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A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the
basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state
and the other in the ground state. The unitary transformation guarantees that our calculations are based on the
ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of
the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed
shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift)
and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real
photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift).
The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift,
which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance
between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two
atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric
state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative
or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the
modification of the effective density of states by the interaction between two atoms can modulate the quantum

Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.
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I. INTRODUCTION

The coherence between many identical two-level atoms was
first investigated by Dicke in 1954 [1], where the concepts of
superradiant and subradiant states were introduced to describe
two kinds of coherence between atoms. The superradiant state
has an enhanced decay rate and a shorter lifetime compared
with a single excited atom, while the subradiant state has an
inhibited decay rate and a longer lifetime. The subradiant
state is thus a very good candidate for preserving quantum
information, and, therefore, the coherence between atoms has
retriggered much interest recently, especially the shift and
spectra of the coherent system [2—4].

The distance between the atoms cannot be neglected in the
study of the energy shift induced by the interaction between
atoms, but it is somewhat difficult to take the distance into
account. The simplest model is the system composed of two
two-level atoms, which was first analytically calculated [5]
with the initial condition in which one atom is in the excited
state and the other in the ground state, where the rotating wave
approximation (RWA) is used due to the basis the authors have
chosen. The authors [5] obtained two peaks in the spectra: one
wide peak from the symmetric state and one narrow peak from
the antisymmetric state. In Ref. [6], the counter-rotating terms
were taken into account by exact integration of the Heisenberg
equation. Later, by using the density matrix and the projection
operator technique, the same answer is recalculated with the
master equation method [7]. Most of the studies thereafter [3,8]
are based on these two approaches in Refs. [6,7].

The Weisskopf-Wigner approach is usually used to investi-
gate the dynamic evolution of probability amplitude. However,
in this approach, one needs to start with the ground state of
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the whole Hamiltonian including the counter-rotating terms,
which makes the calculation very complicated [4]. One of
the objects of this paper is to make the Weisskopf-Wigner
approach work with a simple calculation in the system of two
multilevel atoms by a unitary transformation method [9].

In quantum optics, unitary transformation is a usual
method to simplify the Hamiltonian [10]. Previously, we have
investigated the dynamic evolution of a hydrogen atom with
the unitary transformation method, which can effectively take
into account the counter-rotating terms [9]. The Lamb shift of a
single atom is also calculated with this method [11], where the
same result as the one of Bethe [12] is obtained. In this paper,
we extend this method to two multilevel atoms, and we will
show that the same result as in Refs. [6] and [7] can be obtained
with the Weisskopf-Wigner approach. Therefore, another main
point of this paper is to incorporate the Lamb shift naturally
into the calculation and to investigate the short-time evolution
of the symmetric and antisymmetric states. Compared with
the single-atom case, the symmetric and antisymmetric states
of two atoms feel some modulation of the electromagnetic
density of states (DOS). Besides the well-known modification
of long-time decay rate [1], this will also greatly modify the
short-time evolution.

This paper is prepared as follows: In Sec. II, we give
the unitary transformation of the Hamiltonian of the system
composed of two multilevel atoms and radiation fields. We
also introduce symmetric and antisymmetric states as the
basis and their shifts after the transformation are calculated.
In Sec. III, we derive the general formulas of the dynamic
evolution. In Sec. IV, the long-time evolution is discussed
in detail, including the decay rates, shifts, and spectra. The
classical correspondence of the blue and red shifts in the
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spectra is discussed to help understand the physics. In Sec. V,
we calculate the short-time evolution of the system, and Sec. VI
is a summary.

II. TRANSFORMATION OF THE HAMILTONIAN
AND THE BASIS

We investigate the dynamic evolution of two multilevel
atoms. By adopting the minimal coupling interaction, the total
Hamiltonian of the atoms and electromagnetic (EM) fields can
be written as (2 = 1) [7]

H=Hy+ H;+ H;_q, (D
where
=Y bl +Zwkb b )
j=12 1
Hi= )" gimll);im| j(ble”“’ +hee™™), ()
j=121,mk
1 dD . q® 3(dD . d?® .
Hyy = ; |: i X 1'122( 1'12)] . @
TTEQ }’12 [&D)

Hj is the unperturbed Hamiltonian of the atoms and fields,
H; is the interaction Hamiltonian between the atoms and
transverse fields, and H,_,; is the electrostatic interaction
between the atoms. Here w; is the eigenenergy of the /th
eigenstate |I); of the jth atom, wy is the frequency of the
kth EM mode (with the summation over k including the
two polarizations), and giym = Wimdm(2e0wi V)~ 28 - Wy
(with V, the quantization volume) is the coupling constant
between the kth EM mode with unit polarization vector €y
and the atomic transition between levels |[) and |m) with
transition dipole moment d;,,, = e{l|r|m) = d;;,,{;,,, of which
d;,, (assumed to be real) and ﬁl”ﬂ are the magnitude and
unit vector, respectively. by and blT( are the annihilation and
creation operators of the kth mode. The two atoms are located
atr; and r; and their displacementis rj; = r; — r,. In Eq. (4),
dY) =3, d;ull);;(m| is the dipole moment of the jth atom.
The angle between the dipole (assuming the same direction
for the two atoms) and ry; is 7, as shown in Fig. 1.

In order to take into account the counter-rotating terms
and the self-energy at the beginning because it is always
there, we extend the unitary transformation method devel-
oped in Ref. [9] to the two-atom case under investigation.
Making the unitary transformation and subtracting the self-
energy, HS =eSHe 'S — Eg (Ese = — Zj,m;él Zk |gk;lm|2/
wi|l) ;{l];), where

Z Z gkszkzm )l (bLe™ ™ — be™),  (5)

j=1.21mk

/2 / )
-_r1

FIG. 1. The schematic description of the relation between dipoles
and displacements.
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with &, = W and w;,, = w; — w,,, we obtain
HS = Hy+ (H) — Es) + H] + Hiy + Hy_a, (6)
where
=Y Y el +Zwkb b (7)
j=12 1
H, lg ml
—Ee= ) )
j=12k I,m
2 Wim  »
x <sk.,m — 2t — —sk.,m + 1) 10yl (8)
Hi= 3" Vil (m]; bke"“f + [m) (1] e ™),
j=12kil>m
) . )
8k:im 8k:l'm' Skilm
Hig=— Y =SSOl G — gl mly
Wk
LlU',m,m"k
& |2 (m|pe™ 2, (10)

Hj — E, only contains diagonal energy corrections (nondy-
namic shift) [11] for a single atom. In the transformed basis,
Hj is the interaction Hamiltonian for a single atom due to real

photon emission and Vj,, x = g;m.k%
coupling strength. H;, is the interaction Hamiltonian between
two atoms due to exchange of virtual photons (here called the
quasi-static interaction). Note that in the transformed basis,
H| has a RWA-like form, and H,_, does not change its form
after the transformation because it commutes with S.

We suppose the distance between two atoms is large enough
so that their wave functions have no overlap, and thus we need
not worry about the identical property of the two atoms. The
foregoing derivation of the effective Hamiltonian in Eqgs. (6)—
(10) is valid for all transitions between any levels. We take
the simplest example that the system is initially prepared in
the state which on average has one atom in the first excited
state and the other in the ground state. In this case, the results
can be easily tested because this has been well studied [6].
We expand the wave function on the basis of symmetric and
antisymmetric states:

is the transformed

2

Is) = \/}_(Ie,m 1.0, (11
2

@) = = (le.8) — g€, (12)

where |e,g) means that the first atom is in the first excited state
and the second atom is in the ground state of the atom-field
system [11]. The system is initially prepared as a superposition
of a symmetric and an antisymmetric state with no photons in
vacuum [i.e., |[¥(0)) = C,(0)|a; {Ok}) + Cs(0)|s; {Ok}), where
we denote the vacuum state as |{Ox})]. After some time, it may
decay to the ground state and emit one photon into the kth
mode; that is, the system transits to the state |g,g; 1x). Note
that in the untransformed basis, states like |e,e; 1x) may be
generated by the counter-rotating terms and the calculations
are complicated [4]. As Hy + Hj — E, does not depend on
the position, its contribution to the energies of |s) and |a) is
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also independent of the position; these energies are
(s|Ho + Hy — Esls) = (a|Ho + Hy — Esela)
=w,+w. +EF+EYN, (13)

(8.8|Ho + Hy — E|g,8) = 2w, +2E}°, (14)
where
|gwiml? (o Dim (>
EM = Z | Skum — 28km — —&um T 1),
mAk Pk Wk
(I,m =e,g). (15)

Note that El“01 is the nondynamic shift for the single-atom state
|[) [11]. The nondynamic shifts for the states |a) and |s) are the
same (one from the excited state and the other from the ground
state), equal to EM = EM = g E;,‘d. In the symmetric
and antisymmetric basis, the electrostatic Hamiltonian H;_4
is diagonal:

(s|Hq-qls) = —(alHq-qla) = Eq—a
o [dgy 43 o) q

4meg rd )
(16)
(s|Hq-ala) = (s|Hq—qla) = 0. (17)
In addition, the transformed interatomic Hamiltonian H;, is
also diagonal:

(s|Hials) = —(alHjqla) = Eiq
2|gkee |*Erce )
=y Mol B g gene g
k Wk
(s|Hiqla) = (s|Hiqla) = 0. (19)
Equations (16) and (18) tell us that due to the electrostatic

dipole-dipole interaction H;_, and the quasi-static interaction
H;,, the energies of |a) and |s) split with opposite shifts,

AE® = —AES® = E;_q + Ei,, (20)

which are dependent on r; and r,. The interaction Hamiltonian
H 1’ has the matrix elements

/ 1 —ikr —ik-ry
(g’g;1k|H[|S;{0k}>=ﬁveg,k(e +e ) 21

, 1
(8,85 Ik|H;la; {Ok}) = ﬁveg,k(e

We would like to emphasize that the second-order effective
interaction Hamiltonian between |s; {Ox}) and |a; {Ok}) is zero
because

> (as (O H lg.g5 1) (2,83 1l Hjls; {Ok)
k

1 . .
= 32 WeaPLeM e — ko =0, (23)
k

7ik-l‘1

— ek (22)

where the summation of the second term in the square brackets,
e~k @™=T2) ig the same as the first one if we change the dummy
index from k to —Kk. Therefore, there are no interference effects
between the states |s; {Ox}) and |a; {Ok}).
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III. DYNAMIC EVOLUTION

We take all the Hamiltonians except H; as the unperturbed
Hamiltonian, because they only have diagonal terms to the
order of d?. In the interaction picture, we suppose the wave
function at time ¢ as

W) = Ca(®)la; Ok) + Cs(0)]s; 0k) + Z Ci(®)lg.g: 1k)-
k
(24)

The Schrodinger equation iW(r) = H'W(t) with H =
i+ Hi= Bt Hi V)t 1 giCHot i B Hut VU il ds

iCa(t) =) & AR a: {0} Hylg, g5 1) Cu(0),

k
(25)
iCy(1) =) &t AT (s {0} | H g, g5 1) Ci(),
k
(26)
iCy(r) = e @t AES =00 (0 o0 14| Hlas; {Ok}) Cu(2)
e @HAET =0 (g o 1y | H) |55 {0} Cs (1),
27)

where @), = w, + E}* — w, — E}" is the transformed tran-
sition frequency including the nondynamic shift. Integrating
Eq. (27) and then substituting it in Eq. (25), we get

Calt) = — /O dr'y " lg.g: 1l Hjla: (0P
k

PN sta__ L
Xet(weg+AE” i )(t t)Ca(t/)

t
— [ Y O .1 ) s el 53 ()
0 K
x ei(w;g+AEz‘afwk)te*i(w;ngAE;“fwk)t’Cs(t/)' (28)

The second term in Eq. (28) is zero because of Eq. (23). [Note
that the factor of e~ is the same for k and —k, and has no
effect on the result of the summation zero in Eq. (23).] An
integral differential equation for C4(¢) can be obtained in a
similar way.

IV. DECAY RATES, LAMB SHIFT, AND EMISSION
SPECTRUM IN THE LONG-TIME LIMIT

We first investigate the case in the long-time limit, # >
1/ y), where 1/ Ty is the lifetime of the antisymmetric
(symmetric) state. Because of the wide broadness of the
vacuum spectrum, the correlation time is very short. We can
approximate that the system has no memory, and replace C, ()
with C,(¢) in Eq. (28) (the Markov approximation). Under the
Weisskopf-Wigner approximation, extending the lower bound
of time integration to —oo would not introduce much error:

Calt) & —Co(0) / dr' Y g8 1l Hjla: (0P
A

x '@t AESo=0) — _C (1) (7 + i8u> , (29
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in which the decay rate for the antisymmetric state is

T =21 Y (8.8 Il Hjla: {078 (w), + AES™ — o)
k

= Feg[l — D(x12,m)], (30)
with
3 (si 1 — 3cos? i
D(x,n) = = MY Gin? n+ R [cosx - smx] ,
2| x x2 X
(3D
and the dynamic shift is
85 I Hilas (0))
5, = p 3 6.8 ks (0D )

/ sta __
" W, + AES o)

In these formulas, I,y = 3::;:3 is the single-atom decay rate
from |e) to |g), and g stands for principle value. In Eq. (29),
we have used

! A 1
/ dr'e™ ") = g8(x) +igp—. (33)
_ X

[o.¢]

Equation (30) is calculated in detail in the Appendix. Note
that the decay rate of the antisymmetric state is modified by
the function of D(x2,n) with x1, = we.r(2/c and n the angle
between the dipole moment and the vector r, — ry, as shown
in Fig. 1. From Eq. (29), the probability amplitude of state
la; {O0k}) is

Cot) = Cy(0)e™ (3 30 (34)
Similarly, we can get the probability amplitude of |s; {Ok}),

Ci(1) = C,(0)™ G+, (35)

in which the decay rate and the dynamic shift for the symmetric
state are

Ty =27 ) [(g.g; Ikl Hjls; {0k}) P8 (), + AE™ — ax)
k

= Feg[l + D(XIZ’n)]a (36)

1(g.&; Lkl H}ls; {O})
5, = . 37
@Z w;g ¥+ AEssta — (37)

k

Equations (34) and (35) show that the symmetric and antisym-
metric states decay exponentially with their own decay rates
I'y.s and dynamic shifts 6, ;.

A. The decay rates

The modification of the decay rates is completely de-
termined by D(x,n), which is a dimensionless function of
the renormalized interatomic distance x1» = w,,r(2/c and the
angle 1. In Fig. 2, we plot the functions D(xj,,n) for n =0
and /2. It reaches its maximum value of 1 as x — 0 (i.e.,
when the atomic distance tends to zero); the decay rate of
the symmetric state will be double the decay rate of a single
atom, while the decay rate of the antisymmetric state tends to
zero. Note that D(x,n) may become negative as the distance
increases [see D(x,m/2) in Fig. 2], which tells us that the
antisymmetric state may decay faster than the symmetric state
[see Egs. (30) and (36)]. Therefore, the symmetric state is
not necessarily superradiant and the antisymmetric state is not
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P(X,O)l
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FIG. 2. (Color online) D(x,n) and P(x,n) for n = 0 and /2.

necessarily subradiant. The classical correspondence for this
phenomenon is quite clear: The atoms are regarded as dipole
antennas. When the distance between the atoms is much shorter
than the wavelength, and if they radiate in phase (symmetric
state), the radiation fields interference constructively, and thus
energy is emitted faster. However, if the distance is comparable
with or even larger than the wavelength, the out-of-phase
configuration (antisymmetric state), rather than the in-phase
configuration, may lead to constructive interference and thus
decays faster. Because the interference patterns, as well as the
emitting efficiency, are also dependent of the angle n, it is
natural that the decay rate is also dependent of this angle, as
shown in Fig. 3(a).

B. The Lamb shift
By combining Egs. (17), (16), (18), and (32), the total
energy shift of the antisymmetric state is

M, = EM+ AES + 8, = EM — (Eq_q + Eio) + 84, (38)

which is composed of three contributions, the nondynamic
shift E}¢ = EXY 4+ EYY, the static nondynamic shift AE}®
(including the electrostatic and quasi-static shifts), and the
dynamic shift §,. The result of this summation is (see the
Appendix)

M, = EM+ AE" +6,

r
= (B + Do) + B — S5 Plxim)

r
= A+ AP = —EP (i), (39)
where AL*™ (= E}Y 4 A,,) and AL™ are the Lamb shifts of
the excited and ground state of a single atom, respectively, A,
is the dynamic shift of the excited state of a single atom, and
P(x13,7n) is the dimensionless function

3 .
P(x,n) = 7 [— cos x sin“ n

sinx cosx
+ [

> ) (1 — 3 cos n)] . (40)

The physics of Eq. (39) is clear. The first two terms are due to
the components (|e) and |g)) of the state |a) and the last term
is dependent of r;, due to the direct dipole interaction and the
virtual and real photon exchange between the two atoms. By
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FIG. 3. (Color online) (a) D(x,n)
and (b) P(x,n) forx = 0.5 and 1.0.
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combining Eqgs. (13), (16), (18), and (37), the total energy shift
of the symmetric state is

M, = EM+ AES® + 8, = EM + (Eq_q + Eig) + 6

Ie
= A+ AP+ ZE P, (41)
The energy difference between these two states is
Hs - na = FegP(XIZvr/)v (42)

which tells us that the splitting between the symmetric and
antisymmetric states is determined by P(x}2,7).

In Fig. 2, we plot P(x,n) as a function of distance for
n =0 and 7/2. It is shown that P(x,n) is divergent with
1/x. This is because the interaction energy is divergent as
the distance between atoms gets to zero. In the limit x — O,
P(x,n) tends to 400 for n = 0 while it tends to —oo for n =
7 /2. This means that the dipole radiation fields do not have
spherical symmetry and the interaction strength and energy
are n-dependent. From the classical point of view, this comes
from the fact that the interaction energies of the dipoles have
different signs for different configurations, which will be more
clearly discussed for the spectrum in Fig. 6. We also present
this angle dependence in Fig. 3(b) for two distances x = 0.5
and 1.0.

C. The emission spectra

If we substitute Eqgs. (34) and (35) into the integration of
Eq. (27), the probability amplitude for photon state | 1) in the
long-time limit is

2 .
Cx(00) = TVgg,ke_lk.r]
Ca(0)(1 — e™™2)  Cy(0)(1 4 ™™
x[ O)(1 —e )+ O +e )] 3)
X, Xs
with
Iﬂeg .
X4 =51<+TP(X12,71)+1F(1, (44)
L, .
XS:8k_TgP(x12,77)+lFSs (45)

where the detuning is §; = w; — wjg and a)jg = wég + Ay =
(we + Ale‘amb) — (wg + Algjamb) is the single atomic transition
frequency including the Lamb shift [11]. Note that the
positions of the two peaks in Eq. (44) and (45) are at
W = Wy F %P(xu,n), respectively, which is separated by
I'eg P(x12,n) due to the exchange of photons between the

two atoms. This separation increases with the decrease of the
distance ry,.
The electric field at position r and time ¢ (7 = 1) is

(OHED (1) Y~ Ci(00) /1)
k

1 A —iwt+ik-
= ({Ou}| mzx/_wkakeke HHETS " Cr(00)] k)
k k

1 o .
XN — dore " B(r,wy), (46)
21 0
where
V20,8 x (deg x B) ., [ 20,,0%
B(r’wk) = - ; 7 e -
4imeoc?r, Wp + Weg
C,.(0)(1 — el cosa) N C,(0)(1 + elxn2 cosa)
X .
XA XS
(47)

In Egs. (46) and (47), we have only retained the outward wave
with the phase factor e/¥i=' in which r; =r —r; = #r]
denotes the displacement from the ith atoms to the observation
point, and we have also neglected higher order terms of
oy Ariz) because they decay to zero rapidly in the far field.
We have made the approximation r| & r} except in the expo-
nential terms e’K'27"1) & ¢I¥25¢ ith x|y = W, [Ty —11]/c
and « being the angle between ri; and r|. The relations
between the detector and the two atoms are schematically
plotted in Fig. 4.

2w
The factor —=
Wi+,

74
cay to the ground state of the atom-field system rather than the
direct product of the bare-atom ground state and vacuum state.
However, the spectrum is centralized near the single-atom

comes from the fact that the atom will de-

detector

FIG. 4. The relation between the detector and two atoms.
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FIG. 5. The average spectrum (in arbitrary units) for (a) n = 0 and (b) n = 7/2; x12 = 0.5 (solid), 0.7 (short dash), 1.0 (dash dot), and 5.0

(dash).

transition frequency where w; ~ w,,. Therefore, we can make
2w,,wi
eg

a very good approximation, oo
e

A w,g. The spectrum is

Ca (O)(] _ eiX]Q cosa)
X4
2

S(wg,x12,0) o< [B(r,ap)|* o ’

CSO 1 ix1p COS
n O)(1+e )
Xs

(48)

which has two peaks at w; = a)ig F % P(x12,n), and there are
interferences between the spectra of |a) and |s). The spectra
also depend on the observation point characterized by «. We
average over solid angles:

Sav(@k,x12)
2 T
X —— d(p/ sinado
4 Jo 0
Ca(0)(1 — e*2eosey  C(0)(1 + ef*neosery |
X
A S
_ AGOP (1 ~ sinx12> 4 ACOF (1 . sinxu) |
[Al X12 S| P

(49)

Note that although there is interference (constructive or
destructive) between the spectra of the symmetric and anti-
symmetric states for any particular angle « [see the two terms
in Eq. (48)], the average of this interference effect is zero, as
shown in (49). If we initially prepare one of the atoms on the
excited state and the other on the ground state, that is,

1 1

W) = le,g; Ok) ﬁla,Ok) + 7
we have C,(0) = C;(0) = %2 In Fig. 5, we plot the average
spectra for (a) n =0 and (b) 0.57. When the atoms are
placed very near each other, the interaction between the two
atoms splits the spectrum into two peaks, one due to the
symmetric state and the other due to the antisymmetric state.
As the distance increases, the two peaks merge into one
peak and finally, the spectrum tends to be the single-atom
Lorentzian peak. Moreover, in Fig. 5(a), the symmetric state
(wide peak) is red-shifted and the antisymmetric state (narrow
peak) is blue-shifted, while in Fig. 5(b), the symmetric state
is blue-shifted and the antisymmetric state is red-shifted.

[s;0x),  (50)

This means that the symmetric state has lower energy for
n = 0 but higher energy for n = 0.57. We can also see this
n dependence of the shifts from the P(x,n) in Fig. 3(b),
where P(x,n = 0) is negative and P(x,n = m/2) is positive.
The classical correspondence of this angular dependence
is easy to understand. We plot the configurations for in-
phase and out-of-phase dipole antennas in Fig. 6. If n =0,
the two dipoles in the symmetric state [see Fig. 6(a)] oscillate
in phase. In this configuration they obviously have attractive
interaction. In contrast, the two dipoles in the antisymmetric
state [see Fig. 6(b)] oscillate completely out of phase and have
a repulsive interaction. This means that the symmetric state
has lower energy (red shift) and the antisymmetric state has
higher energy (blue shift), as shown in Fig. 5(a). If n = 7 /2,
the symmetric state [see Fig. 6(c)] has a repulsive interaction
with higher energy and the antisymmetric state [see Fig. 6(d)]
has an attractive interaction with lower energy, and thus the
symmetric state is blue-shifted and the antisymmetric state
is red-shifted, as shown in Fig. 5(b). In Fig. 7, we plot the
angular dependence of the spectrum for fixed atomic distance.
It is clear that there is a level crossing for these two states as
n changes, which can also be seen from Fig. 3(b), where the
sign of P(0.5,n) changes with 7.

Symmetric state Anti-symmetric state
F 3 ==
+
—_ A J
n=0 - +
A + + A
(a) (b)
+ + - B
n=m/2
- - - +
(c) (d)

FIG. 6. The classical configurations for symmetric states [(a) and
(c)] and antisymmetric states [(b) and (d)] with n = 0 [(a) and (b)]
and 7 /2 [(c) and (d)].
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FIG. 7. The average spectra for x;; = 0.5 with n = 0.27 (solid),
0.37 (short dash), and 0.47r (dash dot).

In some special observation directions, we may observe
Fano spectra. Here we suppose both C,(0) and C,(0) are real;
if the observation angle «, satisfies

X12 COS Oy
tan ——
2
_ C(0) —P(xi2,m) + V P2(x12,1) + D*(x12,m) — 1
Ca(0) 1+ D(x12,1m) ’
(5D
we may observe dark points at
Ie

5 = F5 VP ) + D2 — 1. (52)

In Fig. 8, we plot the spectrum with n = 7/2, « = 1.73, and
x12 = 1, which satisfies Eq. (51); we can see a completely dark
point due to the interference between the states |e,g; Ox) and
|g,e; 0x) [13]. However, there are differences between our re-
sults and the results of Ref. [13], where a three-level atom with
two parallel electric dipole transitions is investigated and the
dark point in the spectrum can be observed from all directions.
The three levels in our system belong to two atoms with a finite
distance between them. The distance displays decoherence,
making the quantum interference strength smaller than one.
Moreover, spherical symmetry is broken, which is replaced by
cylindrical symmetry, and the spectra are o dependent. Only
in some particular observation directions (¢;) can a complete
dark point be observed for some particular frequency. This
dark point comes not only from the quantum interference of the

S(6x)
5 -

-4 =2 0 2 4 Ok

FIG. 8. (Color online) Fano spectrum (in arbitrary units) with a
dark point with n = /2, x;, = 1, and o« = 1.73.
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FIG. 9. (Color online) The time-dependent decay rates normal-
ized with their respective long-time limits for the antisymmetric state.
The red solid curve is for the case of a single atom, the decay rate of
the excited state, I'g(¢)/ I'y.

two atomic transitions but also from the classical interference
between two radiating dipoles.

V. SHORT-TIME EVOLUTION

Now, we consider the time evolution of the decay rates,
'y s(t). In our previous studies for the case of a single
atom, the decay rate shows the quantum Zeno (QZE)
and quantum anti-Zeno effect (QAZE) in free vacuum
[9] as well as in modified vacuum [11]. The modifica-
tion of the density of states can greatly modulate the
short-time behavior of the system. Here, we will extend
the discussion to the two-atom system. Because the nondy-
namic shift and electrostatic shift are very small compared
with the transition frequency, we neglect these shifts in the
differential equations of Eq. (28):

Ca(1)
1
== [ dr Y Hegs s 0 PG )
0 k
r o0 t . )
%_Ca(o) Eg/ dka(wk,xlz,n)/ dt,e’(wt’gfwk)(f*t)’
2w Jo 0
(53)
where

4weqwy Wy
G(l k) k] = 1 - D > 54
(wr,x12,1) —(a)eg +0)k)2 |: (wegxlz 77)] (54)

is the effective density of states for the antisymmetric state.
In Eq. (53), we have approximated that the change of the
probability amplitude is negligible for the very short time scale
we are interested in, which is quite true for the weak coupling
strength between atoms and the vacuum fields [14]. From
Eq. (53), we can get the effective decay rate defined as

|Ca()? = |Co(0)2e ", (55)

The explicit expression of the effective decay rate is [9]

T [ 45in?[(® — weo )t /2]
IMOES— f doGq(®,x12,1) 2 /
27 Jo (@ — weg)*t

(56)
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FIG. 10. (Color online) The time-
dependent decay rate of the antisymmetric
state. (a) n =0 and (b) n = 7 /2, with
x12 = 0.5 (dash), 2.0 (dot), and 4.0 (dash
dot). The red solid curve is for the single-
atom decay rate.

In Fig. 9, we plot the time-dependent decay rates normalized
with their long-time limit in the free vacuum, I',(¢)/ ', (c0). It
is clear that we have strong QAZE for the antisymmetric state,
if the distances between two atoms are small compared with the
transition wavelength. In contrast, a single atom only has QZE
(red solid line). In Fig. 10, we plot the evolution of the decay
rates for various distances with n = 0 and n = /2. It seems
that the QAZE disappears as the distance increases, because the
quantum interference effect between the two atomic transitions
decreases quickly as the distance increases. In a previous paper
[11], we have demonstrated that the reduction of the DOS at the
transition frequency may induce the QAZE. Here, the QAZE
also comes from the reduction of the effective DOS of the
antisymmetric state [Eq. (54)] with short interatomic distance,
however, not by the modification of the vacuum, but by the
interference between two atoms.

We can also get the time-dependent decay rate for the
symmetric state:

4 sin’*[(w — Weg)t /2]
(0 — weg)*t

)

|
L) = — dwGs(w,x12,1)
27T 0

(57)
where

4weg i

w,
— |:1+D< kxlz,n>].
(weg +Cl)k) Weg

(58)

Gy(wg,x12,m) =

In Fig. 11, we plot I's(¢) under various conditions. However,
in contrast to the antisymmetric state, the QAZE appears to be
very weak at x;p = 4.0 and n = 7 /2. This also comes from a
small reduction of the effective DOS, because, at this distance,
the function D(4.0,7/2) < 0 (see Fig. 2).

VI. SUMMARY

In this paper, we have extended the unitary transformation
method to a system of two multilevel atoms, where the self-
energy is subtracted from the Hamiltonian at the beginning.
The Lamb shift, which appears naturally in our calculations,
can be classified into nondynamic shifts and dynamic shifts.
Both of them include the contributions from a single atom and
between the two atoms (the interatomic shifts, which do not
exist in the one-atom case). In the long-time limit, the spectra
are investigated. The peaks and their blue and red shifts have
clear classical correspondence. We also investigate the short-
time evolution of the system and the QZE and AQZE are found.
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APPENDIX: SHIFT AND DECAY RATE OF THE
SYMMETRIC AND ANTISYMMETRIC STATES

To calculate the total shift of antisymmetric state in Eq. (44),
we first evaluate the shift brought by the transverse field,

I(g.&; 1x|Hjla; {Ou})|*
Wy, — Eiqg — Eq—a —

—Eiq+ 8. = (a|Hala) + 9 Y
k

2|gk'eg |2‘§k'eg i
~ ; 82— & ok m—r2)
; e =2 = )

1 1 . )
_ V 2 7[k-l‘| _ 7lk~l‘z 2
+ & Ek (Ueg_wk2| eg,k| (e e )|

- FIG. 11. (Color online) The time-
dependent decay rate of the symmetric

- state. (a) n =0 and (b) n = 7/2 with
x1, = 0.5 (dash), 2.0 (dot), and 4.0 (dash

- dot). The red solid curve is for the single-
atom decay rate.
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A2, w2, [ 2wk + 2weg)n
g = / 8 = D(krip,n)dwy
0

6m2gC3 (wr + weg)?
2 2 . 2
degweg / o 4weg
61260c3” Jo  Weg — Wk (W + Weg)?

x [1 = D(kriz,m]dwy

d2 602 oo 20)2
_ A, — e / 2% Dkryy.mdax,
" 67‘[280C3p o o — z (kri2,mdwy
(A1)
where
d? w? o0 4w?
M= gioto [ e (A
67280 0 Weg — Wi (W + Weg)

is the dynamic shift of a single atom. The summation of
nondynamic shift £ and dynamic shift A, gives the total
Lamb shift of the excited state |e) [11]. We have neglected
the various shifts in the principle integration because they are
all tiny compared with the transition frequency, and we have
changed the summation over k into an integration [7],

, d?,w? 00
P gy > 5 [T oDradon, (43
" 6m%epc’ Jo

where D(x,n) is defined in Eq. (31). The integration gives

d o’ © 20?2
e / 5 D(kriz,mdwy
6 &oC 0 a)eg — wy
r 3 . sinx;y 1 —cosxy
=% _~ | —cosxppsin’n + - 3
2 2x12 X12 X1

x (1 — 3 cos? n):|

PHYSICAL REVIEW A 81, 043819 (2010)

r, ol 3 1
= L Py — 4= (1 —3cos’n)
2 6mepc’ 2 (wengZ/C)
Ueg dezg 2
= —P(x12,n) — ————(1 — 3 cos
> (x12,m) 47t80r132( n)
|
= TP(XIan) —Eqa. (A4)
2
where P(x»,n) is given in Eq. (40) and E;_4 = 47;2”; ~(1 —
iz

3 cos? i) can be directly obtained from Eq. (16). It is clear that
a part of the shift induced by the transverse fields cancels the
static dipole-dipole interaction energy. Combining Eq. (Al)
and (A4), we get the terms in Eq. (39):
AEZta +0, =—Eis —Eq_q+64
= (_Eia + Sa) —E4 4

= A, — &P(x y—E —E
= Qg ) 12,1 d—d d—d

I,
= D¢ — TgP(XIZ»U)- (AS)

The corresponding quantity for the symmetric state in Eq. (41)
can be derived in a similar way. The decay rate of the
antisymmetric state in Eq. (30) is

Fa =27 ) [(g.8: Il Hjla: {0) *8@,, — Eia — Eg-a — 1)
k

1 . )
221 Yy S IVegnPleT™T — &™) P8(weg — )
k

deaes [ 400 1 d
o 37T80C3/O (a)k +weg)2[ - ( rlZ»n)] (a)eg _Q)k) Wk

= e[l = D(x12.m)]. (A6)

Equation (36) can be obtained in the same way.
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