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Snakelike nonautonomous solitons in a graded-index grating waveguide
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We present a series of analytical solutions which describe nonautonomous solitons in a planar waveguide
with an additional periodical structure, that is, a long-period grating. The explicit functions which describe the
evolution of the width, peak, and trajectory of the soliton’s wave center are presented exactly. The gain parameter
has no effects on the motion of the soliton’s wave center or its width; it affects just the evolution of the soliton’s
peak. The grating term affects the motion of the soliton’s wave center without changing its shape. The evolution of
the soliton under the propagation-distance-dependent gain term is investigated too. It is reported that an arbitrary
additional structure can be added on the graded-index waveguide to control the motion of the soliton without
affecting its shape.
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I. INTRODUCTION

The discovery of optical solitons in nonlinear optics has
attracted great interest in experimental and theoretical studies
[1–14]. Especially, solitons in a nonlinear waveguide have
been widely studied. For example, Agrawal and Ponomarenko
presented an exact analytical solution inside planar graded-
index waveguide amplifiers with Kerr nonlinearity using a
symmetry-group analysis method [3]. Li et al. addressed the
dynamics of fundamental and high-order dark solitons on
the intense parabolic background in a planar graded-index
waveguide with self-defocusing nonlinearity [4]. Serkin and
Hasegawa presented a broad class of self-similar solitary wave
solutions of the nonlinear equation model with varying disper-
sion, nonlinearity, and gain or absorption [5]. Nonlinearity
management in optics has been done experimentally in [14].
However, a planar nonlinear waveguide with an additional
periodic structure in the direction of propagation has drawn
less attention, perhaps due to a lack of experimental realiza-
tions. It is, nevertheless, an interesting and potentially useful
geometry where optical solitons can propagate. In this grating
waveguide, the dynamics of optical solitons are governed by
the nonautonomous nonlinear Schödinger equation (see the
following) due to the management of nonlinearity and the
presence of dissipation or gain [2,10,12].

In this article, we study the properties of solitons in a
planar long-period-grating waveguide. In particular, inves-
tigations have been made to understand the properties of
nonautonomous solitons under variation of the Kerr nonlinear
parameter, appropriate gain or loss terms, modulation of the
refractive index, and so on. We find that the grating term affects
the motion of the soliton’s wave center without changing
its shape. A certain additional structure can be added on
the graded-index waveguide to control the soliton’s motion,
preserving its shape. When the parameter λ → 0, which relates
the refractive index and Kerr nonlinear parameter, the width of
the soliton can be stable. The gain parameter affects only the
evolution of the soliton’s peak and has no effects on the motion
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of the soliton’s wave center or its width. Especially, if the gain
is a constant γ , the peak will be stable with the condition
λ = 2γ . The evolution of nonautonomous solitons under the
propagation distance-dependent gain term are investigated too.

II. THE NONLINEAR EQUATION AND BRIGHT
NONAUTONOMOUS SOLITON SOLUTION

We start by considering the propagation of a continuous-
wave optical beam inside a planar, graded-index nonlinear
waveguide amplifier with the refractive index

n = n0 + n1[f (z)x2 + 2l̃x cos(ω̃z)] + n2r(z)I (x,z),

where I (x,z) is the optical intensity and x and z are the spatial
coordinate and propagation distance, respectively. Here the
first two terms describe the linear part of the refractive index,
l̃x cos(ω̃z) stands for a long-period grating, and the last term
represents a Kerr-type nonlinearity of the waveguide amplifier.
For convenience, we assume n1 > 0, and the dimensionless
function f (z) can be negative or positive, corresponding to
acting as a focusing or a defocusing lens. The Kerr parameter
n2r(z) can be positive (negative) for a nonlinear self-focusing
(self-defocusing) medium.

It is well known that exactly self-similar waves have been
found in optical fibers whose dispersion, nonlinearity, and gain
profile are allowed to change with the propagation distance,
but the function cannot be chosen independently [12,15].
The nonautonomous nonlinear wave equation governing beam
propagation in such a waveguide can be written as

i
∂u

∂z
+ 1

2k0

∂2u

∂x2
+ k0n1

n0
V (x,z)u + k0n2

n0
r(z)|u|2u

+ ig(z)

2
u = 0, (1)

where V (x,z) = f (z)x2 + 2l̃x cos(ω̃z), g(z) is the gain
[g(z) < 0] or loss [g(z) > 0] coefficient, and k0 = 2πn0/λ0

is the wave number, with λ0 being the wavelength of
the optical source generating the beam. Introducing the
normalized variables U = √

(k0|n2|LD/n0)u,X = √
2x/ω0,

l = √
2l̃ω0,Z = z/LD , and ω = ω̃LD,G(Z) = g(z)LD,

where ω0 = (2k2
0n1/n0)−1/4 and LD = k0ω

2
0 represent the
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characteristic transverse scale and the diffraction length,
respectively. Thus Eq. (1) can be rewritten in a dimensionless
form:

i
∂U

∂Z
+ ∂2U

∂X2
+ 1

4
FX2U + lX cos(ωZ)U

+ σR|U |2U + iG

2
U = 0, (2)

where σ = n2/|n2| = ±1 corresponds to self-focusing (+)
and self-defocusing (−) nonlinearity of the waveguide, re-
spectively, and F (Z), R(Z), and G(Z) are functions of the
normalized distance Z. In this case, we assume

F = λ2,
(3)

R = 2g exp

[∫
G(Z)dZ + λZ

]
.

By performing the Darboux transformation method [16], the
analytical solution of Eq. (2) is presented as

U [X,Z] = 4αAc exp θ√
g
[
1 + A2

c exp ϕ
] , (4)

where

θ = A + B + C + D + E,

ϕ = 8αβ

λ
e2λZ − 4αXeλZ − 8lαeλZ cos(ωZ)/(λ2 + ω2),

where

A = λlX

2ω

(
e−iωZ

iω + λ
+ eiωZ

iω − λ

)
− 2(α − iβ)XeλZ

− λ2l2

8ω3

(
e−i2ωZ

(iω + λ)2
− ei2ωZ

(−iω + λ)2

)
,

B = iλ2l2Z

2ω2(ω2 + λ2)
+ i2λl(α − iβ)

ω(λ2 + ω2)
(eλZ+iωZ − eλZ−iωZ)

+ i2(α − iβ)2e2λZ/λ,

C = λl2

4ω3

(
e−i2ωZ

iω + λ
+ ei2ωZ

iω − λ

)
+ iλl2

2ω2

×
(

Z

−iω + λ
+ Z

iω + λ

)
,

D = i2l(α − iβ)

ω

(
eλZ−iωZ

−iω + λ
− eλZ+iωZ

iω + λ

)

− il2Z

2ω2
+ il2 sin(2ωZ)

4ω3
,

E = (−iλX2/4) + (λZ/2) −
∫

[G(Z)/2dZ]

+ [ilX sin(ωZ)/ω].

Here Ac, α, and β are arbitrary real constants. In our solution,
the gain term can be chosen arbitrarily, as long as the function
can be integrated. It is convenient to study the property of
nonautonomous solitons under different gain media in the
planar graded-index grating waveguide. This is one of the
main features discussed here. When l = 0, the properties of
solitons in the planar graded-index waveguide without grating

can be studied conveniently, which is similar to the work in [3]
and [5].

III. THE FUNCTION OF EACH SYSTEM PARAMETER

Assume that the peak of the soliton corresponds to the
central position of the envelope, so we can present the explicit
expression of the central position, which satisfies the condition
1 − A2

ce
ϕ = 0. In this case, the evolution of its width can be

given as follows (we define the half-value corresponding width
as the width of a bright nonautonomous soliton):

W (Z) = e−λZ

4α
ln

2 + √
3

2 − √
3
. (5)

This means that the grating and gain parameters have no effects
on the soliton’s width; one can control the evolution of width
via the parameter λ. It is clear that the width decreases with
propagation distance for λ > 0 and increases for λ < 0. This is
because the soliton can exist only if nonlinear effects balance
diffraction or dispersion effects; if the balance is destroyed, its
width will change. When λ > 0, the nonlinearity increases
with the propagation distance [shown in Eq. (3)], yet the
diffraction term is constant, so the soliton will be compressed
and its width will become smaller. On the contrary, for λ < 0,
the width will be broadened since the nonlinearity becomes
weak but the diffraction term remains invariant. Obviously,
the width will be stable at λ → 0, which means that the two
sides will nearly balance each other.

The wave central position of the soliton is given by

Xc = ln Ac

2α
e−λZ + 2β

λ
eλZ − 2l cos(ωZ)

λ2 + ω2
, (6)

which shows that the grating affects the motion of the soliton
effectively and the gain parameter has no effects on the
trajectory of the soliton’s wave center. We plot the trajectory
of the wave center with β = 0 in Fig. 1. It is obvious that the
soliton oscillates, and it approaches the central axis (x = 0)
when β = 0 and λ > 0. Interestingly, they approach the central
axis and oscillate around the central axis while increasing the
distance Z.

In the contrail equation for the soliton’s wave center, the
oscillation term is −2l cos(ωZ)/(λ2 + ω2). It depends on the
system parameters ω, l, and λ. The oscillating period along
the x direction is 2π/ω; ω is called the oscillating frequency.
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FIG. 1. (Color online) Evolution of a nonautonomous soliton’s
wave center for α = 0.01 (dashed line) and α = −0.01 (solid line)
under the conditions Ac = 2, λ = 0.08, β = 0, l = 1, and ω = 1.
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The amplitude along the x direction of the oscillation is
2l/(λ2 + ω2). Since λ relates to the Kerr nonlinear parameter,
which has a great influence on the shape of the soliton, one can
change the amplitude along the x direction without changing
its shape through the grating parameters l and ω. Thus, the
bright nonautonomous soliton can oscillate with the addition
of a grating, and its periodicity and amplitude can be controlled
by adjusting ω and l.

From the preceding discussion, it can also be seen that
the gain parameter has no effects on the trajectory of the
soliton’s wave center or its width. But the gain should affect
the evolution of the soliton’s peak. In the rest of this section,
we study the effect of the gain parameter in detail.

First, we discuss the dynamics of a nonautonomous soliton
with gain term G(Z) = 2γ , which is a constant. The matter
wave density from the solution [Eq. (4)] reads

|U [X,Z]|2 = 16α2A2
c exp(ϕ + λZ − 2γZ)

g
[
1 + A2

c exp(ϕ)
]2 . (7)

The evolution of its peak can be described by the function

|U |2max = 4α2 exp(λZ − 2γZ)/|g|. (8)

It is clear that the grating does not affect the peak of the
soliton. Consequently, it does not affect the soliton’s shape at
all in our system. We can make the bright soliton increase or
decrease or remain stable by adjusting the two coefficients λ

and γ . This provides a physical way to control the soliton’s
peak. Especially, when λ = 2γ , its peak is a constant (4α2/g)
and is shown in Fig. 2. Of course, we can also design
some other particular forms of gain parameter to control the
evolution of the peak. Here we choose a Z-dependent form
of gain parameter and observe the peak’s evolution from the
analytical solution.

The particular profile of the gain function is chosen as
G(z) = 2l′ cos(ω′Z); the solution can be presented from the
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FIG. 2. (Color online) Dynamics of a bright nonautonomous
soliton when λ = 2γ . Parameters are α = 1, β = 0, λ = 0.02, l =
0.2, ω = 0.8, g = 0.35, Ac = 1, and γ = 0.01. It is shown that the
peak is stable.
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FIG. 3. (Color online) Dynamics of a bright nonautonomous
soliton with different Z-dependent gain parameters for α = 2, β = 0,
λ = 0.02, g = 0.35, Ac = 1, l = 2, ω = 2, l′ = 1.2, and ω′ = −2.

normal solution (4). The evolution of its peak is given as
follows:

|U |2max = 4α2

|g| exp

[
λZ − 2l′ sin(ω′Z)

ω′

]
. (9)

From Eq. (9), we find that the period of the peak’s oscil-
lation increases when the value of the gain frequency ω′
decreases, and the amplitude of the peak’s oscillation can
be increased as l′ increases. On the contrary, for Ac = 1
and β = 0, the nonautonomous soliton will oscillate around
the central axis x = 0. The trajectory of its wave center is
Xc = −2l cos(ωZ)/(λ2 + ω2) and the oscillation along the x

direction of the soliton can be designed well by the grating.
Therefore, we can design the evolution of the nonautonomous
soliton’s peak and the wave center’s motion through the
parameters l,ω and l′,ω′. When λ → 0, solitons will become
similar to the one in Fig. 3 (ω′ = ±ω) or the one in Fig. 4
(ω′ �= ±ω). Through modulation of both the grating parameter
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FIG. 4. (Color online) Dynamics of a bright nonautonomous
soliton with different Z-dependent gain parameters for α = 2, β = 0,
λ = 0.02, g = 0.35, Ac = 1, l = 1, ω = 0.8, l′ = 3, and ω′ = 4.
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and the gain coefficients concurrently, we can get many kinds
of solitons with different shapes.

Based on this property of nonautonomous solitons, one
can obtain the expected soliton by controlling the grating’s
structure. For example, we replace the grating l cos(ωZ) with
H (Z). In this grating waveguide, the contrail equation of the
soliton takes the form

Xc = ln Ac

2α
e−λZ + 2β

λ
eλZ + 2

∫
[
∫

eλZH (Z)dZ]dZ

eλZ
, (10)

and the evolution of its width and peak remains invariant.
Excitingly, the additional structure does not affect the soliton’s
shape and can be used to control its trajectory. Therefore, we
can design the refractive index of the waveguide to control
its motion without changing its shape, which lies in the wide
potential application of spatial solitons.

Numerous dark soliton solutions with a negative Kerr non-
linear parameter have been presented in [4] and [17]. However,
it should be noted that dark solitons cannot be obtained in our
model by performing the Darboux transformation from a trivial
seed, even if the Kerr nonlinear parameter is negative. It should

be interesting to investigate dark solitons in this graded-index
grating waveguide.

IV. CONCLUSION

We have deduced the exact bright nonautonomous soliton
solutions of a nonlinear equation with an arbitrary gain profile.
Having studied the evolution equations of the soliton’s main
quantities, including its width, its peak, and the motion
of its center, we find that long-period grating can change
the motion of a soliton and preserve its shape. The gain
parameter has no effects on the motion of the soliton or its
width; it affects only the peak. The peak can be controlled
finely via λ and the gain parameter. However, the width
can be controlled by the parameter λ, which relates to the
refractive index and Kerr nonlinear parameter. This provides
a particular way to control the evolution of solitons in the
waveguide. Moreover, an arbitrary additional structure can
be added on the graded-index waveguide to control the
motion of nonautonomous solitons without affecting their
shape.
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