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Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement
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A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive
optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation
functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the
statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution,
that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.
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I. INTRODUCTION

Nonlinear open systems often produce bistabilities or
dynamical phase transitions. A nice example is the behavior
of a Bose-Einstein condensate (BEC) in a pumped high-
finesse optical cavity, where the nonlinearity is produced by
the dispersive atom-light interaction [1–8]. The weak cavity
pumping causes a classical electromagnetic field to build up
between the mirrors. The atoms coupled dispersively to the
radiation field detune the cavity according to the overlap of
their spatial distribution with the mode function of the electric
field. Consequently, the cavity resonance frequency can be
shifted away from or toward the frequency of the pumping
laser; thereby a big variation in intensity can be induced
merely by the spatial redistribution of the atoms. In turn,
the intensity change translates into the variation of the depth
of the optical dipole potential, and so it acts back upon the
atomic distribution itself. In a tiny region of the parameter
settings close to the cavity resonance, two stable or metastable
configurations can exist, giving rise to a dynamical phase
transition.

Atom-light interaction itself is a major issue in the studies
of ultracold quantum gases, being the most universal tool
in accessing the properties of the system either by slowing
the cloud of atoms, trapping them in classical potentials,
putting obstacles in their path, or finally detecting and imaging
them. Moreover, recent proposals have raised the possibility
of quantum-state preparation of the atomic ensemble with the
help of measuring the output photon signal of a pumped optical
resonator [9–13]. The cornerstone of such a quantum-state
preparation with the help of a quantum nondemolition mea-
surement is also the mutual back-action between the atomic
and photonic degrees of freedom. The study of correlations
between atomic motion and light generated by atom-light
interactions in an optical cavity is therefore of fundamental
importance.

An important area of research on the manifestation of
light-matter interaction is optomechanics, where the radiation
pressure force of a single-mode Fabry-Pérot resonator is used
to manipulate the center-of-mass motion of a mechanical
oscillator. For a short review of optomechanical systems and
their experimental realizations, see Ref. [14] and references
therein. The reason for the popularity of optomechanical stud-
ies, besides experimental realizability, is that the theoretical

description can be performed relatively simply, involving only
the few modes of the cavity field and one mode for the motion
of the mirror [15–17]. Such a paradigmatic system is an ideal
playground to test correlations between light and mesoscopic
objects, to understand the underlying physics, and to speculate
on possible applications in quantum information processing.

In recent experiments done with ultracold bosons in optical
resonators, the above concepts unify nicely [1–8]. The cavity
radiation field couples to a single collective motional excitation
of the Bose-condensed atomic sample. Starting the experiment
with a pure Bose-Einstein condensate, other motional excita-
tions can be safely disregarded and so a situation analogous
to optomechanics can be realized, not with a movable mirror
but rather with the collective motion of an ensemble of atoms.
The differences between the experimental tools (manipulation
and detection methods) of traditional optomechanical systems
and those with ultracold gases nicely complement each other,
while the theoretical description is very similar.

The aim of the present paper is to discuss correlations
generated in a hybrid system of ultracold bosons and the
radiation field, especially those close to the region of parameter
settings where the system shows bistability and where the
optomechanical simplification can be harvested. Photons
leaking out of the resonator make the cavity field noisy,
which infiltrates the dynamics of atomic motion [5,18,19].
In turn, quantum fluctuations of the atom field have a back-
action on the photon statistics. Correlated fluctuations of the
light and matter wave fields appear then, which are strongly
enhanced close to the critical regime of bistability. The study
of correlations is further motivated by the need to justify the
basic assumption of the generally used mean-field theories
[18,20–25], namely, that the atom-photon cross correlations
are negligible and mean values of the light and atomic
operators can be decoupled.

The paper is organized as follows. The backbone of the
paper is Sec. II, where the model and the theoretical description
of the system at the mean-field level is presented in great
detail. Many of the elements of other theoretical models, for
example, the cavity cooling of BEC excitations [21], spatial
self-organization of a BEC in the cavity [22,26], and transient
collective atomic recoil lasing [27,28] are recapitulated to give
a full account of the mean-field dynamics of a BEC in a
cavity. The aim, partially, is to reach the optomechanical model
and discuss the assumptions and approximations involved
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in arriving at that model. Special attention is paid to the
effect of nonlinearities: (i) the nonlinearity caused by atom-
light interaction, responsible for the creation of a periodic
optical potential and also for an effective atom-atom collective
interaction, and (ii) the nonlinearity caused by atomic s-wave
collisions. In Sec. III, we present mean-field results and
compare them to experimental observations, wherever appli-
cable. Furthermore, the autocorrelations and cross correlations
of the quantum fluctuations of the fields are calculated in
the stationary state formed by the balance of cavity loss
and vacuum noise driving. Finally, a summary is given in
Sec. IV.

II. THEORETICAL DESCRIPTION OF THE SYSTEM

The system consists of a single-mode, high-finesse optical
Fabry-Pérot resonator with a waist much smaller than the
cavity length and a sample of dilute, ultracold bosonic atoms
prepared to be Bose-Einstein condensed. The condensate is
supposed to be cigar shaped along the cavity axis, with a strong
transverse confinement. The radiation field inside the cavity is
pumped through one of its mirrors by a laser with frequency ωP

and wavenumber k = ωP /c, where c is the speed of light. The
laser frequency is far detuned from the atomic transitions, so
the populations of the electronic excited states are negligible.
In this limit, the atomic internal degrees of freedom are frozen,
and the atom-light interaction is purely dispersive. On the
other hand, the cavity frequency ωC lies close to the pump
frequency ωP : the detuning �C = ωP − ωC is comparable to
κ , the latter being half of the inverse lifetime of a photon inside
the cavity.

A. Hamiltonian

In the frame co-rotating with the pumping laser field, the
Hamiltonian of the system can be approximated as

H = HA + HC + HAC + HCL + Hvac, (1a)

where HA is the Hamilton operator of the ground-state atoms
inside the cavity, given by

HA =
∫

�†(x)

[−h̄2

2m

d2

dx2
+ Vext(x) + g

2
�†(x)�(x)

]
�(x) dx,

(1b)

where m is the mass of the atoms, Vext(x) is the external
confining potential along the cavity axis, and g is the s-wave
scattering constant in one dimension. The term HC of the
Hamiltonian describes the radiation field of the empty, single-
mode cavity,

HC = −h̄�C a†a. (1c)

The dispersive interaction between the cavity radiation field
and the atoms in this low excitation limit is given by the
ac Stark shift, or light shift:

HAC = h̄U0 a†a

∫
�†(x)�(x) cos2(k x) dx, (1d)

where U0 is the single-atom light shift, U0 = g2
CA/�A; the

unique longitudinal mode function of the single-mode cavity

is cos(kx) with wavenumber k = ωP /c = 2π/λ. The part
describing the coupling of the cavity field to that of the pump
laser is given by

HCL = ih̄(η∗a − ηa†), (1e)

where η is the strength of the driving field; the asterisk stands
for complex conjugation. The last part of the Hamiltonian,
Hvac, describes the interaction of the cavity field with the
broadband reservoir of external radiation field modes via the
partially transmissive mirrors. We account for this interaction
within the Markov approximation by means of introducing
a loss rate 2κ and a Gaussian white noise operator ξ (t) in
the Heisenberg equation of motion for the field operators
[29].

B. Equations of motion

The equation of motion of the photonic annihilation
operator is given by

i
d

dt
a(t) =

[
−�C +

∫
�†(x,t)�(x,t)U (x) dx − iκ

]
a(t)

+ iη + iξ (t), (2a)

with U (x) = U0 cos2(kx) the local single-atom light shift,
which is a periodic function. Its period is noticeably L = λ/2,
since it contains the mode function squared. The operator ξ (t)
describes Gaussian white noise with zero mean and with the
only nonvanishing correlation

〈ξ (t)ξ †(t ′)〉 = 2κδ(t − t ′). (2b)

It is nicely exhibited in Eq. (2a) that the dispersive inter-
action between the atoms and the radiation field causes a
shift in the resonator frequency proportional to the atomic
density �†(x,t)�(x,t). However, this frequency shift is an
operator and couples the equations of motion of the radiation
field to those of the atomic field operators in a nonlinear
way. The equation of motion of the atomic field operator
reads

ih̄
∂

∂t
�(x,t) =

[
− h̄2�

2m
+ Vext(x) + h̄a†(t)a(t)U (x)

+ g�†(x,t)�(x,t)

]
�(x,t). (2c)

In the atomic part of the equation of motion [Eq. (2c)],
in addition to the inert trap potential Vext, the atom-light
interaction creates a λ/2 periodic optical potential for
the atoms, proportional to the dynamical photon number
operator a†a.

C. Mean-field solution

To solve the coupled nonlinear operator equations (2) simul-
taneously is a hard task. The most convenient approximation
is the mean-field approximation, when one first separates the
operators into a mean value and to fluctuations around it:

�(x,t) = √
Nϕ(x,t) + δ�(x,t), (3a)

a(t) = α(t) + δa(t). (3b)
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The mean values are c-numbers, defined as ϕ(x,t) =
N−1/2〈�(x,t)〉, the so-called condensate wave function, which
is normalized to unity; α(t) = 〈a(t)〉 is the coherent part
of the cavity field. Consequently, the fluctuations have zero
mean. The time evolution of the mean values is obtained
by substituting Eqs. (3) into the equations of motion (2)
and neglecting all terms containing fluctuations. In this way,
one arrives at a Gross-Pitaevskii-like set of equations of the
coupled dynamics

i
d

dt
α(t) = [−�C + N〈U 〉 − iκ] α(t) + iη, (4a)

ih̄
∂

∂t
ϕ(x,t) =

[
− h̄2�

2m
+ Vext(x) + h̄|α(t)|2U (x)

+ g N |ϕ(x,t)|2
]
ϕ(x,t), (4b)

with the notation 〈U 〉 ≡ ∫
ϕ∗(x,t)U (x)ϕ(x,t) dx.

There is a simplification of the numerical problem due to
the possible separation of time scales. The time evolution
of Eq. (4a) is governed by two characteristic frequencies,
namely the detuning �C and the photon loss rate κ . In
Eq. (4b), the characteristic frequency is set by the recoil
frequency ωR = h̄k2/(2m). In experiments the latter frequency
is usually several orders of magnitude smaller than the former
ones. For example, in the experiments of Esslinger and
colleagues [1,3,4], the parameters |�C | ∼ κ ≈ 2π × 1 MHz,
while the recoil frequency is about ωR ≈ 2π × 4 kHz. In this
situation the dynamics of the resonator field relaxes very fast
compared to the dynamics of the atomic motion and therefore
can be considered instantaneous with respect to the relaxation
of the condensate. One can assume for any given atomic
configuration that the resonator field has already reached its
steady-state value, which, by Eq. (4a), is

αss = iη

�C − N〈U 〉 + iκ
. (5)

This steady-state mean field provides the optical potential in
Eq. (4b). So in the end, one only integrates Eq. (4b), with α(t)
adiabatically eliminated and inserted from Eq. (5), instead of
the coupled Eqs. (4a) and (4b). It is worth noting that, if the time
scales of the resonator field and BEC dynamics do not differ
that much, some complex coupled solutions can exist [30],
which need the simultaneous integration of Eqs. (4a) and (4b).

After the adiabatic elimination of the photon field α, the
most direct method to numerically calculate the steady state of
the BEC wave function ϕ(x) is the one based on the imaginary-
time propagation of Eq. (4b). In real time, the steady-state
solution has the time dependence

ϕ(x,t) = ϕ(x) e−iµt/h̄, (6)

with µ/h̄ the lowest frequency eigenvalue of the nonlinear
problem (4b). In imaginary time, all fluctuations around
the steady-state die out, since they propagate with higher
frequencies in real time and consequently vanish faster in
imaginary time than the steady-state solution. One just has to

renormalize the solution ϕ(x,t) after some finite propagation
time. Note that, since all quantities on the left-hand side of
Eq. (4b) are real, the condensate wave function ϕ(x) can also
be chosen as real. We also note at this point that, as is shown
later, in the case of an effective blue detuning �C − N〈U 〉 > 0,
the resonator field heats the atomic motion (some excitations
have positive imaginary parts) and there is no steady-state
condensate wave function at all. However, due to the method
of imaginary-time propagation, one can find a BEC wave
function even in this case, corresponding to a dynamically
unstable equilibrium situation.

D. Fluctuations around the mean-field solution

Having obtained the steady-state values of the BEC wave
function and the resonator field amplitude, one can look for
the fluctuations of the annihilation (and creation) operators
δa(t),δ�(x,t) (δa†(t), δ�†(x,t)) in linear order. This linear
stability analysis corresponds to the Bogoliubov theory of the
BEC system [31] and has an analogy in optomechanics and
also in other nonlinear systems, especially in hydrodynamics.
Inserting the separation of the field operators (3) into Eqs. (2a)
and (2c), and neglecting fluctuations higher than first order,
one arrives at

i
d

dt
δa(t) = [−�C + N〈U 〉 − iκ] δa(t)

+Nαss

∫
ϕ(x)U (x)[δ�̃(x,t)

+ δ�̃†(x,t)] dx + iξ (t), (7a)

ih̄
∂

∂t
δ�̃(x,t)

=
[
h̄2�

2m
+ Vext(x) + h̄|αss|2U (x) − µ + gNϕ2(x)

]
× δ�̃(x,t) + h̄U (x)ϕ(x)[α∗

ssδa(t) + αssδa
†(t)]

+ gNϕ2(x)[δ�̃†(x,t) + δ�̃(x,t)], (7b)

where the zero-order terms cancel, since they fulfill Eqs. (4b)
and (5) with dαss/dt = 0. We have introduced δ�̃(x,t) =
N−1/2δ�(x,t) eiµt/h̄.

A closer look at Eqs. (7) reveals that the time evolution
of the annihilation operators couple to those of the creation
operators. It is a consequence of the complex nature of the
photonic and particle fields. One can choose two equivalent
ways to diagonalize Eqs. (7). The first way is to separate the
complex quantities into real and imaginary parts and study
their time evolution; this is the approach mainly used in
optomechanical studies. The other way is to diagonalize the
set of equations containing not just δa and δ�̃, but also their
Hermitian adjoints δa† and δ�̃†; this approach is familiar from
the Bogoliubov-de Gennes theory of superfluidity.

Adopting the Bogoliubov-de Gennes way, we gather
the fluctuations into the following column vector R =
(δa,δa†,δ�̃,δ�̃†)T , where the superscript T stands for
transposition, and noises to the other column vector Z =
(ξ,ξ †,0,0)T . Equations (7) can now be cast into the closed
form

i
∂

∂t
R(t) = MR(t) + iZ(t), (8a)
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with

M =

⎡
⎢⎢⎢⎢⎣

A 0 NαssX NαssX

0 −A∗ −Nα∗
ssX −Nα∗

ssX

α∗
ssY (x) αssY (x) h̄−1[H0 + gNϕ2(x)] h̄−1gNϕ2(x)

−α∗
ssY (x) −αssY (x) −h̄−1gNϕ2(x) −h̄−1[H0 + gNϕ2(x)]

⎤
⎥⎥⎥⎥⎦ , (8b)

H0 = −h̄2�

2m
+ Vext(x) + h̄|αss(x)|2U (x) − µ + gNϕ2(x), (8c)

Xf (x) =
∫

ϕ(x)U (x)f (x) dx, (8d)

Y (x) = U (x)ϕ(x), (8e)

A = −�C + N〈U 〉 − iκ. (8f)

Since δa is not independent of δa† and similarly δ�̃ is
not independent of δ�̃†, the matrix M has an important
symmetry property. It is a consequence that the effect of the
Hermitian conjugation of R can be obtained with a linear
transformation C that swaps the first row with the second one
and simultaneously the third one with the fourth, so R† = CR.
It directly follows from Eq. (8a) and from this symmetry
property that

C · M · C = −M∗. (9)

In order to study the correlations of the fluctuations, one first
has to determine the time evolution of the fluctuation operators.
One has to introduce quasinormal modes that diagonalize
Eq. (8a) and therefore have a simple time evolution. Let us
denote by r (k) the right eigenvectors of M, that is,

M r (k) = ωk r (k), (10)

with ωk being the corresponding eigenvalue of M. The
fluctuation operator R can be expanded with the help of the
eigenvectors (if they form a complete set)

R(t) =
∑

k

ρk(t)r (k), (11)

with ρk being the operator, or expansion coefficient, of the
quasinormal mode k. The operator ρk is given by

ρk(t) = (l(k),R(t)), (12)

where ( · , · ) is the Euclidean scalar product and l(k) is the left
eigenvector of M, defined as

M† l(k) = ω∗
k l(k). (13)

The left and right eigenvectors are normalized as usual:
(l(k),r (l)) = δk,l . With the help of Eqs. (10) and (11), the normal
modes obey the following uncoupled equation of motion:

i
d

dt
ρk(t) = ωk ρk(t) + iQk(t), (14)

with the transformed noise operator Qk = (l(k),Z). On inte-
grating Eq. (14), the time dependence of the normal mode
operators can be obtained:

ρk(t) = e−iωkt ρk(0) +
∫ t

0
e−iωk (t−t ′) Qk(t ′) dt ′. (15)

For a dynamically stable sytem, one needs to have
eigenvalues with negative imaginary parts. In this case
fluctuations (the normal modes) decay to a steady
state.

The symmetry property (9) has an important consequence
on the spectrum of M. Namely, if ω = ε − iγ is an eigenvalue
of M, then −ω∗ = −ε − iγ is also an eigenvalue of M. The
modes corresponding to these eigenvalues form a pair with
positive and negative energies.

There is an important issue concerning the stability of
the normal modes: not all of them include the radiation
components. For simplicity, assume that the external potential
is even with respect to the center of the cavity. In this case,
the combined external and optical potentials is also even,
and parity is a symmetry of the full system. In this case
the condensate wave function is also even, and the matrix
M commutes with the parity operator. The eigenfunctions of
M can therefore be classified by their symmetry (being odd
or even). If the condensate fluctuation parts (third and fourth
components) of an eigenvector r (k) are odd, then the result
of the operator X acting on these components of r (k) is zero,
since X contains an integration on the whole cavity axis and
its kernel is even. For these modes there is no coupling term
between the cavity field and the condensate part [see the first
two rows of the matrix M in Eq. (8b)], and, since damping of
the modes comes from the cavity decay, these modes remain
undamped and just marginally stable. Consequently, if we
want to describe the steady-state values of the correlations
of fluctuations we have to omit those normal modes which
do not couple to the radiation field (assuming that they are
initially not populated).
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E. Bloch states, the effects of s-wave scattering,
and that of the collective coupling

For further analysis we suppose that Vext(x) ≡ 0; that is,
the only potential in Eq. (2c) is the periodic optical potential
induced by the resonator field. In this case the Bloch functions
are good candidates for the complete set of single-particle
wave functions:

ψn,q(x) = N eiqxun,q(x), (16)

where un,q(x) is a periodic function of period λ/2. Here n is the
so-called band index and q ∈ [0,4π/λ] is the quasimomentum
of the particle. N is the constant for normalization. If we
impose the Born-von Kármán boundary condition with p pe-
riods (the quantization volume is pL), then the normalization
constant N = p−1/2, and the functions un,q(x) are normalized
to unity inside a period L = λ/2. For practical purposes, we
also use plane waves as the basis of the un,q(x) functions (not
depending on the quasimomentum q):

un,q(x) = 1√
L

eink0x, (17)

with k0 = 2k = 4π/λ. [Of course, the basis Eq. (17) is suitable
to express all other L-periodic functions as Fourier series.]

The field operator of the atoms is expanded as

�(x) = 1√
Lp

∑
n,q

bn,q ei(nk0+q)x, (18)

where bn,q is the annihilation operator of the plane-wave state
ψn,q . Here n ranges over all integers and q = 4πm/(λp), with
m ∈ {0,1, . . . ,p − 1}.

The equation of motion of the annihilation operators bn,q is
obtained easily from Eq. (2c), by inserting field operator (18)
and using the orthogonality of the plane-wave states,

ih̄
d

dt
bn,q

= h̄2(nk0 + q)2

2m
bn,q + h̄ a†a U0

∑
n′

Ln,n′bn′q

+ 2g

λp

∑
n1n2n3
q1q2q3

b†n1q1
bn2q2bn3q3δ(n+n1)k0+(q+q1),(n2+n3)k0+(q2+q3).

(19)

The first term corresponds to the kinetic energy, which is
diagonal for the plane-wave states used. The matrix Ln,n′

appearing in the optical potential is a simple, tridiagonal matrix

Ln,n′ = 1
4 [2δn,n′ + δn,n′+1 + δn,n′−1]. (20)

It is trivial that the kinetic energy is the lowest for n = 0, q = 0.
The appearance of the optical potential makes the Hamiltonian
nondiagonal in the plane-wave basis; however, it mixes only
operators with the same quasimomentum q. Coupled plane
waves can have indices n differing only by �n = ±1. On
the other hand, the s-wave scattering mixes operators with
different n and different q momenta. The total momentum is
conserved by the δ function imposing (n + n1 − n2 − n3)k0 +
(q + q1 − q2 − q3) = 0, which allows for normal scattering,
when q + q1 = q2 + q3, and n + n1 = n2 + n3, and also for
umklapp scattering processes, where the difference of the

quasimomentum in the scattering is equal to a reciprocal
lattice vector: q + q1 = q2 + q3 − �nk0, and n + n1 = n2 +
n3 + �n. It is useful at this point to estimate the characteristic
frequency corresponding to the atom-atom s-wave scattering
based on the physical parameters relevant to the experimental
situation in, for example, Refs. [3,4]. The s-wave scattering
length for the |1,−1〉 states of the 87Rb atoms is about 5.3 nm.
Assuming a particle number of N = 6 × 104 atoms distributed
in the cavity lattice of period L = λ/2 = 390 nm and the cavity
egg-crate potential containing p = 460 valleys, corresponding
to a cavity length of 180 µm, and the waist of the optical
potential as w = 25 µm, the characteristic frequency of the
s-wave interaction can be around ωsw = 4πh̄aN/(Lpw2m) ≈
2π × 4 Hz. (Here we have neglected any external trapping
potential.) This means that the characteristic energy of s-wave
scattering is three orders of magnitude lower than that of the
recoil energy separating the bands from each other. As a result,
s-wave scattering dominantly occurs only with atoms in the
same band, and umklapp processes can be neglected. When
incorporating the effects of the confining parabolic optical
potential in Ref. [3], the condensate density grows roughly
by a factor of 100 and results in the ratio ωsw/ωR ∼ 0.1. In
this situation, the contribution of umklapp processes is still
small enough to expect that it does not significantly change
the forthcoming results.

The mean-field equation for the condensate is obtained by
the substitution

bn,q =
√

Nδq,0βn(t) + δbn,q (t), (21)

where βn is the mean value of the annihilation operators. The
δq,0 condition for the mean field comes from the fact that
the ground state of the translationally invariant system is also
invariant under discrete translation; that is, the condensate
wave function is periodic also with L = λ/2. [None of the
terms in Eq. (21) violates the discrete translation of the system,
and having q 
= 0 would cost in kinetic energy.] The mean-field
equation then reads

ih̄
d

dt
βn(t) = h̄2n2k2

0

2m
βn(t) + h̄|αss|2U0

∑
n′

Ln,n′βn′ (t)

+ 2g

λp

∑
n1n2n3

β∗
n1

(t)βn2 (t)βn3 (t)δn+n1,n2+n3 , (22)

with αss given by Eq. (5), but now with

〈U 〉 = U0

∑
n,n′

β∗
n (t)Ln,n′βn′(t). (23)

The steady-state components of the condensate amplitudes
βn(t) evolve as

βn(t) = βn e−iµt/h̄, (24)

where µ is the chemical potential. It can be seen from Eq. (22)
that βn can also be chosen real for all n. Since Ln,n′ = L−n,−n′ ,
and due to the symmetry of Eq. (22), it follows that βn = β−n,
which means that the Fourier expansion of the condensate
wave function contains only cosine terms.
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The equation of motion for the fluctuations, in this repre-
sentation, is given by

i
d

dt
δa(t) = [−�C + N〈U 〉 − iκ] δa(t)

+NU0αss

∑
n,n′

βnLn,n′ (δb̃n′,0 + δb̃
†
−n′,0) + iξ (t),

(25a)

ih̄
d

dt
δb̃n,q

= (H0)n,n′ δb̃n′,q + h̄U0δq,0(α∗
ssδa + αssδa

†)
∑
n′

Ln,n′βn′

+ 2g

λp

∑
n1,n2,n′

βn1βn2 (δb̃n′,q + δb̃
†
−n′,−q)δn+n1,n′+n2 , (25b)

with

(H0)n,n′ = h̄2(nk0 + q)2

2m
δn,n′ + h̄|αss|2U0Ln,n′

+ gN

Lp

∑
n1,n2

βn1βn2δn+n1,n′+n2 − µδn,n′ . (25c)

For a qualitative understanding of Eqs. (25), let us consider
first the weak photon-atom coupling case, when either the
photon number inside the cavity is small or U0 is small. In
this situation, the atomic distribution is essentially unmodified
by the periodic potential and the condensate wave function
is almost homogeneous (i.e., βn = δn,0β0). Fluctuations in the
atomic density are induced from the homogeneous condensate.
In linear order, the atom-light interaction excites fluctuations
to bands n ± 1 with q = 0, while the s-wave interaction
populates fluctuations with arbitrary n and q. However, as
discussed earlier, in the limit ωsw � ωR , s-wave scattering
induces essentially only intraband transitions; therefore, for
a homogeneous condensate, only states with n = 0 are
populated by s-wave interactions. Figure 1 depicts graphically
the population of fluctuations excited from the homogeneous
condensate wave function in leading order. Moreover, in
experiments [3,4], the one atom light shift is a tunable
parameter; its typical value is chosen to be on the order of
the recoil frequency (i.e., U0 ≈ 2π × 4 kHz) and is also much
larger than the characteristic frequency of s-wave scattering.
Therefore, on the time scale in which the steady state is
reached, the effect of s-wave scattering is still not significant.
When describing the steady state, one can safely neglect it as
a first approximation and consider each band represented by a
single-state vector with q = 0.

Note that there is an interesting complementary regime in
which the relevant states are localized, Wannier-type states
formed by the coherent superposition of many quasimomen-
tum states with q 
= 0. To describe many-body effects of the
atomic degree of freedom in this regime, one can resort to a
Bose-Hubbard model with self-consistent parameters [32–37],
in which collisions play a vital role but interband transitions
are usually neglected.

F. Optomechanics

In the experimental situation of Refs. [3,4], the BEC
wave function can be considered almost homogeneous, with a
condensate fraction in the β0 state containing 6 × 104 atoms,

n

q

n = −1

n = 1

n = 0

n = 2

n = −2

transitions by the optical potential

transitions by s-wave scattering

q �= 0 states are not populated for n �= 0

FIG. 1. (Color online) Schematic diagram of fluctuations cou-
pling to the the homogeneous BEC in linear order. The gray circle
represents the macroscopically occupied (BEC) state, while the open
circles represent states which are not macroscopically occupied. The
arrows show how these states can be populated in linear order by
scattering from the condensate via the interaction with the photon
field and also via the s-wave scattering.

while the next state with n = ±1 (i.e., the atomic motional
state with wave function cos k0x) contains only a few hundred
atoms. Let us therefore restrict the Hilbert space of the
one-particle atomic motion into this relevant two-dimensional
subspace, containing the homogeneous single-particle wave
function and that of cos k0x. The atomic field operator
becomes

�(x) = ϕ0(x)b0 + ϕ1(x)b1, (26)

with the single-particle wave functions ϕ0(x) = L−1/2 and
ϕ1(x) = √

2/L cos(k0x), and their corresponding annihilation
operators b0 and b1. The single-particle wave function sin(k0x),
corresponding to the antisymmetric combination of the n =
±1 states, is omitted, since this wave function does not couple
to the photonic field due to symmetry reasons mentioned
above.

In this model the atomic motion is represented in a two-
mode Fock space. The mean field expansion is

bn =
√

Nβn + δbn, n = 0,1, (27)

where βn is again the representation of the condensate wave
function in the two-dimensional Hilbert space, normalized
to unity. The presence of a Bose-Einstein condensate dis-
tinguishes a subspace of one single mode. Accordingly, the
fluctuation operators can be expanded to a part parallel to the
condensate and to one orthogonal to it:

δbn = βnδb + γnδc, (28)

where γn is the unit vector orthogonal to the condensate,
γn = (−β1,β0)T . The part, δb, parallel to the condensate can
be related to the arbitrariness of the phase of the condensate
and corresponds to a zero mode. The orthogonal part, δc, is
the sole degree of freedom. Therefore, the fluctuations of the
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atomic field, similarly to the photon field, have a single degree
of freedom. The fluctuations of the combined atom-resonator
field system have two degrees of freedom, and are analogous
in many ways to cavities with a moving mirror, to the so-called
optomechanical systems.

In order to obtain the mean-field equations and the fluctu-
ation equations in linear order, one can start from Eq. (2) and
use the truncated field operator (26) and then the mean-field
ansatz (27). The mean-field equations for the condensate now
read

i
d

dt
βk(t) = [4 ωR(P1)k,l + |αss|2Uk,l]βl(t), (29)

with P1 = diag(0,1), the projection matrix to the subspace of
ϕ1(x); the matrix representing the light shift is given by

Uk,l = 〈ϕk|U (x)|ϕl〉 = U0

2

[
1

√
2/2√

2/2 1

]
(30)

and αss is given by Eq. (5), with 〈U 〉 = β∗
k (t)Uk,lβl(t). (Note

the convention of automatic summation over repeated indices.)
The condensate wave function also has the time dependence of
Eq. (24), with βk chosen real. Equation (29) can also be solved
either by imaginary-time propagation or by direct algebraic
means using Eq. (24) and the normalization condition: β2

0 +
β2

1 = 1.
The equations of motion for the fluctuation operators can be

derived in a way analogous to how Eqs. (25) were obtained. It is
appropriate to separate the trivial time dependence due to the
chemical potential via the definition δb̃k = N−1/2 eiµt/h̄ δbk .
With this,

i
d

dt
δã = (−δ − iκ)δa + NαssβkUk,l(δb̃l + δb̃

†
l ), (31a)

i
d

dt
δb̃k = Kk,lδb̃l + (α∗

ssδa + αssδa
†)Uk,lβl, (31b)

with δ = �C − N〈U 〉, and

Kk,l = 4ωR(P1)k,l − µ

h̄
δk,l + |αss|2Uk,l . (31c)

The matrix K can be thought of being the grand canonical
Hamiltonian of the system, and by virtue of Eqs. (29) and
(24), Kk,l βl = 0. Equations (31a) and (31b) form a linear
eigenvalue problem for the fluctuations. It is easy to check
that the trial function of δa = 0 and δb̃k = βkδb̃ is a constant
solution (i.e., it is a zero mode). It also follows from the
normalization of βk that δb̃ is anti-Hermitian. With the
decomposition δb̃k = βk δb̃ + γk δc̃, one can arrive at a closed
set of equations between the fluctuations δa and δc̃ and their
Hermitian adjoints:

i
d

dt
δã = (−δ − iκ)δa + Nαss(βkUk,lγl)(δc̃ + δc̃†), (32a)

i
d

dt
δc̃ = (γkKk,lγl) δc̃ + (γkUk,lβl)(α

∗
ssδa + αssδa

†). (32b)

Note that, in the optomechanical model, s-wave scattering
cannot be included in general because it populates states with
q 
= 0, which are disregarded in this model. It is possible to
include some remaining effects of the atom-atom collision by
coupling only the two states under consideration; however, this
approach would result in a nonlocal and unphysical interaction

in coordinate space. Or, in order to extend the optomechanical
model, although still lacking the full consideration of s-wave
scattering explicitly, the higher quasimomentum states can
be taken into account either by considering a (close to, but
non-) plane-wave condensate wave function [25] or by using
a two-fluid model [38].

III. RESULTS

In the following we summarize and discuss our results based
on the numerical solutions of Eqs. (4) and (7) and compare
them with those of Eqs. (29) and (32) and to the findings of
Esslinger and colleagues [3,4].

A. The mean-field solution

For a comparison between the full Gross-Pitaevskii equa-
tion (GPE) solution and the optomechanical model, we
numerically solve the Gross-Pitaevskii equation (4b) on a
200-point grid with imaginary-time propagation with the
steady-state value of the mean radiation field amplitude (5)
and compare it to the solution of Eq. (29) (also in imaginary
time). The results for the mean photon number are plotted
in Fig. 2. The bistable behavior is nicely exhibited in these
figures. In Fig. 2(a), the pumping strength η = 80.06 ωR

is below a threshold value, and the resonance curve gives
a unique solution for all detunings �C . Notice that, in
Eq. (4a) or Eq. (5), the effective detuning of the resonator
field is δ = �C − N〈U 〉; that is, the light shift further detunes
the cavity. On the left side of the resonance, the effective
detuning δ is negative, and the cavity is detuned to the red.
We see in the next subsection that this situation corresponds
to cavity cooling, where the imaginary part of the fluctuation
spectrum of the combined atom-photon system is negative (or
nonpositive for the many-mode system). Fluctuations decay to
zero. On the right side of the resonance, where δ is positive,
the imaginary part of the fluctuation spectrum changes its sign.
Fluctuations grow exponentially on this side of the resonance;
that is, the slightly retarded cavity field dynamics heats the
atomic motion instead of cooling it. Therefore, the solution
above the resonance (δ > 0) is dynamically unstable. It is only
due to the adiabatic elimination of the photon field that the nu-
merical method finds this solution as well. Note that the para-
meters of our calculations mimic those of Ref. [4]. The
agreement in the photon number with Fig. 3 of Ref. [4] is
well within the systematic uncertainty of the photon number
estimation of the experiments (25%). With the use of the
recoil frequency for rubidium atoms, ωR = 2π × 3.57 kHz,
we can compare the location of the resonance points to the
experimental findings, too. In Fig. 2(a), the resonance point
is at around 28 800 ωR ≈ 2π × 103 MHz; in Fig. 2(b), the
two instability points are at around 26 700ωR ≈ 2π × 95 MHz
and 27 700 ωR ≈ 2π × 99 MHz. All these are within 5%
of the respective experimental value. In Fig. 2(c), the res-
onance points are at around 21 500ωR ≈ 2π × 77 MHz and
27 000ωR ≈ 2π × 96 MHz. This latter value is only 2% higher
than in the experiment, but the lower point is contrasted to the
2π × 84 MHz value (about 10% deviation). In our case the
bistable region is a bit wider than in the experiments. This
discrepancy might be attributed mainly to the uncertainty in
the effective detuning δ, which we obtain by an estimation
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FIG. 2. (Color online) The mean cavity photon number |αss|2 as a
function of the cavity detuning �C . The parameters are N = 6 × 104,
U0 = 0.96 ωR , and κ = 363.9 ωR . The pumping strength is different
for the three panels: η = (80.06,283.8,549.5)ωR for panels (a), (b),
and (c), respectively.

of the actual atom number and overlap between the cavity
potential and the atomic cloud.

For η > ηc(�C,κ,U0,N ), the threshold value of the pump-
ing strength depending on the detuning, the cavity loss, the
light shift, and also the atom number, there is a region where
three solutions exist for the photon number and also for the
condensate wave function. Two of them are stable solutions
for the numerical method we use. These solutions are plotted
in Figs. 2(b) and 2(c) for η = 283.8 ωR and η = 549.5 ωR ,
respectively. The unstable solution is not plotted in the figure.
We note, however, that the upper one of the two plotted
solutions corresponds to the δ > 0, cavity-heating, situation.
So this solution is also unstable dynamically. But since this
instability is related to photon dynamics (neglected at this
level), one can still find this solution by integrating the GPE
for the atoms in imaginary time.

The fraction of condensate atoms occupying the ho-
mogeneous and the cos k0x states are plotted on Fig. 3.
The parameter settings are the same as for Fig. 2. Both
the resonance feature and the bistability is exhibited in the
condensate component of the cos k0x mode. The condensate is
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FIG. 3. (Color online) The squares of the condensate components
β2

0 and β2
1 as a function of the detuning �C in a semilog scale. The

parameter settings are the same as for Fig. 2.

almost homogeneous for the whole range, β2
1 � β2

0 ≈ 1, and
β2

1 shows a very similar dependence as the photon number.
It is remarkable that a very small change in the shape of
the condensate wave function causes a drastic increase or
decrease of the photon number. This can be elucidated by
the collective coupling of the atoms to the resonator field. The
detuning δ = �C − N〈U 〉, appearing in the denominator of
the steady-state value of the resonator field (5), can change a
lot even if the variation of 〈U 〉 is small, because of the large
number N multiplying it.

B. Fluctuation spectrum

The linear stability analysis of the mean-field solution is
done with the help of linear equations (7) for the case of the full
model, and with the help of Eqs. (32) for the optomechanical
approximation. Once the condensate wave function and the
steady-state value of the mean cavity field are known, one
can construct the matrix M and calculate its eigenvalues and
eigenvectors. In the full model, discretized on a grid with
200 sites, M is a 402 × 402 matrix, since it acts on a row
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FIG. 4. (Color online) The fluctuation spectrum ωk = εk + iγk of the atom-cavity dynamics. The real and imaginary parts of the eigenvalues
are plotted as functions of �C . All quantities are measured in units of the recoil frequency. The parameter settings are the same as for Fig. 2.
Note that the fluctuation spectrum of the full model, discretized on a 200-point grid, contains 201 pairs of eigenvalues. We only plot the two
which correspond to those of the optomechanical system.

vector that has 2 elements for the photon fluctuation operator
and its Hermitian adjoint, and also has 400 elements for the
discretized field fluctuation operator and on its Hermitian
adjoint. For the optomechanical model, one has a much smaller
(4 × 4) matrix, since the zero mode is already separated in this
case, so one has two components for the photon fluctuations
and two components for the atomic motion orthogonal to the
condensate wave function. The numerical diagonalization was
obtained with the help of the LAPACK package.

Note that M is a general complex matrix. Its eigenvalues
are complex. However, due to symmetry relation (9), the
eigenvalues of M come in pairs. Each element of the pair
has the same imaginary part, while the real parts are just the
opposite of each other. Figure 4 shows the eigenvalues of M
for the same parameter settings as that of Figs. 2 and 3. The
left panels show the real part εk of the kth eigenvalue, while
the right panels show the modulus of the imaginary parts γk for
ωk = εk + iγk . Only those two eigenvalues are plotted, which
are present in the optomechanical model and have positive
real parts. The other two eigenvalues of the optomechanical
model can be obtained simply by changing the sign of the real
parts to negative: ωk → −εk + iγk . In the bistability regime,
the excitation frequencies are presented for both mean-field
solutions.

Again, all figures show that the optomechanical approxima-
tion very well reproduces the results of the full GPE simulation
even for dynamical quantities. The two modes are easy to be

physically interpreted. The first eigenvalue, having a bigger
real part around δ = �C − N〈U 〉 and an imaginary part almost
exactly at −κ , corresponds mainly to a photonic mode. Note
that the imaginary part of this mode also remains negative
above the resonance. The other eigenvalue, having a real part
around 4 ωR , corresponds mainly to atomic fluctuations. The
imaginary part of this eigenvalue changes sign at resonance.
Below resonance, the imaginary part is negative (fluctuations
in the atomic motion are damped due to the interaction with the
resonator field [39,40]), while above resonance the imaginary
part becomes positive (fluctuations in the atomic motion are
exponentially growing in time). The situation is clear in
Fig. 4(a), where the resonance point can be exactly defined. In
Figs. 4(b) and 4(c), the coexistence of the two solutions makes
the definition of the resonance point ambiguous. Nevertheless,
in Figs. 4(b) and 4(c), the curves which continue to the
left-hand side of the figure correspond to the solutions with
cavity cooling, and those which continue to the right-hand
side correspond to the heating solution. The dynamical cooling
and heating effects are closely related to the same effects at
the single-atom level [41–45].

In Refs. [3,4], the coherent atomic dynamics was also
studied. The harmonic oscillator behavior of the low-energy
atomic dynamics caused periodic oscillations in the output
photon signal with a frequency close to 35 kHz, as reported
and explained in Ref. [3], or close to around 42 kHz in Ref. [4].
In our model, the dynamics of the two coupled harmonic
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oscillators of the resonator field and the atomic collective
motion is described by Eqs. (32). These are linearized
equations of motion around the steady-state configurations.
For very small fluctuations, the semiclassical time evolution
can be interpreted as orbitals around the steady-state fixed
points with frequencies plotted in the left panels of Fig. 4.
Due to the imaginary parts, the trajectories spiral closer to (for
fluctuations around the cooling solution) or farther from (for
fluctuations around the heating solution) the corresponding
fixed point. From Fig. 4 we can see that the frequency of fluc-
tuations dominated by atomic motion is close to 4 ωR for
parameters not very close to the bistable region. In the bistable
regime, two steady-state solutions exist, and correspondingly
there are two fixed points in the harmonic oscillator phase
space. According to Fig. 4, the oscillation frequency for the
cooling fixed point remains around 4 ωR and softens close to
the endpoint, while for the heating solution the oscillation
frequency grows to around 10 ωR before softening at its
endpoint. This kind of renormalization of the atomic dynamics
by the interaction with radiation is often referred to as the
“optical spring effect.” The approximately 10 ωR angular
frequency quantitatively gives back the experimentally found
42-kHz oscillation frequency of the Fig. 3C inset of Ref. [4].

It is interesting to point out that in the bistable region
even small atomic fluctuations can result in a phase-space
trajectory that orbits around both of the fixed points (see
Fig. 3 of Ref. [3]). In this case, such a linearization strategy
simply cannot work because the transition between the two
fixed points is necessarily a nonlinear effect. However, if the
trajectory were to lie in the basin of the linear region of
the corresponding fixed points everywhere except the small
region of the separatrix, one could expect the oscillation to be
described by the above two frequencies: when the system is in
a part of the trajectory inside the attraction basin of the cooling
fixed point, the angular frequency would be around 4 ωR , while
after crossing the separatrix it would change to around 10 ωR .
Such a trajectory of coherent oscillations would also cause
a periodic output photon signal but both of the frequencies
would appear (i.e., the count rate peaks would come in pairs).

Figure 5 depicts the regions in the parameter space which
represent the heating (cooling) solutions, that is, the solutions
with dynamical instability (stability). The bistable region,
where both a heating and a cooling solution can be found,
is wedged between the two distinct regions. The tip of the
wedge corresponds to the critical point (�Cc,ηc).

C. Correlations and entanglement

Second-order correlations of the fluctuations are calculated
with the help of the quasinormal modes and the noise
correlations, since by virtue of Eqs. (11) and (15)

〈Rk(t) Rl(t)〉
=

∑
m,n

〈ρm(t) ρn(t)〉 r
(m)
k r

(n)
l

=
∑
m,n

r
(m)
k r

(n)
l

[
e−i(ωm+ωn)t 〈ρm(0) ρn(0)〉

+
∫ t

0
dt1dt2e

−iωm(t−t1)e−iωn(t−t2)〈Qm(t1)Qn(t2)〉
]
. (33)
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FIG. 5. (Color online) The nonequilibrium phase diagram of the
system indicating the parameter regions with full dynamical stability
(the cooling region) and the region with a dynamical instability
caused by the energy transfer of the cavity (the heating region). The
horizontal lines represent the parameter η at values corresponding to
panels (a), (b), and (c) of other figures with numeric results.

For a stable system, where all the eigenvalues have negative
imaginary parts, the first term on the right-hand side, corre-
sponding to the initial condition of the fluctuations, vanishes
for times much longer than the characteristic decay times of the
system. For the second term, one can use the noise correlation
function (2b), and the definitions of the vector noise Z and that
of Q. For t → ∞, it follows straightforwardly that

〈Rk(t) Rl(t)〉 → 2κ
∑
m,n

l
(m)∗
1 l

(n)∗
2 r

(m)
k r

(n)
l

i(ωm + ωn)
, (34)

where we index the components of the row vectors R and Z

starting from 1, and also drop the exponential term vanishing
for large times in the case of a stable system. Note that the zero
mode [i.e., δb in Eq. (28)], representing the phase fluctuations
of the condensate, does not contribute to this sum because
its eigenfunction does not have photon component; that is,
l
(zero mode)
1 = l

(zero mode)
2 = 0.

To be able to relate our results more explicitly to other
works, let us introduce quadrature operators, according to
δx = (δa + δa†)/

√
2, δy = −i(δa − δa†)/

√
2, δX = (δc +

δc†)/
√

2, and δY = −i(δc − δc†)/
√

2. These quadrature op-
erators are Hermitian operators and are easily expressed with
the help of the field operators R. We assemble them into
the following row vector: u = (δx,δy,δX,δY )T . With the
quadratures being Hermitian, one can define a real correlation
matrix by

Ck,l(t) = 1
2 〈uk(t) ul(t) + ul(t) uk(t)〉, (35)

which is in the following block form,

C =
[

P X

XT A

]
, (36)

where P represents the correlations of the photonic degree of
freedom, A represents atomic fluctuations, and X describes
the cross correlations. For example, on top of the mean-field
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contribution |α|2, there is a nonclassical part of the photon
number which is given by

n′
ph = 〈δa† δa〉 = 〈δx2〉 + 〈δy2〉 − 1

2
= C1,1 + C2,2 − 1

2
.

(37)

In an empty resonator close to zero temperature, where
〈ξ †(t)ξ (t ′)〉 = 0, the nonclassical part of the photon number
[Eq. (37)] vanishes, and the resonator field is in a pure coherent
state. The fluctuations of the quadratures are distributed
equally and the Heisenberg uncertainty principle is fulfilled
in a sharp sense (〈δx2〉 = 〈δy2〉 = 1/2). However, due to
atom-photon interaction, the photon fluctuations couple to
those of the atomic motion. By iterative substitution of
Eqs. (32), one can simply check that n′

ph = 〈δa†δa〉 is no
longer zero in the presence of a Bose-Einstein condensate.
The photon field is no longer in a purely coherent state, and
the correlation matrix P is not simply half of the unit matrix.
Indeed, since δa couples now to δa† (through δc̃) and the
coupling term is proportional to α2

ss, which is complex, the
correlation matrix P is not isotropic. The angle of the major
axis coincides with twice the phase of αss, taking the values
from −π (when the system is far from the resonance) to zero
(at resonance). By performing a rotation of the correlation
matrix by this angle to bring it into a diagonal form, one of
the eigenvalues will remain 1/2, as in the pure coherent-state
case, while the other one will always become bigger than 1/2.
Since the trace of a matrix is invariant under rotations, the
nonclassical part of the photon number n′

ph = (λ> − 1/2)/2,
where λ> is the bigger eigenvalue of P. Figure 6 shows the
nonclassical contribution to the photon number. The classical
average |αss| of Fig. 2 is also plotted with a dashed line for
reference. It can be seen, by comparing the two curves, that the
nonclassical contribution to the photon number is very small
compared to the contribution of the mean field far from the
resonance. When approaching the resonance, the nonclassical
part grows faster than the mean-field part, and, in the vicinity of
the resonance, it even exceeds the mean-field contribution. The
nonclassical contribution of the photon number is plotted only
for the cavity cooling regime, where a steady-state solution
exists.

Similarly, the number of atoms outside the condensate (i.e.,
the depletion) is evaluated as

N ′ = 〈δc† δc〉 = N〈δc̃† δc̃〉 = C3,3 + C4,4 − 1

2
. (38)

Figure 7 shows the steady-state number of particles outside
the condensate for the parameter settings of the earlier
plots. Notice that, on the right-hand side of the resonance,
depletion is not plotted. In this regime, where the cavity heats
atomic motion instead of cooling it, there is no steady-state
condensate, and depletion grows in time exponentially. The
steady-state depletion is analogous to the quantum depletion
of the ground state of a nonideal Bose gas of atoms due to
collisions. In the cavity case, the interaction between the atoms
is provided by the collective coupling to the photon field.
However, this depletion scales completely differently than
that caused by s-wave scattering and is strongly influenced
by the presence of the resonance. The diffusion of atoms
out of the condensate can also be interpreted as a quantum
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FIG. 6. (Color online) The nonclassical part of the photon number
vs the cavity detuning of the optomechanical model. For reference
we have also plotted the mean-field solution, |αss|2, with a dashed
line. All parameters are the same as for Fig. 2.

measurement-induced back-action process which stems from
the dispersive atom-light interaction [5,19] and occurs even in
phase contrast imaging of a condensate where the photon field
is propagating in free space [46,47]. In a recent paper [18],
we have shown that the depletion has a large steady-state
value even in the limit of vanishing interaction strength
U0. For a fixed large detuning, �C � κ,NU0, the amount
of noncondensed atoms was estimated by �C/ωR and is
connected to the ratio of the photon energy and the energy
of motional excitations. In Fig. 7 the detuning is a variable
and the above condition is not fulfilled. However, far from
resonance, the same ratio determines the depletion with the
effective photon energy given by the detuning δC .

The amount of entanglement between the atomic motional
and photonic degrees of freedom can also be calculated with
the help of the correlation function, assuming that the state of
the system is a Gaussian one. The logarithmic negativity, EN ,
is a useful measure of entanglement in our case, since it can be
directly calculated with the help of correlation matrix (35):

EN = max(0, − ln 2η−), (39a)
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FIG. 7. (Color online) The depletion of the condensate vs the
cavity detuning of the optomechanical model. All parameters are the
same as for Fig. 2.

where

η− = 2−1/2
√

�(C) −
√

�(C)2 − 4 det C (39b)

is the smaller symplectic eigenvalue of the two-mode Gaussian
state, with �(C) = det P + det A − 2 det X. The state is an
entangled state if and only if EN 
= 0. The larger the
logarithmic negativity, the larger the entanglement between
the atomic motion and the photonic degree.

Figure 8 shows the steady-state value of the logarithmic
negativity, EN , as a function of �C for the three parameter
settings of Fig. 2. These results hold only for the cooling
solution. In the heating regime, where there is no steady state,
the entanglement between the photonic mode and the atomic
motion also grows with time. The logarithmic negativity
takes very small values in the whole range of the presented
parameters except for a very small region around the instability.
Apart from this narrow region, the entanglement is small even
compared to the values of other optomechanical systems [17].
The smallness of the entanglement might be attributed to the
big difference between the occupation numbers of the photonic
and atomic modes or, equivalently, to the large difference in
the effective energies of the decoupled subsystems. To reach
higher values of entanglement, either the time scales of the

10−9

10−8

10−7

10−6

10−5

10−4

20000 24000 28000 32000 36000

E
N

(a)

10−9

10−8

10−7

10−6

10−5

10−4

20000 24000 28000 32000 36000
E

N

(b)

10−9

10−8

10−7

10−6

10−5

10−4

20000 24000 28000 32000 36000

E
N

∆C in units of ωR

(c)

FIG. 8. (Color online) The logarithmic negativity of the con-
densate vs the cavity detuning of the optomechanical model. All
parameters are the same as for Fig. 2.

photonic and atomic degrees of freedom should be closer to
each other, or a much stronger driving is needed to attain high
photon numbers.

IV. DISCUSSION

In this paper we have investigated the one-dimensional
dynamics of a Bose-Einstein condensate inside a driven optical
cavity. As the dispersive atom-photon interaction couples the
atomic motion to the dynamics of the photonic field in a
nonlinear way, strong correlations can appear. The strength
of this coupling is inversely proportional to the detuning of
the pump frequency from the atomic transition; therefore, it
can be tuned in experimental implementations. We recited and
analyzed the mapping of the original system to a two-mode
effective model in which only the two highest populated
one-particle states are kept from a plane-wave expansion of the
atomic motion [3–5]. By solving the coupled Gross-Pitaevskii
equations it was possible to reproduce the bistable behavior
caused by the nonlinear coupling [1,4,25] and to provide a
phase diagram of the system, partitioning the whole param-
eter space into regions with full dynamical stability of the
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mean-field solution (the cooling region), to a region with a
dynamical instability attributed to cavity heating, and to a
region where both stable and unstable solutions can exist. We
have compared the mean-field solution and the fluctuation
spectrum of the optomechanical model to that of the model
not restricted to the first two highly occupied modes. In
the cavity heating region, the unstable polariton mode can
have a positive imaginary part on the order of a kilohertz,
giving an evaporation rate of the Bose-Einstein condensate in
milliseconds. Such a time scale is within experimental reach.

The dispersive atom-photon interaction not only causes
cavity cooling or cavity heating but also alters the statistics
of the constituent subsystems. In the framework of the
optomechanical model, second-order correlations were also
investigated between the radiation field of the cavity and the
motional mode of the Bose-Einstein condensate in the cavity
cooling regime. Significant contributions to the photon and
particle numbers were found, beyond that of the mean field.
The strong depletion of the condensate shows some analogy
with the excess noise in lasers [48,49], which was already
discussed in our previous work [18]. It is interesting, however,
that the huge nonclassical contribution in the autocorrelation
of the photonic and atomic operators does not manifest in the
entanglement of these variables. The lack of entanglement can

be attributed to the big difference of the occupation of these
modes. While the atom number was assumed to be on the order
of 105, the photon number ranged on the order of unity.

The experimental progress in combining cavity quantum-
electrodynamical systems with ultracold atoms promises an
interesting playground to test the manifestation of light-matter
interactions on the mesoscopic scale. In such systems both
the radiation and the atomic part are dynamical entities. The
better understanding of their interplay can have an impact not
just on our knowledge of nonequilibrium systems, but also on
implementations of quantum information processing devices
or quantum simulators of other systems.
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