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Bichromatic emission and multimode dynamics in bidirectional ring lasers
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The multimode dynamics of a two-level ring laser is explored numerically using a bidirectional traveling wave
model retaining the spatial effects due to the presence of counter-propagating electric fields in the population
inversion. Dynamical regimes where the emission in each direction occurs at different wavelengths are studied.
Mode-locked unidirectional emission for large gain bandwidth and relatively small detuning is reported.
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I. INTRODUCTION

Since their inception, ring lasers (RLs) have attracted the
interest of both theoretical and experimental research. The
design of the RL cavity has a high degree of rotational
symmetry with very low—ideally vanishing—backscattering
of waves propagating in one direction and the opposite.
Moreover, it opens the possibility of tailoring the reversibility
of the optical paths and impose unidirectional lasing by
introducing extra losses to one of the propagation directions.
This allows to more efficiently extract power from these
devices, hence the unidirectional RL design is at the heart
of many high-power solid state and fiber lasers [1–3], which
are commonplace in many applications.

From the theoretical point of view, the reversibility of the
optical path and the absence of reflectivity allow for two
degenerate counter-propagating electric fields in the same gain
medium. This property—which is not exclusive of RLs [4],
but common to all systems possessing rotational symmetry as,
for example, micro-disk lasers [5,6]—has important potential
applications. A possible state of bidirectional emission has
immediate potential applications for the development of laser
gyroscopes [7], but the strong competition for the gain
among these counter-propagating states should lead to bistable
unidirectional operation [8], which can also be exploited for
all-optical signal processing and storage [9]. However, the
first systematic formulation of the theory of RLs by Lamb
et al. [10–12] already evidenced that symmetry issues and
even minute intra-cavity reflections have a major impact
on the modal structure in RLs: pure counter-propagating
traveling waves are ideal states only allowed in closed-loop
optical cavities without any localized reflection; localized
reflections destroy the rotational invariance of the RL, and
the cavity modes become nondegenerate standing waves.
These effects, together with the nonlinear interaction of the
counter-propagating waves mediated by the active medium,
lead to a large variety of operating regimes and dynamics
that are profoundly different from those of Fabry-Pérot lasers
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[13–17] and that have posed problems for the development
of practical devices (specially semiconductor-based) for the
above applications in spite of the tremendous advances
achieved in the processing and technology [18–25].

The above phenomena have pointed out the necessity of
proper models for RLs that are able to describe the different
regimes of operation of these devices. RLs of different types
are often modeled by rate equations (REs) [14,26–28]. These
models, based on a χ3 description of the polarization induced
in the active medium, usually describe the temporal evolution
of the amplitude (or power) of the modes of the electric field
and the material gain without taking into account the spatial
effects explicitly. Instead—since the spatially varying field
profiles induce inhomogeneities in the carrier density that
couple the field modes—phenomenological mode-coupling
coefficients are used to describe different processes of modal
competition. The main advantage of such models is that they
provide an intuitive picture of the mechanisms underlying
mode dynamics, and they have allowed one to successfully
fit the emission spectra under different operation conditions,
hereby permitting one to determine several important device
parameters. Nevertheless, one of the main difficulties encoun-
tered in this type of model is the large number of parameters
required to describe the different nonlinear mechanisms of
modal coupling—such as carrier density pulsations, spatial
and spectral hole burning, and carrier heating. In addition, one
has to determine a priori which modes have to be accounted
for in the modeling: increasing the number of modes allows
one in principle to improve the dynamical description of the
system, but at the same time more mode-coupling parameters
have to be determined.

A natural way to take into account the spatial effects
and describe multimode dynamics is to use a traveling wave
model (TWM). A TWM is a semiclassical description of the
system that allows one to describe any kind of resonator
by including the appropriate boundary conditions, and it
has already been used for Fabry-Pérot lasers [29,30], for
unidirectional RLs [31], and even for bidirectional RLs [32].
The TWM offers a comprehensive model of the RL, but adds
a bigger computational cost, because RE models are based in
systems of ordinary differential equations (ODEs) and a TWM
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description is based in systems of partial differential equations
(PDEs). In this work, we study the multimode dynamics of RLs
by means of a bidirectional TWM that preserves the spatial
variations of the field amplitudes and that explicitly considers
the dominant contribution of the spatial grating in the gain,
which are often disregarded. Since our goal is to formulate
a description of the RL allowing for bidirectional emission
and mode competition that retains the essential features of the
dynamics, we consider a simple two-level active medium. In
this case, the interaction of the active medium and the optical
field is well known and its description in time domain poses
no additional problems as would be the case, for example,
for semiconductor systems. In addition, although a complete
description of the system requires the full three-dimensional
wave equation to describe the cavity field exactly, our approach
only takes into account the axial direction of propagation
by assuming a single-transverse mode be supported by
the cavity.

The paper is organized as follows. In Sec. II, the TWM
is summarized, with the detailed derivation of the model
and its numerical implementation in the appendices. The
laser threshold and modes are analytically or semianalytically
determined. In Sec. III, we test the correctness and accuracy
of the numerical algorithm used to implement the TWM by
comparing the results obtained in the single-mode limit with
those in [33]. In Sec. IV, the multimode dynamics of the system
are discussed, focusing on two cases: moderate and large gain
bandwidth. We find dynamical regimes where the emission in
each direction is almost single mode, but each direction lases
at a different wavelength. This regime might have practical
relevance in the development of gyroscopes, since the two
directions are not frequency locked. We also find regimes of
mode-locked unidirectional emission for large gain bandwidth
and relatively small detuning. Finally, the conclusions are
presented in Sec. V.

II. THE MODEL

In this section we briefly summarize the traveling wave
model (TWM) considered for the ring laser. The details of its
derivation can be found in Appendix A.

We consider that the electric field is quasimonochromatic
and it is decomposed into forward (+) and backward (−)
waves propagating in opposite directions. The active medium
is assumed to be composed by homogeneously broadened
two-level atoms. We also consider a quasiresonant light matter
interaction in the rotating wave approximation (RWA). The
population inversion density, D, is decomposed in different
spatial harmonics of a fundamental modulation at half the opti-
cal wavelength and, in the resulting hierarchy of contributions,
we retain the first-order term.

With these assumptions, the dimensionless equations that
define the TWM read

±∂A±
∂s

+ ∂A±
∂τ

= B± − αA±, (1)

1

γ

∂B±
∂τ

= −(1 + iδ̃)B± + g(D0A± + D±2A∓)

+
√

βD0ξ±(s,τ ), (2)

FIG. 1. (Color online) Schematic representation of the ring
laser boundary conditions where t± and r± are the reflectivity
and transmissivity for the counter-propagating fields A+ and A−,
respectively.

1

ε

∂D0

∂τ
= J − D0 + 


∂2D0

∂s2
− (A+B∗

+ + A−B∗
− + c.c.),

(3)
1

η

∂D±2

∂τ
= −D±2 − ε

η
(A±B∗

∓ + A∗
∓B±), (4)

where A± are the slowly varying components of the counter-
propagating electric fields, B± are their respective polariza-
tions, D0 is the quasihomogeneous inversion density, and D±2

are the spatially dependent contributions to the grating in the
population inversion density, α are the internal losses, δ̃ is
the detuning, ε and η are the decay times for D0 and D±2,
respectively, and γ determines the spectral width of the gain
spectrum. For more details see Appendix A.

Equations (1)–(4) must be completed with the boundary
conditions for the electric fields. We consider the most general
case depicted in Fig. 1, hence the boundary conditions read

A+(0) = t+A+(1)eiγ ω̃0 + r−A−(0),
(5)

A−(1)e−iγ ω̃0 = t−A−(0) + r+A+(1)eiγ ω̃0 ,

where r± and t± denote the reflectivity and transmissivity of
the forward and backward waves. These coefficients can in
general be different for the two directions in order to describe
the effect of nonreciprocal elements as an optical isolator. We
note, moreover, that |t±|2 + |r±|2 = 1 − ε±, where ε± are the
losses at the point coupler.

These general boundary conditions reduce to those for an
ideal ring if r± = 0 and t± �= 0, and to those for a Fabry-Pérot
cavity if r± �= 0 and t± = 0. When r+ = r− and t+ = t− the
device is symmetrical for the two propagation directions.

In the following we shall take γ ω̃0 = 2πm where m =
0, ± 1, ± 2 . . . then eiγ ω̃0 = 1 without loss of generality: it
simply means that we take as the carrier frequency ω0 that is
corresponding to one of the modes of the cavity. Moreover, we
shall restrict ourselves to symmetric devices unless explicitly
noted.

043817-2



BICHROMATIC EMISSION AND MULTIMODE DYNAMICS . . . PHYSICAL REVIEW A 81, 043817 (2010)

A. Laser threshold

The lasing threshold of the system can be readily deter-
mined by performing the linear stability analysis (LSA) around
the off solution (i.e., Ast

± = 0, Bst
± = 0, Dst

±2 = 0, and Dst
0 = J .

We linearize (1)–(4) around this solution by introducing the
small perturbations,

A± = εa±(s,τ ), B± = εb±(s,τ ),
(6)

D0 = J + ε2d0(s,τ ), D±2 = ε2d±2(s,τ ).

Where ε is infinitesimally small, then retaining the terms to
first order in ε and assuming that the perturbations evolve in
time as

a±(s,τ ) = ã±(s)eλτ , b±(s,τ ) = b̃±(s)eλτ , (7)

we can obtain the eigenvalues λm (m = 0, ± 1, ± 2, . . .)
whose real part determines whether or not the mode m is stable
and whose imaginary part determines the modal frequency.
The modal threshold is thus given by the current value J th

m

such that Re(λm) = 0. In our case, we obtain two different
branches of solutions (σ = ±1) whose modal thresholds read

J th
m (σ ) = (γ δ̃ − 2πm)2

(
α + ln 1

t+σr

)
g
(
α + γ + ln 1

t+σr

)2 + 1

g
ln

1

t + σr
, (8)

and which have modal frequencies,

�m(σ ) = 2πm + δ̃
(
α + ln 1

t+σr

)
1 + 1

γ

(
α + ln 1

t+σr

) . (9)

The thresholds for the two branches of solutions are shown
in Fig. 2 for typical ring laser parameters. For the small modal
index, the Lorentzian can be approximated by a parabola,
which explains the shape of Fig. 2, and the minimum threshold
corresponds to the gain peak. The two branches of solutions
arise from the nonvanishing reflectivity r: when r = 0, the
modes are pure forward and backward waves which are
degenerate; however, for r �= 0 the rotational invariance of
the system is broken and the modes are given by combinations
of the forward and backward waves that lift this degeneracy
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FIG. 2. (Color online) J th
m versus m. δ̃ = 0.1, g = 1, t = 0.5,

r = 0.05, α = 0, and γ = 100. In this case, the lowest threshold
corresponds to mode m = 2 with J th

2 = 0.5981 for σ = +1.

in both frequency and threshold gain. For r → 0, Eqs. (8) and
(9) read

J th
m (σ ) = (γ δ̃ − 2πm)2(α − ln t)

g(α + γ − ln t)2
− 1

g
ln t

+ σ (γ δ̃ − 2πm)2(α − γ − ln t)

gt(α + γ − ln t)3
r + O(r)2, (10)

and

�m(σ ) = γ [2πm + δ̃(α − ln t)]

α + γ − ln t

+ γ σ (2πm − γ δ)

t(α + γ − ln t)2
r + O(r)2. (11)

Such an effect has been experimentally observed in semi-
conductor ring lasers [34] where the residual reflectivities in
the laser cavity induced modal doublets that correspond to the
mode-pulling formula (9). The threshold difference for these
doublets is roughly proportional to r for small reflectivities
hence the gain difference can be hardly noticeable specially
for appreciable internal losses α.

B. Monochromatic solutions

The nontrivial monochromatic solutions read

A± = Ast
±e−iω̃τ , B± = Bst

±e−iω̃τ ,
(12)

D0 = Dst
0 , D±2 = Dst

±2,

where ω̃ is the lasing frequency. We use (12) in (1)–(4) finding

±∂Ast
±

∂s
+ (α − iω̃)Ast

± = Bst
±, (13)

Bst
± = g = (

Dst
0 Ast

± + Dst
±2A

st
∓
)

1 + i (̃δ − ω̃/γ )
, (14)

Dst
0 = J − (Ast

+Bst∗
+ + Ast

−Bst∗
− + c.c.), (15)

Dst
±2 = − ε

η
(Ast

±Bst∗
∓ + Ast∗

∓ Bst
±). (16)

Analytical solutions for these equations can be found only
in the simplest situation r = 0 and α = 0. In this limit, the two
counter-propagating waves are degenerate and a bidirectional
solution also exists. However, the bidirectional solution is
unstable [8,35]. We thus focus on the unidirectional solutions
Ast

+ �= 0 and Ast
− = 0 without loss of generality (the counter-

propagating solution can be directly obtained by replacing +
with − in the final results). Using (14) in (13) and solving the
resulting differential equation, we find

Ast
+(s) = Ast

+(0)eiω̃s+ g

1+i (̃δ−ω̃/γ )
G(s)

, (17)

where

G(s) =
∫ s

0
Dst

0 (s ′)ds ′. (18)

We note that Dst
0 = dG(s)

ds
, hence using (14) and (17) in (15)

yields

dG

ds
= J

1 + 2g

1+(̃δ−ω̃/γ )2 |A+(0)|2e
2g

1+(̃δ−ω̃/γ )2
G(s)

. (19)
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FIG. 3. (Color online) Re[Ast
+m(s)] in the unidirectional solution.

δ̃ = 0.1, g = 1, t = 0.5, γ = 100, and J = 1.5.

Clearly, G(s = 0) = 0, and the boundary condition for the
field Ast

+(0) = tAst
+(1) imposes that

G(1) = − ln t

g
[1 + (̃δ − ω̃/γ )2], (20)

ω̃ = 2πm − δ̃ ln t

1 − ln t
γ

. (21)

We note that (21) is equivalent to (9) in this simplified case.
Integrating (19) from one end to the other of the laser cavity and
using the boundary conditions for G(s) allows us to determine

|Ast
+(0)|2 =

J + ln t
g

[1 + (̃δ − ω̃/γ )2]

e−2 ln t − 1
. (22)

We can therefore solve for G(s) and determine the field profile
along the laser cavity as shown in Fig. 3.

The physical insight gained in the analysis of the simplest
case suggests that, in general, Eqs. (13)–(16) can be very
efficiently solved by means of a numerical shooting method
[36] which is useful since no analytical solution is possible in
this case. In Fig. 4 a bidirectional monochromatic solution
calculated in this way is shown. This shooting method
can be used to quickly find the steady-state solutions for
different current values, hence limited bifurcation diagrams as
a function of the pump can be readily obtained. For instance,
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FIG. 4. (Color online) Bidirectional monochromatic solutions in
the general case. Intensity of the fields inside the cavity versus space
s. Mesh points N = 100, J = 0.5, δ̃ = 0.1, g = 1, ε = η = 10−2,
β = 0, t = 0.5, r = 210−2, α = 0, and γ = 100.
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FIG. 5. (Color online) Bifurcation diagram of the monochromatic
solutions: for decreasing pump J showing a pitchfork bifurcation
(dashed and dotted lines) and for increasing J showing a bidirectional
solution (solid lines). For values below J = 2.15 all the lines coincide
in the bidirectional regime. Mesh points N = 100, δ̃ = 0, g = 5,
ε = 10−2, η = 5, β = 0, t = 0.5, r = 510−3, α = 0, and γ = 100.

Fig. 5 depicts the pitchfork bifurcation from a bidirectional
solution into two degenerate, almost unidirectional solutions
that have been observed in different ring laser systems [14].
It should be noted that, in order to obtain a bifurcation
diagram like that in Fig. 5, it is necessary to perform a
double scan, one upward and one downward, since the
shooting method follows the resulting branches even if they are
unstable.

III. TEST: SINGLE-MODE DYNAMICS

The numerical implementation of partial-differential equa-
tions always represents a challenge from a technical point
of view. In particular, the usual numerical diffusion present
in most algorithms has to be carefully taken care off.
While numerical dissipation can be helpful in contexts like,
for example, fluid mechanics to prevent spurious solutions
to rise, multimode laser dynamics is mainly governed by
extremely weak gain difference between consecutive modes
that correspond to increasing spatial frequencies. Any weak
numerical dissipation would therefore profoundly affect
the dynamical scenario and has to be avoided. To this purpose
we employ a numerical algorithm that is based on the one
presented in [29], which takes advantage of the fact that the
equations for the electric fields can be formally solved by
integration along the characteristics.

In this section we discuss the tests performed in order
to check the correctness and accuracy of the numerical
algorithm used to implement the TWM, which is required
for controlling potential implementation mistakes. The details
of the numerical implementation are described in Appendix B,
where we also discuss in detail how the boundary conditions
are imposed.

Clearly, the results in Secs. II A and II B provide a first
test of the accuracy of the numerical implementation. We have
verified that our numerical scheme accurately recovers the
lasing threshold yielding monochromatic solutions that match
those obtained by the shooting method.

043817-4



BICHROMATIC EMISSION AND MULTIMODE DYNAMICS . . . PHYSICAL REVIEW A 81, 043817 (2010)

A further test, presented below, is provided by comparing
our numerical results in the single longitudinal mode limit
with the dynamical results previously obtained by Zeghlache
et al. [33] with a rate equation model for a CO2 ring laser.
In such a model, obtained in the good cavity limit for a pure
single-longitudinal ring laser (r = 0), the only term that mixes
the counter-propagating fields is the carrier grating, hence
the bidirectional regime is unstable [8,35]. Moreover, the
analysis performed in [33] demonstrates that the unidirectional
solution can also become unstable in some pump and detuning
regimes. For certain values of these parameters, square-wave
oscillations between the counter-propagating fields appear
followed by regular or even chaotic oscillations. Scanning
the pump J for fixed detuning, the system, which is initially
stable or bistable, becomes unstable at a certain value, and
it eventually recovers stability at high pump values; for fixed
pump, instead, stable behavior is not recovered upon increasing
detuning although it must be recalled that the single-mode
approximation will eventually break down and the model
in [33] be no longer valid.

A meaningful comparison of our results from those in [33]
requires one to establish the equivalence among the parameters
in both models. In order to do so, we reduce our model
to that in [33] by neglecting any spatial dependence while
redefining the losses in (1) as αT = α − ln t (i.e., the total
loss). Then, comparison with Eq. (3.11) in [33] yields the
parameter correspondence rules,

d‖ = ε
αT

, A = gJ

αT
, 
 = −δ̃. (23)

Our numerical simulations reproduce accurately the be-
haviors described in [33]. We perform simulations fixing the
pump and increasing the detuning (see Fig. 6); in this case,
we go from the unidirectional steady emission to a region
of instability where the counter-propagating fields develop
a square-wave oscillation with one intensity in antiphase
with the other [Fig. 6(a)]. Increasing the detuning the square
waves become distorted and a secondary oscillation appears
[Figs. 6(b) and 6(c)], progressing until a chaotic oscillation is
obtained for high detunings as shown in Fig. 6(d).
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FIG. 6. (Color online) Dynamical behaviors observed for fixed
pump J = 0.5 while scanning detuning δ̃. (a) δ̃ = 0.2, (b) δ̃ = 0.5,
(c) δ̃ = 0.7, (d) δ̃ = 0.9. The parameters correspond to those used
in [33] in Figs. 10(a)–10(i) except for the fact that in our case the
two modes have equal losses: Mesh points N = 100, g = 1, ε = η =
1.7810−5, β = 10−4, t = 0.9, r = 0, α = 0, and γ = 1.

FIG. 7. (Color online) Dynamical behaviors obtained for fixed
detuning δ̃ = 0.2 while scanning J . (a) J = 0.6, (b) J = 3.6,
(c) J = 8, (d) J = 20 for the same parameters as in Fig. 6.

On the other hand, when we fix the detuning and scan the
pump (see Fig. 7) we pass from a unidirectional steady solution
near threshold into a region of instability where square waves
similar to those in the previous case developed. In contrast
with the previous case, now the system recovers stability upon
increasing J and returns to one of the unidirectional solutions.
The mechanism is a slowing of the square-wave modulation as
we increase the pump [see Fig. 7(c)], a characteristic behavior
of heteroclinic bifurcations.

Finally, we remark that the above behaviors are recovered
even when putting a small direct reflection and spontaneous
emission provided that the good cavity limit still applies
(see Figs. 8 and 9); for example, they are robust against small
imperfections and noise. However, if the reflectivity is too
large, the system emits bidirectionally at threshold and its
dynamical behavior is no longer the same [14,16].

IV. MULTIMODE DYNAMICS

The rate-equation model described in [33] is very successful
at describing the rich variety of dynamics that can be
encountered while in single-mode operation. However, in a
real laser, increasing the detuning will eventually lead to at
least a change in lasing mode which is not accounted for in the
RE model. Indeed, the maximum allowed detuning in a real
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FIG. 8. (Color online) Single-mode chaotic behavior. Mesh
points N = 100, J = 0.4, δ̃ = 0.4, g = 1, ε = η = 1.7810−5, β =
10−4, t = 0.9, r = 510−4, α = 0, and γ = 1.
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FIG. 9. (Color online) Single-mode chaotic behavior. Mesh
points N = 100, J = 0.5, δ̃ = 1, g = 1, ε = η = 1.7810−5, β =
10−4, t = 0.9, r = 510−4, α = 0, and γ = 1.

device corresponds to having the gain peak just between two
laser modes (i.e., δ̃ = π/γ in our parametrization); in this case,
the two modes will have the same threshold and lasing can be
quite different than when only one mode is active. In addition,
instabilities arising from the multimode character of the system
as, for example, the Risken-Nummedal instability [37] can
develop when the gain curve is broader than the mode spacing
and the pump level is high enough.

The dynamics in these cases can readily be analyzed
with the traveling wave model, which naturally retains the
dynamics of the different modes and the effects of the
detuning. Hence, it can allow one to explore the dynamics
of the system in cases where different longitudinal modes are
active.

In this section we present and discuss some remarkable
dynamical behaviors obtained in these situations, although we
note that the large variety of scenarios that we have observed
calls for the development of a bifurcation tool of our TWM
that would allow us to better understand the role played by
the different parameters. To the best of our knowledge, these
results have not been previously reported in the literature. It
should be noted, however, that some of them are obtained for
very high pumping levels, J ∼ 10 − 100Jth, which might be
difficult or even impossible to achieve in an experiment. First,
we present the situation where a moderate gain bandwidth
is taken into account, and how different behaviors arise in
this case depending on the pump and the detuning. In the
second part of this section the case of a large gain bandwidth
is discussed.

A. Moderate gain bandwidth

We consider here the case when the gain spectrum has
moderate width, γ = 10. We first discuss the case when the
gain spectrum peak lies just between two modes, δ̃ = 0.3141.
In this case, modes m = 0 and m = 1 have exactly the same
threshold, so the dynamical scenario at the laser threshold
corresponds to a degenerate Hopf bifurcation. It should,
moreover, be noted that for each of these frequencies there
are two different solution branches which for small r are
also almost degenerate, as discussed in Sec. II A. This highly
degenerated situation allows the system to lase in a great
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FIG. 10. (Color online) Bifurcation diagram near threshold. The
fields begin to emit multimode bidirectionally, then after J = 0.028
the backward (−) field is favored. Mesh points N = 100, δ̃ = 0.3141,
g = 5, ε = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4, α = 0, and
γ = 10.

variety of possible states, which can give rise to unexpected
dynamical behaviors. We subsequently discuss the effect of
the detuning in this case, since varying the detuning allows
one to reduce the degeneracy of the system.

Figure 10 shows the bifurcation diagram near the threshold
for the ring laser with moderate gain bandwidth (laser
parameters specified in the caption). First, the two counter-
propagating fields are both emitting with equal intensity in
two modes separated by one-mode spacing (i.e., the laser
starts to emit bidirectionally in consecutive modes, m = 0
and m = 1). As we increase the pump, one of the directions
becomes dominant over the other, and additional modes are
excited. For high enough pump (see Fig. 11), the system
emits almost unidirectionally; however, the emission exhibits
100% oscillations at the round-trip time which correspond
to an emission spectrum that involves four dominant modes.
Further increasing the pump, the intensity oscillation becomes
nonlinear, which corresponds to the locking of a moderate
number of modes (see Fig. 12); this regime can be interpreted
as a shallow mode-locked solution.

At even higher pumps, the nonlinear oscillation disappears
and the emission becomes again bidirectional with both
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FIG. 11. (Color online) Unidirectional oscillating emission.
(a) Power spectra. (b) Time trace. Mesh points N = 400, J = 1, δ̃ =
0.3141, g = 5, ε = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4,
α = 0, and γ = 10.
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FIG. 12. (Color online) Mode-locked solution. (a) Power spectra.
(b) Time trace. J = 3. For other parameters, see Fig. 11.

directions emitting stable and with the same power (see
Fig. 13).

However, a closer look at the emission in this regime (see
Fig. 14) reveals that, surprisingly, each emission direction is
dominated by a single mode, m = 0 for A+ and m = 1 for A−.
Hence each mode contributes in complementary ways to lasing
in each direction: while emission in the forward direction is
dominated by the reddest mode, the backward direction lases
dominantly on the bluest mode. This regime is, of course,
twofold degenerate.

This transition comes from the fact that the population
inversion grating tries to favor the almost unidirectionnal
emission at the same frequency because it induces an effective
cross saturation of the gain between the forward and backward
waves [8] which is larger if they have the same frequency
[see Eqs. (1)–(4)]. But the power extracted from the system in
the bidirectional monochromatic state is not optimal because
the atoms located at the nodes of the standing wave do
not contribute to stimulated emission. The power extraction
can be increased in the case of bichromatic emission when
the gain curve is broad enough and the frequency separation
between the modes is larger than the decay rate of the popu-
lation grating (2π � η). In this case, the population grating
cannot develop in response to the counter-propagating fields,
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FIG. 13. (Color online) Bifurcation diagram showing the transi-
tion from unidirectional oscillating emission to bidirectional emission
at different frequencies. (a) Power spectra. (b) Time trace. Mesh points
N = 400, δ̃ = 0.3141, g = 5, ε = 10−2, η = 0.1, β = 10−4, t = 0.9,
r = 510−4, α = 0, and γ = 10.

2000 2002 2004 2006 2008 2010
10.3

10.4

10.5

10.6

Time (Round trips)

In
te

ns
ity

 (
ar

b.
un

its
)

−2 −1 0 1 2 3−3
10

0
10

1
10

2
10

3
10

4
10

5
10

6

Mode Number m

P
ow

er
 S

pe
ct

ru
m

 (
ar

b.
un

its
)

|A
+
|2

|A
−
|2

(b)

(a)

FIG. 14. (Color online) Bidirectional oscillating emission at
different frequencies. (a) Power spectra. (b) Time trace. J = 4. For
other parameters, see Fig. 11.

hereby effectively reducing cross-gain saturation between the
forward and backward waves and restoring the possibility
of obtaining stable bidirectional operation. We conclude that
this is a pure dynamical effect that allows for bichromatic
bidirectional emission at high current.

1. Dependence on detuning

In order to see the effect of the detuning on the behavior of
the laser in the case of moderate gain bandwidth, we perform
simulations for different δ̃. For δ̃ = 0.3, the laser begins to
emit bidirectionally in a mode m = 0 but it rapidly becomes
almost unidirectional with a small amplitude oscillation that
corresponds to residual emission in mode m = 1 (see inset in
Fig. 15). As we increase the pump, the emission becomes
increasingly unidirectional and single mode until J = 0.4,
where mode m = 1 starts to lase and favors the opposite di-
rection. Above this pump value, the laser emits bidirectionally
with each direction dominated by a different mode as in the
previous subsection. However, the nonsymmetrical position
of the cavity modes with respect to the peak of the gain curve
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FIG. 15. (Color online) Bifurcation diagram for γ = 10 and δ̃ =
0.3. (Inset) Bifurcation diagram near the threshold. Mesh points N =
400, g = 5, ε = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4, and
α = 0.
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FIG. 16. (Color online) Bidirectional emission. (a) Power spectra.
(b) Time trace. Mesh points N = 400, J = 1, δ̃ = 0.3, g = 5, ε =
10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4, α = 0, and γ = 10.

produces a sensible difference between the intensities of the
two counter-propagating fields (see Fig. 16).

The above results have been obtained by starting the
simulations from a noisy initial condition that does not favor
any of the emission directions. However, when the simulations
are launched from an initial condition that privileges one of
the directions (see Fig. 17), we find for some current values
an almost unidirectional solution oscillating at the modal beat
note with almost 100% amplitude. This solution is analogous
to that in Fig. 13 in the previous subsection, and it eventually
also disappears into the bidirectional solution of Fig. 15.
The former result evidences that the unidirectional oscillating
solution and the bidirectional emission at different frequencies
can coexist depending on the parameters. We have tried to
induce jumps among these two types of solutions by injecting
optical pulses, but we have not managed to stably control the
emission state of the system; after a relatively long transient,
the system returned to the original emission state, indicating
that in spite of their coexistence, the perturbation in phase
space requires specific characteristics to place the system into
the basin of attraction of the other solution.

Finally, in the case that the gain peak is close to one of the
cavity modes, multimode dynamics is suppressed because the
mode closest to the gain peak takes all the energy provided
to the system. For a detuning value δ̃ = 0.15 the laser emits
single mode unidirectionally as shown in Fig. 18.
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FIG. 17. (Color online) Unidirectional oscillating emission.
(a) Power spectra. (b) Time trace. For parameters, see Fig. 16.
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FIG. 18. (Color online) Bifurcation diagram for γ = 10 and δ̃ =
0.15. (Inset) Bifurcation diagram near the threshold. Mesh points
N = 400, g = 5, ε = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4,
and α = 0.

B. Large gain bandwidth

In this section we consider a large gain bandwidth (γ =
100) that allows for a rich variety of dynamical behaviors
because a large number of modes can become active.

The bifurcation diagram shown in Fig. 19 summarizes
the different behaviors observed when the peak of the gain
curve is just between the first two modes, δ̃ = 0.03141.
Close to threshold, the laser emits bidirectionally with two
modes active in each direction as in Fig. 10. Increasing
the pump, the forward direction becomes dominant and
mode m = 0 dominates; conversely, the backward direction is
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FIG. 19. (Color online) Bifurcation diagram showing different
behaviors for γ = 100 and δ̃ = 0.03141. (Inset) Bifurcation dia-
gram near the threshold. First, close to threshold, the laser emits
bidirectionally with both counter-propagating fields emitting at two
consecutive modes. Then a regime of bidirectional emission at
different frequencies appears (see Fig. 20). Third, an oscillating
regime where the counter-propagating fields are out of phase (see
Fig. 21). Fourth, a unidirectional multimode solution, composed by
not-consecutive modes (see Fig. 22). Fifth, a bidirectional emission
at different frequencies at not-consecutive modes (see Fig. 23). Mesh
points N = 400, g = 5, ε = 10−2, η = 210−2, β = 10−4, t = 0.9,
r = 510−4, and α = 0.
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FIG. 20. (Color online) Bidirectional emission at different fre-
quencies. (a) Power spectra. (b) Time trace. Mesh points N = 400,
J = 0.4, δ̃ = 0.03141, g = 5, ε = 10−2, η = 210−2, β = 10−4, t =
0.9, r = 510−4, α = 0, and γ = 100.

dominated by mode m = 1 (see Fig. 20). In this regime, both
emission directions oscillate in phase, but as the pump is still
increased, more modes become excited and the oscillations
of the intensity of the counter-propagating fields are out of
phase (see Fig. 21). Still increasing the pump, a regime of
almost single-mode, unidirectional emission is recovered (see
Fig. 22) for a small range of pump values. We see that in
this case, the depressed emission direction is dominated by
mode m = 2, with a secondary peak on mode m = −2 excited
by four-wave mixing processes. Such a regime indicates that
the gain suppression of mode m = 1 by emission on mode
m = 0 is strong enough to inhibit emission on mode m = 1.
However, the large bandwidth of the gain curve allows modes
farther away from mode m = 0 to become active when the
pump is still increased. As shown in Fig. 23, this leads again
to a bidirectional solution where each direction dominantly
lases on different modes separated by twice the mode spacing.

1. Dependence on detuning

For detuning values above δ̃ = 0.025, the behavior of the
system is qualitatively the same described in the previous sub-
section (see Fig. 24). However, the nonsymmetrical position
of the gain curve peak makes the DC component of the fields
different and a unidirectional solution is found near threshold.
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FIG. 21. (Color online) Multimode alternate oscillations.
(a) Power spectra. (b) Time trace. J = 1.5. Other parameters are
as in Fig. 20.
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FIG. 22. (Color online) Unidirectional emission. (a) Power spec-
tra. (b) Time trace. J = 1.9. Other parameters are as in Fig. 20.
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FIG. 23. (Color online) Bidirectional emission at different fre-
quencies. (a) Power spectra. (b) Time trace. J = 2.5. Other parame-
ters are as in Fig. 20.
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FIG. 24. (Color online) Bifurcation diagram for γ = 100 and
δ̃ = 0.03. (Inset) Bifurcation diagram near the threshold. First,
bidirectional emission is found near threshold, then one of the fields
is suppressed and a unidirectional regime is found; after that the
suppressed field begins to emit at a different frequency with respect
to that emitted by the not- suppressed field and a bidirectional solution
appears. Increasing the pump we find a unidirectional solution that
ends up in a bidirectional solution emitting at not-consecutive modes.
Mesh points N = 400, g = 5, ε = 10−2, η = 210−2, β = 10−4,
t = 0.9, r = 510−4, and α = 0.
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FIG. 25. (Color online) Bifurcation diagram for γ = 100 and δ̃ =
0.015. (Inset) Bifurcation diagram near the threshold. Near threshold
the laser emits bidirectionally but for a wide range on pump the laser
emits unidirectionally single mode, then near J = 2.2 different modes
start to lase, and a mode-locked solution arises (see Fig. 26). Mesh
points N = 400, g = 5, ε = 10−2, η = 210−2, β = 10−4, t = 0.9,
r = 510−4, and α = 0.

A different scenario emerges at low detunings. When the
detuning is decreased to a value δ̃ = 0.015 (see Fig. 25),
the laser starts emitting bidirectionally with both directions
emitting on two consecutive modes. For slightly higher pump,
one emission direction starts to dominate with quasi-single-
mode emission up to J ≈ 2.4, where a unidirectional solution
arises with a high number of active modes (see Fig. 26).
Although this solution appears very far away from the lasing
threshold, it is worth being examined in detail. The solution
has the characteristics of a unidirectional mode-locked state,
since the laser emits sharp and narrow pulses being in one
direction only. Note that this is a harmonic mode-locked state,
with pulses occurring at twice the fundamental repetition rate.
The duty cycle of the pulses is around 6%. It is worth remarking
that this solution appears without inserting in the cavity any
additional element that favors pulsed operation (i.e., a saturable
absorber or alike), but it merely arises from an instability
of the cw solution occurring when the power level is such
that the Rabi frequency of the two-level atoms equals the
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FIG. 26. (Color online) Mode-locked emission. (a) Power spec-
tra. (b) Time trace. Mesh points N = 400, J = 3, δ̃ = 0.015, g = 5,
ε = 10−2, η = 210−2, β = 10−4, t = 0.9, r = 510−4, α = 0, γ =
100, n = 1 and L = 1m.

polarization dephasing rate. From this point of view, then, the
mechanism that triggers this solution is analogous to that in the
Risken-Nummedal instability. The main difference between
our case and the classical Risken-Nummedal instability is that
the large gain curve that we are considering allows for the
excitation of additional side modes through four-wave mixing
processes mediated by both D0 and D±2, which give rise to
the pulsed emission of the system.

V. CONCLUSIONS

The multimode dynamics of a two-level ring laser has
been explored using a bidirectional TWM. The model and
its numerical implementation have been tested by reproducing
the dynamical results obtained in the single-mode limit by
Zeghlache et al. [33]. We have shown that the dynamical
regimes reported in [33] are robust against noise and residual
reflections provided that the single-mode limit holds. We
have found dynamical regimes where the emission in each
direction occurs at different wavelengths, each direction being
associated with a different longitudinal mode. In addition, the
influence of the detuning and the width of the gain spectrum
have been thoroughly analyzed, and the onset of unidirectional,
mode-locked emission for large gain bandwidth and relatively
small detuning has been studied in detail.
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APPENDIX A: DERIVATION OF THE MODEL

The wave equation for an electric field E(z,t) in a medium
can be written as

∂2E
∂z2

− n2

c2

∂2E
∂t2

= µ
∂2P
∂t2

, (A1)

where P is the polarization of the medium, n is the refraction
index of the medium, c is the speed of light in vacuum, and µ is
the magnetic permeability of the medium [31,38]. Assuming a
quasimonochromatic field around the optical carrier frequency
ω0, we can express it as

E(z,t) = F (z,t)e−iω0t + c.c., (A2)

where c.c. denotes complex conjugate and F (z,t) is the
slowly time-varying amplitude of the field, that is, |∂F/∂t |

 ω0|F |.

Analogously, the polarization of the active medium can be
decomposed as

P(z,t) = i[�(z,t)e−iω0t − c.c.], (A3)
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where �(z,t) is the slowly time-varying amplitude of the
material polarization. Assuming a quasiresonant two-level
medium—composed of NA identical two-level atoms per unit
volume with a resonance frequency ωA between the upper
and the lower levels—the polarization � can be determined,
in the rotating wave approximation, by the density matrix
formalism [31,38]. Its time evolution is given by

∂�

∂t
= −(iδ + γ⊥)� − µ̃2

h̄
NF, (A4)

where N (z,t) is the population inversion density, δ is the
detuning, which takes into account the difference between the
atomic transition frequency and the emission frequency (i.e.,
δ = ωA − ω0), γ⊥ is the polarization decay rate, and µ̃ is the
component of the dipole moment along the direction of the
field. N in turn evolves according to

∂N

∂t
= 2

h̄
(F�∗ + c.c.) + J − γ‖N + D∂2

z N, (A5)

where Q is the external pump, h̄ is the Planck’s constant
divided by 2π , γ‖ is the population inversion decay rate, and
D is the diffusion coefficient [31,38].

Noting that amplification of the field usually requires
propagation over distances long compared to the optical
wavelength λ0 = 2πc/(nω0), we can further decompose the
local field amplitude into forward (+) and backward (−)
propagating components,

F (z,t) = E+(z,t)eiq0z + E−(z,t)e−iq0z, (A6)

where E±(z,t) are slowly varying both in space and time, as
compared with q−1

0 and ω−1
0 , respectively. Analogously, we

have that

�(z,t) = P+(z,t)eiq0z + P−(z,t)e−iq0z. (A7)

Using these decompositions we can write the slowly varying
approximation (SVA) [31] for the wave equation (A1) as

±∂E±
∂z

+ n

c

∂E±
∂t

= −ω0cµ

2n
P±. (A8)

These equations are complemented with boundary conditions
[39] for the geometry considered, in this case a ring, that can
be written as

E+(0) = t+E+(L)eiq0L + r−E−(0),
(A9)

E−(L)e−iq0L = t−E−(0) + r+E+(L)eiq0L,

where L is the length of the ring and t± and r± denote the
transmissivity and reflectivity of the forward and backward
waves, which follows |t±|2 + |r±|2 = 1 − ε±, where ε± are
the losses at the point coupler.

Using (A6) and (A7) into (A4) and (A5) evidences that the
presence of counter-propagating fields creates a spatial mod-
ulation of the population inversion. This important property
follows from the iterative relationship between the diagonal
and off-diagonal matrix elements of the density matrix ρ̂ [40].
As a result, only odd harmonics appear in the expansion of
P and only even harmonics appear in the expansion of the
population difference D. This spatial modulation acts as a
Bragg grating and creates a coupling between the counter-
propagating fields. In order to get the dynamics of this grating

explicitly we decompose the population difference in different
spatial contributions as

N = N0 + N+2e
2iq0z + N−2e

−2iq0z + · · · (A10)

Such a decomposition yields an infinite hierarchy of equations
that has to be truncated in order to keep the problem treatable.
In systems with large diffusion, the truncation can be justified
due to the quadratically increasing damping of the high-order
terms [30,32]; in other cases, the intensity of the fields has to be
low compared to the saturation intensity of the medium [33].
To the dominant order, the medium evolves according to

∂P±
∂t

= −(iδ + γ⊥)P± − µ̃2

h̄
(N0E± + N±2E∓), (A11)

∂N0

∂t
= 2

h̄
(E+P ∗

+ + E−P ∗
− + c.c.) + J − γ‖N0 + D∂2

z N0,

(A12)

and

∂N±2

∂t
= 2

h̄
(E±P ∗

∓ + E∗
∓P±) − (

γ‖ + 4q2
0D

)
N±2, (A13)

where we have used twice that |∂zN±2| 
 q0|N±2|. We can
see in that diffusion tries to smear out the grating in the
population inversion (A13) by inducing a much larger effective
relaxation rate for N±2 than for N0. We can also see in (A11)
that the polarization in the forward direction has a contribution
from the field in the backward direction and vice versa. This
“reflection on the grating” leads to cross-saturation of the
fields, as could be seen by adiabatic elimination of P±.

Equations (A8) and (A11)–(A13) are equivalent to Eq. (3.4)
in [33] with the only difference that we retained the slow
spatial dependence of the fields while the good cavity limit
was invoked in [33] in order to work with time-dependent
field amplitudes only. In this way, our approach allows for
describing multimode dynamics that is beyond the scope of
[33].

For numerical purposes it is convenient to rewrite Eqs. (A8)
and (A11)–(A13) in dimensionless form,

±∂A±
∂s

+ ∂A±
∂τ

= B± − αA±, (A14)

1

γ

∂B±
∂τ

= −(1 + iδ̃)B± + g(D0A± + D±2A∓)

+
√

βD0ξ±(s,τ ), (A15)
1

ε

∂D0

∂τ
= J − D0 + 


∂2D0

∂s2
− (A+B∗

+ + A−B∗
− + c.c.),

(A16)
1

η

∂D±2

∂τ
= −D±2 − ε

η
(A±B∗

∓ + A∗
∓B±), (A17)

where D0 = N0/NA, D±2 = N±2/NA and we have scaled the
fields and polarizations as

A± =
√

4n

µω0ch̄γ‖L
E±, B± = −

√
µω0c

nh̄γ‖L
P±. (A18)
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We have also included in Eq. (A14) a term modeling the
internal losses α for the electric fields, we have defined new
dimensionless parameters,

g = µω0cµ̃
2L

2nh̄γ⊥
, γ = γ⊥nL

c
, ε = γ‖nL

c
,

(A19)

η =
(
γ‖ + 4q2

0D
)
nL

c
, 
 = D

γ‖L2
, δ̃ = δ

γ⊥
,

and finally we have defined new coordinates,

τ = c

nL
t, s = z

L
. (A20)

In this new reference frame, the general boundary conditions
for the fields in the laser read

A+(0) = t+A+(1)eiγ ω̃0 + r−A−(0),
(A21)

A−(1)e−iγ ω̃0 = t−A−(0) + r+A+(1)eiγ ω̃0 .

Usually we shall take γ ω̃0 = 2πm where m = 0, ± 1, ± 2 . . .

then eiγ ω̃0 = 1 without loss of generality. It means that we take
the carrier frequency ω0 as one of the modes of the cavity.

We note that the effects of diffusion in (A16) are almost
negligible because the characteristic length scale of D0 is 1
(i.e., the cavity length), so that we can set 
 = 0 in (A16).
Instead, we should retain it in (A17) because the characteristic
length scale in this case is the emission wavelength λ0 =
2πc/ω0.

Finally, spontaneous emission is modeled by including
Langevin noise terms ξ±(s,τ ) [30]. They are taken to be
Gaussian white noise in space and time with zero mean and
correlations 〈ξ±(s,τ )ξ±(s ′,τ ′)〉 = δ(τ − τ ′)δ(s − s ′), and their
intensities are proportional to the population density [41].

APPENDIX B: NUMERICAL ALGORITHM

The numerical algorithm used to perform the simulation
of the normalized system of Eqs. (1)–(4) is based in the one
presented in [29]. This algorithm takes advantage of the fact
that the equations for the fields can be solved formally in terms
of integrals of the polarizations. We discretize time with time
step h, hence the spatial grid has also discretization step h. All
spatial points n = 1, . . . ,N are internal, with the first and last

FIG. 27. (Color online) Schematic representation of spatial dis-
cretization and the implementation of the boundary conditions for
the A+ electric field. In three steps: 1) Half-step explicit Euler;
2) boundary conditions; 3) Half-step implicit Euler. The mesh is
composed by N points and N intervals and two auxiliary points at 0
and N + 1 added for the implementation.

points located at h/2 from the nearest end (see Fig. 27). We
denote by Xn

j the value of variable X at time t = nh and grid
point s = jh.

We use the midpoint discretization scheme for the fields
[29], so they are updated according to

An+1
+j = 1 − q

1 + q
An

+j−1 + p
(
Bn

+j−1 + Bn+1
+j

)
, (B1)

An+1
−j = 1 − q

1 + q
An

−j+1 + p
(
Bn

−j+1 + Bn+1
−j

)
, (B2)

where q = αh/2, p = (h/2)(1 + q)−1. For the polarizations
we have

Bn+1
±j = µBn

±j + νD
n+1/2
0j

(
An+1

±j + An
±j

)
+ νD

n+1/2
±2j

(
An+1

∓j + An
∓j

) +
√

βhD0ξ±, (B3)

where µ = [1 − (γ h/2)(1 + iδ̃)][1 + (γ h/2)(1 + iδ̃)]−1 and
ν = (ghγ/2)[1 + (γ h/2)(1 + iδ̃)]−1, and where we have used
the approximation,∫ t+
t

t

Dk(t)Al(t)dt � 
tDk

(
t + 
t

2

)
Al(t + 
t) + Al(t)

2
.

(B4)

At this point we note that Eq. (B3) needs the values of
the carriers (D0 and D±2) at intermediate time steps, hence
we use a temporal grid for the carrier densities which is
staggered by half a time step from the fields and polarizations.
This is different from the original algorithm in [29], where
the carriers are on the same temporal grid than the fields and
the polarizations and then interpolation is used to evaluate the
carriers at the intermediate times needed in (B1)–(B3). In our
case, the finite difference equations for carriers are, thus,

D
n+3/2
0j = ρD

n+1/2
0j + θJ

− θ
(
An+1

+j B∗n+1
+j + An+1

−j B∗n+1
−j + c.c.

)
(B5)

D
n+3/2
±2j = ρD

n+1/2
±2j , − θ

(
An+1

±j B∗n+1
∓j + A∗n+1

∓j Bn+1
±j

)
,

(B6)

where ρ = (1 + εh
2 )(1 − εh

2 )−1 and θ = εh(1 − εh
2 )−1.

1. Boundary conditions

In order to impose the general boundary conditions (5),
we have to consider that the fields propagate during half a
step, then experience partial reflection and transmission and
then they propagate for another half a step. In addition, we
recall the ring structure of our system, hence points j = 1 and
j = N are connected through the boundary conditions. This
procedure for A+ and A− is implemented as follows:

Step 1. We use an explicit Euler method to compute
the value of the fields just before arriving at boundary by
propagating the fields over half a step,

A
n+1/2
+N+1/2 − (1 − q)An

+N = h

2
Bn

+N,

(B7)

A
n+1/2
−1/2 − (1 − q)An

−1 = h

2
Bn

−1.
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Step 2. We apply the boundary conditions and compute the
fields just after the boundary, which are denoted as Ã+ and
Ã−,

Ã
n+1/2
+1/2 = t+A

n+1/2
+N+1/2 + r−A

n+1/2
−1/2 ,

(B8)
Ã

n+1/2
−N+1/2 = t−A

n+1/2
−1/2 + r+A

n+1/2
+N+1/2.

Step 3. Finally we use the implicit Euler method for the
remaining half a step to calculate the value of the fields at time
n + 1,

(1 + q)An+1
+1 − Ã

n+1/2
+1/2 = h

2
Bn+1

+1
(B9)

(1 + q)An+1
−N − Ã

n+1/2
−N+1/2 = h

2
Bn+1

−N .

Note that these procedures can be very efficiently imple-
mented by adding to the spatial grid two auxiliary points j = 0

and j = N + 1 (see Fig. 27) located half a step away from the
facets where the fields and polarizations are

An
+0 = t+An

+N + r−An
−1

Bn
+0 = t+Bn

+N + r−Bn
−1

(B10)
An

−N+1 = t−An
−1 + r+An

+N

Bn
−N+1 = t−Bn

−1 + r+Bn
+N,

and updating the fields by means of the standard midpoint
integration,

An+1
+1 = 1 − q

1 + q
An

+0 + p
(
Bn

+0 + Bn+1
+1

)
,

(B11)

An+1
−N = 1 − q

1 + q
An

−N+1 + p
(
Bn

−N+1 + Bn+1
−N

)
.
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