http://dx.doi.org/10.1103/PhysRevA.66.023815
http://dx.doi.org/10.1103/PhysRevA.67.053810
http://dx.doi.org/10.1103/PhysRevA.70.052317
http://dx.doi.org/10.1103/PhysRevLett.103.063902
http://dx.doi.org/10.1103/PhysRevLett.103.063902
http://dx.doi.org/10.1103/PhysRevA.80.043837
http://dx.doi.org/10.1103/PhysRevA.80.043837
http://dx.doi.org/10.1103/PhysRevA.57.3991
http://dx.doi.org/10.1103/PhysRevA.57.3991
http://dx.doi.org/10.1103/PhysRevLett.92.210403
http://dx.doi.org/10.1103/PhysRevLett.92.210403
http://dx.doi.org/10.1103/PhysRevLett.92.233601
http://dx.doi.org/10.1103/PhysRevLett.92.233601
http://dx.doi.org/10.1103/PhysRevA.69.023802
http://dx.doi.org/10.1103/PhysRevA.69.023802
http://dx.doi.org/10.1364/OE.3.000081
http://dx.doi.org/10.1088/1464-4266/7/12/020
http://dx.doi.org/10.1088/1464-4266/7/12/020
http://dx.doi.org/10.1103/PhysRevA.71.033815
http://dx.doi.org/10.1103/PhysRevA.71.033815
http://dx.doi.org/10.1140/epjd/e2003-00002-4
http://dx.doi.org/10.1140/epjd/e2003-00002-4
http://dx.doi.org/10.1103/PhysRevLett.93.243601
http://dx.doi.org/10.1103/PhysRevLett.93.243601
http://dx.doi.org/10.1080/09500340500217670
http://dx.doi.org/10.1103/PhysRevA.40.1428
http://dx.doi.org/10.1103/PhysRevA.40.1428
http://dx.doi.org/10.1103/PhysRevA.54.5349
http://dx.doi.org/10.1364/OL.30.000314
http://dx.doi.org/10.1364/OL.30.000314
http://dx.doi.org/10.1103/PhysRevA.71.022320
http://dx.doi.org/10.1103/PhysRevA.71.022320

