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Local-field excitations in two-dimensional lattices of resonant atoms
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We study excitations of the local field (locsitons) in nanoscale two-dimensional (2D) lattices of strongly
interacting resonant atoms and various unusual effects associated with them. Locsitons in low-dimensional
systems and the resulting spatial strata and more complex patterns on a scale of just a few atoms were predicted
by us earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett. 101, 133902 (2008)]. These effects present a
radical departure from the classical Lorentz-Lorenz theory of the local field (LF), which assumes that the LF is
virtually uniform on this scale. We demonstrate that the strata and patterns in the 2D lattices may be described
as an interference of plane-wave locsitons, build an analytic model for such unbounded locsitons, and derive
and analyze dispersion relations for the locsitons in an equilateral triangular lattice. We draw useful analogies
between 1D and 2D locsitons but also show that the 2D case enables locsitons with the most diverse and unusual
properties. Using the nearest-neighbor approximation, we find the locsiton frequency band for different mutual
orientations of the lattice and the incident field. We demonstrate a formation of distinct vector locsiton patterns
consisting of multiple vortices in the LF distribution and suggest a way to design finite 2D lattices that exhibit
such patterns at certain frequencies. We illustrate the role of lattice defects in supporting localized locsitons and
also demonstrate the existence of “magic shapes,” for which the LF suppression at the exact atomic resonance is
canceled.
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I. INTRODUCTION

In our recent Letter [1] we predicted nanoscale field patterns
(stratification) emerging in one-dimensional (1D) arrays and
two-dimensional (2D) lattices of strongly interacting atoms,
driven by a radiation nearly resonant to the atomic transition.
We predicted excitation of so-called locsitons and a host of
related effects. A general formulation of the problem and
a more detailed theory for 1D arrays was presented in our
most recent article [2]. The present article is an extension of
Refs. [1,2] toward the theory of 2D lattices of resonant atoms,
which produce a much richer set of effects. We construct here
a detailed theory of interactions in the system by developing
different 2D versions of the nearest-neighbor approximation
(NNA), including the “near-ring” approximation (NRA). We
also derive dispersion relations for various lattice-polarization
configurations for all locsiton wave vectors within the cor-
responding first Brillouin zones. Our theory predicts such
phenomena as subwavelength multicell patterns, including
multivortex locsiton excitations, and locsitons localized near
lattice defects. Further in the article, we predict “magic
shapes” of nanosize groups of atoms, which reverse the effect
of a resonant locsiton suppression present in all but few
configurations. The simplest magic configuration which can
be cut out of a triangular lattice is a six-point star with an atom
at its center, which makes the lowest “magic number” of atoms
to be 13.

The predicted effects would be totally unexpected within
the standard theory of local fields [3] going back to the
works of Lorentz [4] and Lorenz [5]. That celebrated theory
asserts that the microscopic electric field EL acting on
any given atom in a medium—the local field (LF)—differs
from the macroscopic field E of the electromagnetic wave,
because electric dipoles induced in neighboring atoms produce
extra field to supplement the field of the incident wave.
This difference is significant in dense media, where the

interatomic interactions are sufficiently strong. Under such
conditions, typical interatomic distances are much shorter
than the optical wavelength, and the dipole-dipole interactions
between atoms can be treated as quasistatic. The major point
of the Lorentz-Lorenz theory (LLT) of local fields is that
the LLT contains a fundamental assumption (which often
remains implicit and unspoken in the literature) that the LF
varies very insignificantly between neighboring atoms, much
like the applied optical field on the subwavelength scale.
Unsurprisingly, that theory results in the LF being proportional
to the macroscopic electric field, EL = E(ε + 2)/3, where ε is
the dielectric constant of the medium.

As we have shown in Refs. [1,2], this assumption of
the LF uniformity is not universally applicable; moreover,
it completely falls apart when the uniformity of the atomic
lattice is disturbed by impurities, boundaries, and so on.
Indeed, when the interatomic interactions are sufficiently
strong and the system is not very large, highly nonuniform
LF distributions emerge, resulting in a strong stratification of
the LF and atomic excitations. This effect is best manifested
in small-scale ordered arrays and lattices of atoms at near-
resonance conditions, which allow the attainment of high
interaction strength between neighboring atoms and to easily
control it by tuning the laser frequency. We have shown [1,2]
that when the interaction with neighboring atoms becomes
comparable to that with the external field, so that the interaction
strength exceeds some critical value, the system will support
LF excitations, which we call locsitons. In finite-size arrays
and lattices, standing waves of locsitons may form nanoscale
strata and complex patterns in the LF (and, hence, in the
induced atomic dipoles). A typical spacing between atoms
in the arrays and lattices exhibiting the LF stratification is a
few orders of magnitude shorter than the wavelength of light,
so the quasistatic approximation of the standard LLT can still
be used.
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It is worth noting that locsitons are basically a linear
phenomenon and can be excited by a weak incident field.
We want to stress that locsitons, i.e., spatially nonuniform
solutions, are not new stable-state alternatives to a presum-
ably unstable uniform Lorentz solution at certain interaction
parameters; the stability or instability of the solution is not
an issue here. The emergence of locsitons is determined by
the boundary conditions in a finite structure, so a locsiton is
essentially the only physical solution, which thus replaces the
uniform Lorentz solution. Absorption plays an important role
here, as it directly affects spatial attenuation of locsitons and
thus the maximum distance to a boundary, defect, or other
inhomogeneity where locsitons can appear. In particular, as
we have shown in Ref. [2], the size of an array that can
support well pronounced locsitons is directly related to the
characteristic absorption length. Locsitons vanish in the bulk
of a crystal sufficiently far away from boundaries or defects.

Due to recent advances in fabricating nanoscale structures,
the observation and practical applications of the LF nanos-
tratification are becoming a reality. Theoretically, strongly
interacting resonant particles discussed in Ref. [1] do not
have to be atoms, but may also be quantum dots, molecules,
clusters, and so on. However, one has to remember that one of
the major conditions for the structure to support the locsitons
is that the interaction strength has to exceed a critical value.
Since this strength is proportional to the square of an individual
dipole momentum and inversely proportional to the cube of the
interparticle spacing and the linewidth of the particle resonance
(see below), the atoms may become preferred candidates.
A very high finesse of atomic resonances (i.e., their narrow
linewidth), compared, for example, to plasmons (see below),
also contributes greatly to the phenomenon, allowing one to
see high-order locsiton resonances.

To observe locsitons, one have to create conditions to couple
them efficiently to an optical or some other kind of a probe. In
Refs. [1,2] we suggested a few promising methods of locsiton
detection. In particular, locsitons could be observed via size-
related resonances in a scattering of laser radiation or via x-ray
or electron-energy-loss spectroscopy.

There are many potential applications of locsitons; here
we will mention two of them which were discussed in
Ref. [1]. It was shown in Ref. [1] that in the presence of a
sufficiently strong optical field (i.e., in the nonlinear case),
the LF in 1D arrays of strongly coupled dipoles can exhibit
optical bistability, which could be used to design nanoscale
all-dielectric logic elements and switches. Such devices might
complement currently used semiconductor-based electronic
circuits. Another potential application of locsitons could
be based on the extreme sensitivity of size-related locsiton
resonances to the size and shape of the system. At the exact
atomic resonance, the field is normally “pushed out” of the
atomic system, unless it has a certain “magic shape” [1].
Consequently, such “magic structures” of atoms could find
applications in designing nanoscale biosensors.

Removing the assumption of the LLT that the dipoles in the
medium oscillate in lockstep with the incident electromagnetic
wave is a substantial paradigm shift in the theory of light-
matter interaction. Locsitons predicted within our broader
approach have some incomplete but illustrative analogies
from other areas of physics. For example, short- and long-

wavelength strata in Ref. [1] are reminiscent of ferromagnetic
and antiferromagnetic arrangements of static magnetic dipoles
in the Ising model. The LLT is, on the other hand, more
similar to the mean-field approach of the Curie-Weiss theory
for magnetic media [6]. The Ising model is known to have
richer consequences than the Curie-Weiss theory. Our case,
however, differs substantially and, most of all, is more versatile
than the Ising model. Indeed, instead of being static, as in the
Ising model, the atomic dipoles are induced by the applied
optical field and can oscillate with arbitrary amplitude and
phase. By their nature, locsitons may be classified as Frenkel
excitons [7], because there is no charge transfer between
atoms and the dipole interaction is due to bound electrons.
Some of the locsiton effects, for example, wave resonances,
may be viewed as analogs of other types of oscillations and
waves in condensed matter, like plasmons and phonons [7],
as well as low-dimensional effects, like surface plasmons
[8,9], size-related resonances in thin metal films [10] or long
organic molecules [11], “quantum carpets” [12], arrays of
pendulums or electronic circuits [2], and so on. Approaching
from another perspective, one can view the formation of a
locsiton band as a Rabi broadening of the atomic resonance due
to strong interatomic interactions, which is essentially similar
to the band formation in solid-state theory. However, although
all waves and oscillations may be said to have something
in common, locsitons form a distinct class of phenomena
because of the nonconductive, dielectric, nature of their optical
response and a strong coupling between atoms, which is
needed for attaining dramatic size-related resonances, magic
configurations, and other interesting effects. A separate issue
outside of the scope of this article is how the structures can be
fabricated or arranged. One can envision placing the atoms in
a controlled way on the surface of suitable dielectric materials;
recent developments in the atomic- and ion-traps technology
allow for arranging atoms in vacuum as 1D arrays and 2D
“crystals” in the so-called wire traps [13].

Our article is structured as follows. In Sec. II we outline our
problem and present some general formulas; for more details
the reader should refer to our recent article [2]. In Sec. III
we describe locsitons in infinite, unbounded, 2D lattices of
resonant atoms in the case when the incident field is polarized
in the lattice plane. The equations for the LF and the dispersion
relations for the locsitons are first obtained in the NRA and
then in the more precise NNA. In Sec. IV we discuss effects
that arise in finite 2D lattices, in particular, formation of 2D
patterns of the LF, due to size-related locsiton resonances, and
the “magic” cancellation of the resonant LF suppression. In
Sec. V we describe 2D locsitons in the case when the incident
field is normal to the lattice plane. Section VI summarizes
main results of our article.

II. 2D LATTICES: GENERAL MODEL

Let us consider a 2D lattice of strongly resonant identical
particles, which we will further call “atoms.” We will assume
that, for the incident laser frequency ω near their resonant
frequency ω0, these atoms can be described by a two-level
model with the transition dipole moment da . In the linear
case, i.e., when the laser intensity is significantly lower
than the saturation intensity, the results for the two-level
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model coincide exactly with those for the classical harmonic
oscillator, see Ref. [2]. We further only consider lattices of
atoms interacting via quasistatic near-field dipole forces. In
general, this assumption is valid if, on one hand, the minimum
separation la between atoms is not too small, so their atomic
orbitals do not overlap, and, on the other hand, the lattice
is finite and its overall dimensions are smaller than the laser
wavelength λ. However, in most cases, in particular within the
NNA, which is the most common one and used throughout this
article, the sufficient condition is much less restrictive, only
requiring that the interatomic separation la � λ, which is the
same limit as in the standard LLT [3].

The LF acting on a given atom located at a point r is a
superposition of the incident (“external”) field Ein and the sum
of the fields Edp(r, r′) from surrounding dipoles at all other
lattice positions r′ over the entire lattice:

EL(r) = Ein(r) +
r′ �=r∑

lattice

Edp(r, r′), (1)

where the near fields of the surrounding atomic dipoles p(r′)
are dominated by the nonradiative (quasistatic) components
[14],

Edp(r, r′) = 3u[p(r′) · u] − p(r′)
ε|r′ − r|3 . (2)

Here u ≡ (r − r′)/|r − r′| is a unit vector along the line
connecting the two atoms and ε is the background dielectric
constant (ε = 1 in vacuum and ε �= 1 if a host medium is
present). The atomic dipoles p(r′) are, in turn, induced by the
LF acting on them. In the case of linear optical response of a
two-level atom, its induced dipole moment is

p(r) = −EL(r)
2|da|2

h̄�(δ + i)
, (3)

where δ ≡ T (ω − ω0) is a dimensionless laser frequency
detuning and T = 2/� is the transverse relaxation time of the
atom with a resonant homogeneous linewidth �. The condition
that the electron orbitals of neighboring atoms do not overlap
implies that la � |da|/e and justifies our use of a semiclassical
approach. Nonlinear effects in systems of resonant atoms could
be included into this picture via the saturation nonlinearity of
the two-level system. As we have recently demonstrated [1,2],
the nonlinearity enables interesting effects with promising
applications, like the optical bistability and hysteresis. In the
present article, however, we will only consider linear effects
in 2D lattices of resonant atoms.

We can rewrite Eqs. (1)–(3) in the following closed form,

EL(r) = Ein(r) − Q

4

r′ �=r∑
lattice

l3
a

|r′ − r|3 {3u[EL(r′) · u] − EL(r′)},

(4)

where we introduced the dimensionless strength Q of the
dipole-dipole coupling between neighboring atoms, which is
easily controlled through the normalized frequency detuning δ,

Q = Qa

δ + i
. (5)

The maximum normalized strength of interaction between
neighboring atoms,

Qa = 8|da|2
εh̄�l3

a

, (6)

is reached at zero detuning of the incident laser frequency
from the atomic resonance (δ = 0). Note that this is the point
where our approach drastically departs from the conventional
LF theory, where the LF is implied quasiuniform on a scale
of many la , so EL(r) ≈ EL(r′). More details on the general LF
model that we use in this article, including some quantitative
estimates of Qa for realistic systems, can be found in our recent
publication [2].

In the present article we restrict our considerations to
the nearest-neighbor approximation (NNA), in which only
interactions between the closest atoms are taken into account in
Eq. (4). As we demonstrated in Refs. [1,2], this approximation
leads to qualitatively similar results compared to the full so-
lution, which takes into account interactions between all pairs
of atoms in the system. The NNA allows us to derive simpler
analytic expressions and undertake numerical simulations for
reasonably large lattices.

III. LOCSITONS IN TRIANGULAR LATTICES: IN-PLANE
POLARIZATION

In this section we consider the emergence and properties of
locsitons in infinite unbounded planar lattices of atoms. Here
we aim at studying locsitons in their “simplest” form, without
the system boundaries complicating the picture. At the same
time, we will continue to assume the near-field character of the
interatomic interaction, because our ultimate goal is to study
systems that are much smaller than λ. For the same reason,
we will assume the incident field to be uniform throughout
the lattice, Ein(r) ≡ Ein, although our formalism is not limited
to this case. As we have proven in Refs. [1,2] for linear (1D)
systems of interacting atoms, such an approach is indeed of a
great help for understanding the locsitons’ behavior.

We consider an equilateral triangular lattice (also known
as a hexagonal lattice) of atoms, which has a sixfold rotation
symmetry and belongs to the plane symmetry group (wallpaper
group) p6m. [See Fig. 1(a).] This lattice type has a remarkable
property of providing the most close-packed configuration of
identical circular objects in a plane. Each atom in the lattice

FIG. 1. (a) Geometry of an equilateral triangular lattice of
resonant atoms. (b) The corresponding reciprocal lattice, shown with
open circles, and some high-symmetry points and directions in the
first Brillouin zone. The dashed lines in (b) illustrate constructing the
first Brillouin zone as the Wigner-Seitz cell of the reciprocal lattice.
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has six neighbors at the distances of la . The “second layer”
of neighbors is removed by

√
3la or 2la; considering the

fast decrease of the dipole-dipole interaction force with the
distance (∝ 1/r3), the NNA which ignores interaction with
the second and further layers of neighbors is expected to work
well.

As in the case of 1D arrays of atoms [1,2], two major
cases can be studied separately, where the incident laser field
Ein lies in plane (the “‖” case) or is normal to the plane
of the lattice (the “⊥” case). The linear optical response in
the case of any other incident polarization can be obtained
using a superposition of these two configurations. Of the two
major cases, the “‖” configuration is by far more interesting,
exhibiting richer locsiton behavior and differing significantly
from the 1D case due to the crucial in-plane anisotropy of
the dipole-dipole interaction. It is also easier to implement,
as the laser beam may be incident at the normal to the lattice
of atoms, with the incident field being virtually uniform on a
scale of many wavelengths. The “⊥” configuration presents
a much closer analogy to the 1D problems considered in
Refs. [1,2], although some details inevitably differ. We will
discuss it below in Sec. V. Further in this section, we only
consider the “‖” case, where both Ein and EL lie in the lattice
plain.

A. Near-ring approximation

Optical response of a triangular lattice of atoms is, in
general, anisotropic: it depends on the orientation of Ein in
the lattice plane with respect to the symmetry directions of the
lattice. We have demonstrated, however, that one can use the
near-ring approximation (NRA) to describe the behavior of
long-wavelength locsitons in the lattice [1] in an isotropic
fashion. In this approximation, the contribution from the
surrounding dipoles to the LF EL [the second term in Eq. (1)]
is substituted with a field from an effective dipole ring with the
radius la , such that the polarizability of the nearest six atoms is
evenly redistributed along the ring. The NRA is thus a further
simplification of the NNA, making the model isotropic in the
lattice plane. Within the NRA we then replace the summation
in Eq. (4) with an integration over the imaginary ring, so that
the equation for the LF becomes

EL(r) = Ein − 3

4π
Q

∫ 2π

0
EL(r + lau) (3 cos2 θ − 1) dθ, (7)

where u is a unit vector in the direction from the center r of
the effective ring to a point at the ring and θ is the polar angle
of u counted from the direction of Ein in the lattice plane. The
strength of the dipole-dipole coupling between neighboring
atoms is still given by the dimensionless parameter Q [Eq. (5)].

Equation (7) has a uniform (Lorentz) solution

ĒL = δ + i

δ − δLL + i
Ein, (8)

where

δ
‖
LL = −3

4
Qa (9)

is the normalized frequency detuning at which the Lorentz-
Lorenz resonance is achieved in the triangular lattice of atoms
within the NRA. As we will see in Sec. V, δLL differs for the

“‖” and “⊥” configurations, but to simplify the formulas, we
omit the index “‖” everywhere in this section and in Sec. IV,
except for Eq. (9). From Eq. (8) one can see that, if |δLL| ∼
Qa � 1, the uniform Lorentz LF is suppressed when the laser
is tuned closely to the exact atomic resonance, δ ≈ 0, reaching
its minimum intensity

|ĒL|2min ≈ |Ein|2
1 + δ2

LL

. (10)

The LF in this case is effectively “pushed out” by the lattice
atoms. Interestingly, a huge LF enhancement is reached at a
red-shifted frequency, at δ ≈ δLL < 0, where

|ĒL|2max ≈ (
1 + δ2

LL

) |Ein|2. (11)

Note that Eqs. (8), (10), and (11) are very similar to the
corresponding equations for 1D arrays of atoms which were
discussed in Refs. [1,2]. The only difference is that the relation
between δLL and Qa there was δLL = −Qa if Ein is parallel
to the array (and dipoles are aligned “head-to-tail”) and δLL =
Qa/2 if Ein is perpendicular to the array (and dipoles are
aligned “side-to-side”), assuming the NNA [see, e.g., Eq. (3.4)
of Ref. [2]]. Here, within the NRA, δLL does not depend on the
incident field polarization in the lattice plane. Quite naturally,
its value (9) lies in-between the two values for the 1D array,
because mutual orientations of different pairs of dipoles in the
lattice vary between the two extremes.

The frequency dependence of a spatially uniform LF, like
in Eq. (8), and the associated Lorentz shift are long-known
phenomena. A similar effect was also observed experimentally
in alcali vapors [15]. The unusual new phenomenon is that in
ordered low-dimensional structures there are spatially varying
solutions, which we call locsitons [1], that emerge at some
values of Q in addition to the uniform LF. We will look for the
locsitons in the form of 2D plane-wave excitations of the LF:

�EL ∝ exp(iq · r/la), (12)

where q is the normalized wave vector of the locsiton.
By substituting EL = ĒL + �EL into Eq. (7) we obtain the
dispersion relation for the wave vector q in an integral form:

1 + 3Q

4π

∫ π

0
(3 cos 2θ + 1) cos[q cos(θ − ψ)] dθ = 0, (13)

where ψ is the polar angle of q counted from the direction
of Ein in the lattice plane. Using the standard expansion of
trigonometric functions with a harmonic argument into Bessel
functions [see, e. g., Eq. (21.8-25a) in Ref. [16]],

cos(q sin φ) = J0(q) + 2
∞∑

m=1

J2m(q) cos(2mφ), (14)

where Jm(q) is the Bessel function of the first kind, we evaluate
the integral in Eq. (13) in an explicit form and write Eq. (13)
as

1 + 3
4Q [J0(q) − 3J2(q) cos(2ψ)] = 0. (15)

By substituting Q from Eqs. (5) and (9), we can rewrite
the last formula as an explicit dispersion relation connecting
the normalized detuning δ with the normalized locsiton wave
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vector q which is represented by its polar coordinates q and ψ :

DNRA
2 (q) ≡ J0(q) − 3J2(q) cos(2ψ) = δ + i

δLL
. (16)

In the limit of low absorption, i. e., |δLL| � 1, the right-
hand side of Eq. (16) may be replaced with δ/δLL. A
more detailed analysis of the dispersion relation shows that
spatial oscillations—locsitons with almost real q—emerge
in a limited frequency band around ω0 with a normalized
bandwidth ∼|δLL|. It is exactly the frequency range where
the interaction between resonant atomic dipoles may become
comparable to or much stronger than the effects of the external
field Ein. The dispersion dependence δ/δLL = DNRA

2 (q) in
this case is shown in Fig. 2(a), where the external field
is assumed to be aligned with the x axis. At every given
laser frequency ω, locsitons with a whole range of wave
vectors q may be excited. This set of q, all having different
orientations, is represented by an isoline for the respective
δ/δLL = DNRA

2 (q) in Fig. 2(a). Recalling that δLL < 0 [see
Eq. (9)], we may notice that solid isolines (red shaded areas)
correspond to red-shifted laser frequencies (ω < ω0), while
dashed isolines (blue shaded areas) correspond to blue-shifted
frequencies. The noncircular shape of the isolines reflects the
highly anisotropic dispersion dependence for locsitons in the
2D lattice in the case of short-wave locsitons. In particular, at
any given normalized frequency detuning δ, locsitons with
different orientations of q with respect to Ein may have
very different q and, consequently, different wavelengths. At
the same time, because the NRA describes the lattice in an
averaged way, the orientation of Ein with respect to the lattice
does not affect the result.

In the general case, especially when looking at the lim-
itations on the size of the structure, one needs to consider
complex locsiton wave vectors q = q′ + iq′′ in the dispersion
relations (13) or (16), like it was done for 1D arrays of resonant
atoms in Ref. [2]. This would allow the description of the
dissipation of 2D locsitons, which is most prominent near
the Lorentz resonance, and evanescent locsitons, which exist
outside the locsiton band. One can also calculate the group
velocity of the locsiton, vgr = (la/T )(dδ/dq), by taking a
derivative of Eq. (16). Due to the anisotropy of Eq. (16), one
may expect that the resulting dissipation and group velocity are
highly dependent on the orientation of q with respect to Ein.

By its nature, the NRA only works well for long-wave
locsitons, i.e., those with relatively small q. Indeed, for
a long-wave locsiton, the LF at neighboring atoms differs
insignificantly, so one may reasonably expect that replacing the
neighboring dipoles at their actual positions with an effective
dipole ring will not cause a significant change to the result. Our
results obtained without resorting to the NRA (see Sec. III B)
suggest that the NRA provides a good quantitative description
of locsitons for q � π/2, while it gives reasonable qualitative
estimates for q up to ∼ π . One may use the two first terms
from the Taylor series expansion to analyze Eq. (16) at
small q, which is easy to do by recalling that J0(q) = 1 −
1
4q2 + O(q4) and J2(q) = 1

8q2 + O(q4) [cf. Eq. (21.8-3) in
Ref. [16]], so

DNRA
2 (q) ≈ 1 − 1

8q2[2 + 3 cos(2ψ)] + O(q4). (17)

K

M

Γ

K

MΓ

FIG. 2. (Color online) Dispersion dependences for locsitons in
a triangular lattice of atoms (a) in the near-ring approximation;
(b) for Ein ‖ �K; (c) for Ein ‖ �M. Isolines of equal D2(q) are spaced
at 0.25 (i. e., they correspond to the ticks on the color bars); solid
isolines and red shading correspond to positive D2(q), dashed isolines
and blue shading correspond to negative ones, while the thicker solid
isoline marks the zero level. The hexagons in plots (b) and (c) show
the boundaries of the first Brillouin zone.

In the long-wavelength limit, DNRA
2 (q = 0) = 1 is reached at

δ = δLL, yielding the uniform, Lorentz, solution for the LF.
The second term in the right-hand side. of Eq. (17) indicates
that the anisotropy with respect to the locsiton polarization
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shows up even at very small q, where Eqs. (16) and (17) can
be rewritten as

q2 = − 8

2 + 3 cos(2ψ)

(δ − δLL) + i

δLL
. (18)

Note that in describing locsitons at very small q (i.e., for
δ ≈ δLL), the imaginary unit in the last formula cannot always
be neglected compared to δ − δLL. The locsiton dissipation
in this case may become significant, depending on δLL, and
the necessity of considering complex q could appreciably
complicate calculations. We will not go into the details of
this special case in the present article.

In 1D arrays of atoms, the Lorentz resonance, δ = δLL,
always coincides with one of the edges of the locsiton
frequency band [1,2]. In that case, when one tunes the
frequency of the incident laser beam toward ω0 from the side of
the Lorentz resonance, locsitons with the longest wavelength
emerge first very close to the Lorentz resonance. The locsiton
wavelength subsequently decreases as we approach and move
past ω0. In a 2D lattice, the Lorentz resonance lies within
the locsiton band, which means that, when similarly tuning
the laser frequency toward ω0, short-wave locsitons will be
excited first. In particular, locsitons with ψ ≈ ±π/2 (i.e.,
nearly transverse locsitons) may be exited at δ/δLL > 1 and
can be thus viewed as the “easiest to excite” on the Lorentz
side of the band. On the opposite, “anti-Lorentz” side of the
band, where δ/δLL � −1, nearly longitudinal locsitons with
ψ ≈ 0 or π lie closer to the band edge and thus are easier to
excite. The exact positions of the edges of the locsiton band
cannot be found within the NRA, because minima and maxima
of DNRA

2 (q) are reached at such q where the NRA may only be
used for qualitative estimates. The case of larger q is addressed
when we go beyond the NRA in the next subsection.

B. Locsitons in the first Brillouin zone

When going beyond the NRA, the orientation of Ein within
the lattice plane becomes an important factor, except for small
q. Staying within the NNA, i.e., only taking into account the
six nearest neighbors in Eq. (4) (but individually, instead of
them being washed out over the ring, as in the NRA), we are
still able to approach the problem analytically. The resulting
equation is

EL(r)=Ein − Q

4

∑
uK

{3uK[EL(r+lauK) · uK]−EL(r + lauK)},
(19)

where uK denotes any of the six unit vectors pointing in the
directions from the atom (located at r) to one of its nearest
neighbors.

The uniform, Lorentz, solution of Eq. (19) is still given by
Eq. (8) and (9), which supports the above-mentioned conver-
gence of the NRA and NNA results at q → 0. Spatially varying
locsiton solutions are found as in the previous subsection by
using the ansatz (12) in Eq. (19). The corresponding dispersion
relation δ(q) for locsitons in a 2D triangular lattice can be now
written as

DNNA
2 (q) ≡

2∑
n=0

(
cos 2θn + 1

3

)
cos[q cos(θn−ψ)] = δ + i

δLL
,

(20)

where θn = θ0 + nπ/3 and q is represented by its polar
coordinates q and ψ . The orientation of the lattice with respect
to the incident field Ein is described by θ0, which is the angle
that one of the vectors uK makes with Ein (the fact that θ0 is
not unique does not affect the result). The ultimate proof that
the results of the NRA and the more precise NNA converge for
long locsiton wavelengths can be obtained by taking a Taylor
series expansion of Eq. (20) at q → 0. By only retaining terms
up to the order of q2 and calculating all the necessary sums
and products of trigonometric functions, we find that Eqs. (17)
and (18) still hold in the NNA.

It is sufficient to find locsitons with q lying within the first
Brillouin zone of the reciprocal lattice, because any solutions
with q lying outside the first Brillouin zone are physically
equivalent to them due to the discrete nature of our system. The
dispersion relation DNNA

2 (q) in Eq. (20) also has the required
symmetry and periodicity. It is common to use high-symmetry
points in the first Brillouin zone to denote most interesting
directions in the lattice [see Fig. 1(b)]. Note that in terms of
uK we may write �K ‖ uK and �M ⊥ uK.

The dispersion dependence δ/δLL = DNNA
2 (q) in the case

of |δLL| � 1 is shown in Figs. 2(b) and 2(c) for two different
orientations of Ein with respect to the lattice: in Fig. 2(b) θ0 = 0
(i.e., Ein ‖ �K), while in Fig. 2(c) θ0 = π/2 (i.e., Ein ‖ �M).
The x axis on the plots is aligned with the external field Ein;
the hexagonal boundaries of the first Brillouin zones are shown
with thicker dashed lines. The central parts of all three plots in
Fig. 2 are very similar, which reflects our finding that Eqs. (17)
and (18) hold for long locsiton wavelengths within both NRA
and NNA. At the same time, significant differences accumulate
closer to the boundaries of the first Brillouin zone. Figures 2(b)
and 2(c) also show that for both orientations of Ein the maxima
and minima of DNNA

2 (q) are attained at the zone boundaries,
specifically, at different M points.

To facilitate the comparison of the three plots in Fig. 2 and
finding the edges of the locsiton band, the NNA dispersion
dependencies for two high-symmetry directions are presented
in Fig. 3 and compared to the the NRA result. For both longi-
tudinal and transverse locsitons, Fig. 3 shows corresponding
cross sections of the three plots of Fig. 2. As we already noted
earlier in this article, the NRA result is only meaningful for
q up to ∼ π ; Fig. 3 suggests that it is a good approximation
for the NNA result at q � π/2, regardless of the orientation
of Ein with respect to the lattice. It is instructive to give
explicit analytic expressions for each of the four NNA-based
dependencies in Fig. 3. The respective dispersion relations
derived from Eq. (20) and the corresponding ranges for δ/δLL,
obtained in the assumption that |δLL| � 1, are as follows:

(a) Ein ‖ �K, q ‖ �M ⊥ Ein [long-dashed line in
Fig. 3(a)],

cos
q
√

3

2
= 4 − 3

δ + i

δLL
, (21)

1 � δ

δLL
� 1

2

3
; (22)

(b) Ein ‖ �M, q ‖ �K ⊥ Ein [solid line in Fig. 3(a)],

cos
q

2
= 1

8

(
5 ±

√
57 − 48

δ + i

δLL

)
, (23)
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(a)

(b)

FIG. 3. Dispersion dependences for (a) transverse locsitons (q ⊥
Ein) and (b) longitudinal locsitons (q ‖ Ein) in a triangular lattice of
atoms. Different curves correspond to the near-ring approximations
(NRA) and the NNA for two different orientations of q with respect
to the lattice.

−2
1

3
� δ

δLL
� 1

3

16
, (24)

where the minimum of δ/δLL is reached outside the first
Brillouin zone; this point more appropriately belongs to the
case (d) below;

(c) Ein ‖ �K, q ‖ �K ‖ Ein [solid line in Fig. 3(b)],

cos
q

2
= 1

16

[
1 ±

√
1 + 32

(
4 + 3

δ + i

δLL

)]
, (25)

−1
33

96
� δ

δLL
� 1

2

3
; (26)

where the maximum of δ/δLL is reached outside the first
Brillouin zone, which point more appropriately belongs to
the case (a);

(d) Ein ‖ �M, q ‖ �M ‖ Ein [long-dashed line in
Fig. 3(b)],

cos
q
√

3

2
= 1

5

(
2 + 3

δ + i

δLL

)
, (27)

−2
1

3
� δ

δLL
� 1. (28)

The inequalities (24) and (26) also represent the edges of
the locsiton bands for the cases of Ein ‖ �M and Ein ‖ �K,

respectively (which explains our desire not to restrict the
range of q to the first Brillouin zone when obtaining these
inequalities). Note that locsitons with the largest red shift
(δ/δLL > 0) can be achieved with Ein ‖ �K, while locsitons
with the largest blue shift (δ/δLL < 0) can be achieved with
Ein ‖ �M. Therefore, reorienting the lattice with respect to the
polarization of the incident laser beam may assist in controlling
the type of locsitons excited in the lattice.

IV. FINITE LATTICES: IN-PLANE POLARIZATION

In this section, like in Sec. III, we only consider the case
where Ein is spatially uniform and lies in the lattice plane (the
“‖” case), which is easier to achieve if the laser beam is incident
normally to the lattice plane. The presence of boundaries and
defects in 2D lattices of resonant atoms can cause various
locsitonic effects, including giant LF resonances, formation
of dipole strata, and “magic” cancellation of the resonant
LF suppression. These effects are similar in their nature to
their counterparts in 1D arrays of resonant atoms [1,2], but
their manifestations are much more diverse because of the
inherent anisotropy of the dipole-dipole interaction in the
2D case, especially in the “‖” geometry. Because of this, an
all-encompassing study of finite 2D lattices is hardly possible
within this pilot study on the subject, so we will restrict
ourselves to providing some of the most characteristic results,
which emphasize distinctions from the 1D problem.

A. Size-related resonances and local-field patterns

Locsitons in a finite 1D array of atoms exhibit size-
related resonances, characterized by large increases in their
amplitudes at certain frequencies within the locsitonic band,
because locsitons are reflected at the boundaries and form
standing waves (strata) [1,2]. Essentially, these resonances
correspond to locsiton eigenmodes defined by the boundaries.
For the long-wave strata they are similar to oscillations of a
quantum particle in a box, as, e.g., for 1D-confined electrons
[10,11] or a common violin string. It is natural to expect such
resonances and eigenmodes to also exist in higher dimensions,
in particular, in finite 2D lattices, where we also encounter
locsiton reflections at the boundaries. An important distinction
of the 2D case is that the wave vector q of a locsiton may have
an arbitrary orientation in the lattice plane with respect to
the incident field Ein. Multiple reflections and interference of
locsitons with all possible q quickly make the whole picture
very complicated and highly susceptible to minor changes to
the size and shape of the lattice patch. We found that at certain
geometries only a limited number of locsiton eigenmodes are
dominant. Their interference produces various dipole patterns
and strata; some of them are reminiscent of “quantum carpets”
[12]. An important issue is, therefore, how one can control the
locsiton patterns via the geometry of the lattice patch and the
frequency and polarization of the laser beam.

One way to engineer a distinct 2D locsiton pattern is to start
with a rectangular lattice patch and ensure that size-related
resonances are achieved for locsitons with wave vectors
parallel to its boundaries. We have to choose the lattice shape,
such that the size-related locsiton resonances emerge in both
dimensions at the same frequency detuning δ. To simplify our
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task, we will consider long-wavelength locsitons, which are
not too sensitive to the system sizes and thus are easier to
control and, incidentally, also form more pronounced patterns
and are described by the simpler formula (18).

In the limit of long-wavelength locsitons (q � 1, δ ≈ δLL),
the dispersion relations in the cases (a) and (b) described in
Sec. III B coincide with each other:

q2 = 8
(δ − δLL) + i

δLL
(29)

[cf. Eq. (18) at ψ = π/2]. In a similar manner, one obtains
approximate solutions for the cases (c) and (d), for which
ψ = 0:

q2 = −8

5

(δ − δLL) + i

δLL
. (30)

By combining the cases (a) and (b) or the cases (c) and
(d), we can achieve simultaneous size-related resonances, i.e.,
excitations of eigenmodes in both orthogonal directions in a
patch of the 2D triangular lattice at the same laser frequency,
if the patch is approximately square in shape. Resonances
of the same order are hereby attained for locsitons with
wave vectors pointing in the two orthogonal directions; a
sufficient “squareness” of the lattice patch can be achieved
by choosing its size (i.e., the numbers of atoms in the two
directions). Locsitons with shorter wavelengths or with wave
vectors pointing in different directions will be also present, but
they will have no significant influence on the emerging dipole
pattern due to their nonresonant nature.

Figure 4 shows vector patterns that are formed by the atomic
dipoles induced by the LF. The atoms are arranged in a 48 × 56
patch of an equilateral triangular lattice, which results in
approximately equal sides of the patch. The field of the incident
electromagnetic wave is uniform and polarized along the

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

y

x

FIG. 4. Vortices in the distribution of the local field in a nearly
square patch of a 2D triangular lattice of atoms at δ = −1000 and
δLL = −987.375. To avoid overcrowding of the plot, only one of
each nine dipoles is shown. The incident light wave is polarized in
the lattice plane along the diagonal of the lattice patch, its field is
shown with a big arrow.

diagonal of the patch and its frequency is close to the electronic
resonance of the two-level atom. The frequency of the incident
wave is so chosen that the third size-related resonance (in
the order of increasing wave numbers, counting only those
resonances allowed by the symmetry of the problem; for more
detail see Ref. [2]) is excited in each dimension. Eight distinct
vortices of the LF are visible in the plot. Figure 4 only shows
the imaginary parts of the complex field amplitudes, because
they are dominant for each of the resonant locsitons. (We would
like to note that a pair of vortices, apparently consistent with
2D-locsiton patterns originated by the first locsiton resonance
in our classification, was very recently observed in numerical
simulations of plasmonic excitations in a 2D lattice of small
metallic particles [17].)

B. “Magic shapes”

As we noted in subsection III A, the LF is “pushed out”
of the lattice of strongly interacting dipoles at the exact
atomic resonance [see Eq. (10)]. This effect, which we call
the resonant LF suppression, represents a typical LF behavior
at the atomic resonance; it is not limited to 2D lattices but also
occurs in 1D arrays of interacting atoms [1,2] and in many
finite 2D structures. We have shown earlier that in the 1D
case, if a linear array of atoms is of a certain “magic size,”
one encounters a cancellation of the resonant LF suppression,
where one of the size-related locsitonic resonances partially
restores the LF in the system [1,2].

Finite 2D lattices and similar small systems of resonant
atoms provide especially interesting examples of cancellation
of the resonant LF suppression. Unlike in 1D arrays of atoms,
the “restoration” of the LF in such systems at δ = 0, compared
to that in the uniform, Lorentz, case, can be more complete
(up to 100%). Like in the 1D case [1,2], the 2D “magic
shapes” have a certain “cabbalistic” streak. For example, in
the NNA the effect is most pronounced only in a system of
N = 13 atoms arranged as an equilateral six-point star with an
atom at the center, for which the maximum restoration of the
LF is reached, Emax/Ein ≈ 1.02. The directions and relative
amplitudes of the LF at the atoms in this system are shown
in Fig. 5(a) for Ein ‖ uK and in Fig. 5(b) Ein ⊥ uK. It is very
notable that the system is “magic” for both orientations of
the incident field. One can see from the picture that the LF

FIG. 5. “Magic” planar system of 13 resonant atoms for two
different orientations of Ein shown in plots (a) and (b). The inset
illustrates the geometry of the system.
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is concentrated on the outermost atoms and the one at the
center, while the LF at the inner hexagon of atoms is almost
completely suppressed. This suppression is a manifestation
of a special case of a locsiton standing eigenwave in a finite
discrete atomic structure. (Within the NNA, the LF zeros out
at the “empty” atomic locations outside the outer hexagon,
so locsitons make a 2D standing wave.) In general, the zeros
(nodes) of that wave are located somewhere in between atoms,
so at each individual atom we have a nonzero LF amplitude.
However, in the magic atomic configuration at the precise
atomic resonance, δ = 0, these nodes nearly coincide with the
locations of the inner-hexagon atoms. Thus, we have a nearly
ideal picture of a 2D standing wave, with large LF intensities
at the antinodes (maxima), located at the central atom and
the outer hexagon atoms, on one hand, and nodes (zeros),
located at the inner-hexagon atoms, on the other hand. To an
extent, this situation is reminiscent of a 2D standing wave
on a water surface in a round bucket with the first antinode
at the center of the bucket, where some middle observation
points are located at the nodes of the wave. Any symmetry
distortion in this system (e.g., by attaching a foreign atom or
molecule to it) would break the balance of the local fields
in the system and bring back the resonant LF suppression,
which is canceled in the symmetric “magic system.” This
effect could potentially lead to designing nanometer-scale
sensors for detecting various biological molecules, and so on.
For example, such a nanodevice may include target-specific
receptor molecules that form a locsiton-supporting “magic”
system. A localized locsiton then would get suppressed
whenever a target biomolecule attaches to a receptor, otherwise
the locsiton suppression at the electronic resonance would be
“magically” canceled.

V. LOCSITONS IN TRIANGULAR LATTICES:
NORMAL POLARIZATION

The “⊥” configuration, where the incident field is polarized
at the normal to the lattice plane, may be realized, for example,
by creating a standing wave by two counterpropagating laser
beams with the beam axes lying in the lattice plane. For systems
much smaller than the laser wavelength, the incident field may
be then assumed nearly uniform. Locsitons emerging in the
“⊥” configuration are similar in many respects to 1D locsitons
discussed in detail in Ref. [2], so here we only provide a
brief overview of the “⊥” case and outline the most distinctive
features appearing in this geometry.

Let us start again with describing locsitons in unbounded
lattices. The most general equation for the LF in the “⊥” case
is obtained from Eq. (4) by setting Ein(r) ‖ EL(r) ⊥ u:

EL(r) = Ein(r) + Q

4

r′ �=r∑
lattice

l3
a

|r′ − r|3 EL(r′). (31)

As in the “‖” case, we will assume here that the incident
optical field is uniform, Ein(r) ≡ Ein, which will help us to
build a clearer understanding of the locsiton behavior in 2D
lattices. For an equilateral triangular lattice, Eq. (31) can be
simplified using the NNA as

EL(r) = Ein + Q

4

∑
uK

EL(r + lauK). (32)

Equation (32) has a uniform, Lorentz, solution, which is given
by Eq. (8) with δLL = δ⊥

LL where

δ⊥
LL = 3

2Qa, (33)

which is three times the NNA value for δLL in a 1D array of
atoms if Ein is perpendicular to the array (and the dipoles are
aligned “side-to-side”) [2]. This is a consequence of each atom
having now six instead of two neighbors.

To obtain the corresponding dispersion relation δ(q) for “⊥”
locsitons in the lattice, we substitute the LF EL(r) in Eq. (32)
as a sum of the Lorentz solution given by Eqs. (8) and (33)
and 2D plane-wave excitations (12). This dispersion relation
can be written as

DNNA
2⊥ (q) ≡ 1

3

2∑
n=0

cos[q cos(θn − ψ)] = δ + i

δ⊥
LL

, (34)

where, as in subsection III B, θn = θ0 + nπ/3. In the long-
wavelength limit,

DNNA
2⊥ (q) ≈ 1 − 1

4
q2 + O(q4), (35)

so that the uniform, Lorentz, solution for the LF is reached
at δ = δ⊥

LL, where DNNA
2⊥ (q = 0) = 1. The second term in the

right-hand side of Eq. (35) is independent of the orientation
of q, which means that no anisotropy caused by the lattice
structure is present in the long-wavelength limit. We may thus
conclude that, compared to the “‖” case, the locsitons in the
“⊥” configuration are more reminiscent of the locsitons in
1D arrays of resonant atoms considered in Refs. [1,2]. There
is still no complete analogy here, as, e.g., the second term
in the right-hand side of Eq. (35) differs by a factor of 1/2
from the 1D result [2]. Moreover, dispersion relation (34) does
become anisotropic for larger q, closer to the boundaries of
the first Brillouin zone. This anisotropy, however, is by far less
pronounced than that in the “‖” case.

It is instructive to also obtain the dispersion relation in
the NRA. By replacing the summation in Eq. (34) with
an integration over the “near ring,” following the procedure
outlined in Sec. III A, we get

1 − 3Q

2π

∫ π

0
cos[q cos(θ − ψ)] dθ = 0. (36)

The resulting dispersion relation turns out to be independent
of the orientation of q:

DNRA
2⊥ (q) ≡ J0(q) = δ + i

δ⊥
LL

, (37)

which is not surprising given the NRA applicability in the
long-wavelength limit.

While it might be somewhat harder to create a uniform
incident field polarized normally to a 2D lattice, the resulting
locsitons could be much easier to control because of the
small anisotropy of the interatomic interactions in the “⊥”
geometry, compared to the “‖” geometry. For example, defects
in a 2D lattice can support localized locsitons, not unlike the
evanescent 1D locsitons discussed in Ref. [2]. Compared to
the complex locsiton patterns emerging in the “‖” geometry
(cf. Fig. 4) these localized locsitons are more likely to form
well-organized stratalike patterns in the “⊥” geometry.
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FIG. 6. Spatial strata of the normalized local field around a 15-
point-wide hole in a 2D triangular lattice at δ = 100 and δLL = 103.5.
The direction of the incident field is shown with a big arrow.

Figure 6 shows concentric dipole strata that are formed
around a circular hole made by removing a few tens of atoms
from a triangular lattice. The locsiton “attached” to the defect
“decays” as the distance to the hole boundary increases, which
is mostly a “diffraction” effect, although some contribution
from the imaginary part of q (like in evanescent 1D locsitons)
is also present. In performing the numerical simulations for the
plot, we made sure that the locsitons attached to the outside
boundaries of the lattice patch (lying far outside the plotted
region) do not interfere with the locsiton localized at the defect.

VI. CONCLUSIONS

In this article we presented a detailed study of locsitons
in nanoscale 2D lattices of resonant atoms with strong dipole
interaction. These locsitons (i.e., excitations of the local field)
and various associated effects were originally predicted in our
recent publication [1]. Here, we have built analytic models
for locsitons in infinite 2D triangular lattices of atoms, based

either on the nearest-neighbor approximation or on the simpler
near-ring approximation.

We have shown that the “in-plane” polarization geometry,
where the incident laser field lies in the lattice plane, enables
locsitons with the most unusual and diverse properties, as
compared to the 1D case described in detail in Ref. [2].
In particular, the dispersion relations for the locsitons with
an in-plane polarization are highly anisotropic with respect
to the orientation of the locsiton polarization relative to
its wave vector in the lattice plane, because of the highly
anisotropic nature of the dipole-dipole interaction. We further
demonstrated a method to design a finite 2D lattice such that
distinct vector locsiton patterns are formed at a certain laser
frequency, the patterns containing multiple vortices in the local
field distribution.

We have also considered a remarkable effect of a cancella-
tion of the resonant local field suppression [1], which consists
in the local field being able to penetrate certain “magic shapes”
made of resonant atoms, despite the nearly universal tendency
of the local field to be “pushed out” of the lattice at the exact
atomic resonance. In particular, we provided more detail on
the local field distribution in the simplest “magic shape” that
can be cut out of a triangular lattice—a six-pointed star with
an atom at the center.

In the case where the incident field is polarized normally
to the lattice, we found that locsitons bear more analogy to
locsitons in 1D arrays of atoms compared to the case of an
in-plane polarization. Finally, we illustrated the role of lattice
defects in supporting localized locsitons.

While this article does not elaborate on nonlinear effects
involving 2D locsitons, to be addressed in our future publica-
tions, we note that, similarly to the 1D case [1,2], our numerical
simulations have shown optical bistability and hysteresis,
which may be especially important for potential applications
of 2D locsitons in designing all-dielectric nanoscale logic
elements, devices for signal processing, and so on.
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