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Wave-packet analysis of interference patterns in output coupled atoms
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We study the output coupling of atoms from a magnetic trap into a linear potential slope of gravity using a
weak radio-frequency field. We present a one-dimensional wave-packet model based on a continuous loading of
a continuous spectrum of generalized eigenstates to describe the scenario. Analyzing the model, we show how
the interference of the classical coupling fields maps to the interference of the resulting atomic streams.
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I. INTRODUCTION

Ever since the first realization of an atomic Bose-Einstein
condensate [1–5], there have been applications where the
coherent cloud of trapped atoms has been used as a source for
output coupling [6]. The coherence properties of the source
can be mapped to a coherent output [7,8] and, moreover, by
applying continuous coupling a coherent stream of spatially
widespread atoms can be created [9,10]. In a close analogy
with the optical laser, an atom laser is thus formed.

A method used often to realize such a system is to induce
spin flips to the trapped cloud of atoms by introducing
a weak magnetic field perturbation (i.e., an oscillating rf
field) perpendicular to the static trapping field [6,11,12]. The
rf field creates a coupling between the Zeeman sublevels MF ,
and the internal spin state can thus be flipped to an untrapped
state or even, with strong rf-field intensities, to antitrapped
states [13,14]. Especially in the linear Zeeman shift regime,
the sublevel MF = 0 does not couple to the static trapping
magnetic field at all; it is only affected by the linear potential
slope of the gravity. Consequently, such atoms fall freely and
exit the trapping area. Other implementations of the output
coupling include, for example, applying a Raman transition
[15], which could also provide the free-falling atomic flux
with an initial momentum kick, or constructing a tunneling
connection [16]. Interestingly, the output coupling situation
is reminiscent of the molecular dissociation triggered by
ultrashort pulses [17–19].

Over the years, there have been theoretical papers that
considered atomic lasers with one-dimensional [20–22] and
three-dimensional models [12,23,24], using weak [11,25,26]
and strong [11,22,27,28] coupling strengths, applying multiple
simultaneous couplings [21,23], having the source at finite
temperature [25,26], and from the point of view of stability
[27–29] and pulse shape [30]. In this paper we analyze a simple
one-dimensional model in order to clarify one specific problem
concerning interference patterns due to multiple simultaneous
couplings.

The phase coherence of the spatially elongated atomic
beams is most strikingly demonstrated by strong interference
patterns while superimposing two beams with different en-
ergies [31–33]. Again in a close analogy with the optical
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lasers, the interference pattern depends on three quantities:
(i) the relative amplitudes, (ii) the relative phase difference, and
(iii) the energy separation.

The spatially widespread wave-function interpretation of
the interfering atomic beams is a strongly nonclassical result.
However, an alternative explanation in terms of interfering
(classical) magnetic rf fields, which drive the coupling, has
been proposed [33]. In this line of reasoning, the coupling
magnetic field is understood in terms of a carrier frequency
and a beating envelope, and the correspondence between the
pulsing rf amplitude and the resulting output stream was
demonstrated. There seems to be a discrepancy between the
two ways of looking at the problem. On the one hand, the
system is described by a pulsing flux generated by a pulsing
semiclassical coupling; on the other hand, the system is
described by interference of superimposed spatially elongated
asymptotic atomic wave functions [21,31]. The purpose of
this paper is to demonstrate the connection between these two
extreme interpretations.

In Sec. II we derive a wave-packet solution to a simplified
one-dimensional problem in terms of a continuous loading of
a continuous spectrum of generalized energy eigenstates. In
Sec. III we show how the visibility of the atomic interference
pattern maps from the interference of the magnetic fields. We
then apply the model in Sec. IV using realistic experimental
parameters and compare the results with numerical simula-
tions, including the complete Zeeman-sublevel structure as
well as the atomic contact interactions. Finally, we finish with
conclusions and discussion in Sec. V.

II. WAVE-PACKET MODEL

A. Physical system

An atom couples to the magnetic field via its magnetic
moment, resulting in an interaction energy defined as

U (B) = −µ · B, (1)

where the magnetic moment operator is µ = −µ0(gSS +
gLL + gI I)/h̄, and where µ0 = |e|h̄/2me is the Bohr mag-
neton and gi are the Landé g factors for electronic spin
(S), orbital (L), and nuclear spin (I ) angular momentum.
When the energy splitting corresponding to this term is small
compared to fine and hyperfine splittings, the total angular
momentum F = I + J, with J = L + S, is a good quantum
number and µ � −µ0gF F/h̄, where the Landé factor is gF �
gJ [F (F + 1) + J (J + 1) − I (I + 1)]/2F (F + 1), with gJ �
1 + [J (J + 1) + S(S + 1) − L(L + 1)]/2J (J + 1). In the
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limit of a weak magnetic field, which is the case in the
present work, the Zeeman splitting between the sublevels MF

is linear [34].

1. Trapping potential and gravity

A magnetic trap for the atoms in the low-field-seeking
states is formed by simply creating a magnetic field intensity
minimum. The local direction of the field describes the
quantization axis êz, and, close to the minimum, the magnetic
field is assumed to be approximately harmonic, such that
Btrap = Btrap(r)êz = B0

trap(λ2
xx

2 + λ2
yy

2 + λ2
zz

2)êz. In the same
direction, a strong static bias field Bbias = Bbiasêz is applied
in order to remove the degeneracy at origin and, hence,
to suppress the Majorana spin flips and the resulting atom
losses [5].

The trapping potential operator is Utrap(r) = sgn(gF )
[ 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) + h̄ωbias]Fz/h̄, where ω2
i =

2µ0|gF |B0
trapλ

2
i /m and ωbias = µ0|gF |Bbias. The atoms are

also affected, irrespective of their internal state, by the linear
potential of the gravity, Ugravity(r) = −mgx; the harmonic
trapping potentials are relocated accordingly in position and
energy. The static Hamiltonian reads

H0 = T + Utrap(r) + Ugravity(r), (2)

where T = −h̄2∇2/2m is the kinetic energy term. As is
now obvious, an integer-valued hyperfine state F supports a
special sublevel MF = 0, which is affected by only the linear
gravitational potential.

2. Coupling rf field

The coupling between the Zeeman sublevels is induced by
applying a weak rf field

Brf (t) = 1
2B0(t)êrfe

−i(ωrf t+θ) + c.c. (3)

with a finite component in the direction perpendicular to the
trapping field. The pulse envelope B0(t) has an arbitrary shape
and the pulse is turned on after the initial time t = 0. As
will be clear from the following, the model can be generalized
directly to any linear combination of such single-mode rf fields.
Consequently, it is sufficient now to consider a single rf field.

The rf field results in an interaction Hamiltonian

HI (t) = −µ · Brf (t). (4)

We write the polarization vector as êrf = ∑
i=+,−,z(êi · êrf)êi ,

where ê± = (êx ± iêy)/
√

2. The z component causes only a
small perturbation in the trapping potential and is assumed
to be zero hereafter. The circular components, corresponding
to the raising and lowering angular momentum operators
F± = Fx ± iFy , induce transitions between the sublevels, as
F±|F,MF 〉 = h̄

√
F (F + 1) − MF (MF ± 1)|F,MF ± 1〉. Fi-

nally, we remark that the total angular momentum operator
F 2 commutes with the total Hamiltonian H (t) = H0 + HI (t)
as well as its components H0 and HI (t), so the dynamics is
confined to a single hyperfine state F .

B. Representation of the state

The coupling is assumed to be weak, so only transitions
to sublevels MF,final = MF,initial ± 1 are relevant. Since the

FIG. 1. (Color online) Schematic setup of potentials and cou-
plings. The trapped Zeeman sublevel |T 〉 is coupled to the untrapped
level |U〉 by a weak rf field. Starting from a trapped state with energy
E0, the rf frequency determines the resonance energy Eres, around
which a continuous spectrum of generalized energy eigenstates is
populated during the output coupling. (a) With multiple simultaneous
frequency components ωrf,j , a corresponding set of resonant energy
levels is formed. The atomic streams interfere as they fall in the
gravity field. (b) Equivalently, the coupling can be interpreted as
being driven by the sum of the single rf fields, which corresponds to
a carrier frequency ωrf,+ = (ωrf,1 + ωrf,2)/2 and a coupling strength
pulsing at frequency ωrf,− = (ωrf,1 − ωrf,2)/2.

magnetic (trapping) potentials for the different sublevels
are 〈F,MF |Utrap|F,MF 〉 ∝ sgn(gF )MF , we assume that the
trapped atoms are initially on the internal state |T 〉 ≡
|F,MF = sgn(gF )〉 and that the free-falling untrapped state is
|U 〉 ≡ |F,MF = 0〉. The transition between the internal states
|T 〉 → |U 〉 is provided by the operator F+/− in systems with
negative or positive gF , respectively.

In the following, we neglect any population transfer to
the antitrapped high-field-seeking Zeeman sublevels [MF =
−n sgn(gF ), with n = 1, . . . ,F ], for which the magnetic field
minimum forms a repulsive potential, as well as to the
more energetic trapped sublevels [MF = n sgn(gF ), with n =
2, . . . ,F ]; the relevant potentials and couplings are illustrated
in Fig. 1. This is a justified neglection since we are interested
in the weak-coupling regime. On the other hand, if a maximal
flux of atoms would be desirable, one would have to use
strong rf fields, and in that case these neglected sublevels
would have a nontrivial contribution [14]. With ever-stronger
coupling strengths the system should be described by dressed
potentials [35–38].

The convenient choice of basis functions depends on the
internal state. For the trapped state |T 〉, the basis is provided
by the harmonic oscillator eigenstates {|φn〉}∞n=0. For the
untrapped state |U 〉, however, the external potential is linear,
and the basis is formed by an uncountable set of generalized
eigenfunctions, or distributions, {|ψE〉}E∈R, which satisfy the
Airy differential equation [39]. Their explicit form is

ψE(x) = NAi[(x + E/mg)/l], (5)

where the normalization factor N = 1/l
√

mg and the char-
acteristic length scale l = (h̄2/2gm2)1/3. These generalized
functions are not normalizable according to the L2 norm,
〈ψE |ψE′ 〉 = δ(E − E′), and thus cannot individually represent
any physical state. However, they form a complete orthonormal
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spatial basis in the sense that
∫

dE ψ∗
E(x)ψE(x ′) = δ(x − x ′).

Therefore, any spatial state |ϕ〉 can be described in terms
of these distributions as |ϕ〉 = ∫

dE f (E)|ψE〉, where the
spectrum is f (E) = 〈ψE|ϕ〉. Consequently, the normalization
of the state is done in accordance with the properties of the
spectrum, such that ‖ϕ‖2 = ∫

dE |f (E)|2. It is immediately
evident that any state |ϕD,U 〉 described by a discrete spectrum
f (E) = ∑

i ciδ(E − Ei) is, first of all, unphysical and cor-
responds to a (quasi)periodic solution within the evolution
generated by H0. This does not fit with intuition about a
free-fall event. Combining the previous statements, any state
within our system can be expressed as

|�(t)〉 =
∑

n

bn(t)|φn,T 〉 +
∫

dE cE(t)|ψE,U 〉. (6)

In the interaction picture with respect to H0, given by Eq. (2),
|�̃(t)〉 = eiH0t/h̄|�(t)〉 and the corresponding coefficients are
b̃n(t) = eiEnt/h̄bn(t) and c̃E(t) = eiEt/h̄cE(t). In the following,
we also use the notation |�β〉 ≡ 〈β|�〉, where β = T ,U , for
the trapped and untrapped components of the total state.

C. Wave-packet solution

The coupling between the different sublevels comes from
interaction Hamiltonian (4). The weak coupling causes only
a small perturbation in the bare system, defined by static
Hamiltonian (2), and therefore its effect can be described by
transition matrix elements. Let us assume that initially the
system is at equilibrium in a trapped ground state |�(0)〉 =
|φ,T 〉, for which H0|φ〉 = E0|φ〉. In terms of representation
(6), the coefficients are b0(0) = 1, bn(0) = cE(0) = 0 for all
n > 0 and E ∈ R.

In the interaction picture, the equation of motion for the
coefficients c̃E(t) is given by

d

dt
c̃E(t) =

〈
ψE,U

∣∣∣∣ d

dt
�̃(t)

〉

= − i

h̄
〈ψE,U |H̃I (t)|�̃(t)〉

= − i

h̄
b̃0(t)e−i(E0−E)t/h̄〈ψE|φ〉〈U |HI (t)|T 〉. (7)

The trapped state remains essentially intact during the weak-
coupling pulse, so we can assume b̃0(t) = 1. The formal
solution in the Schrödinger picture is

cE(t) = − i

h̄
e−iEt/h̄〈ψE|φ〉

∫ t

0
ds e−i(E0−E)s/h̄〈U |HI (s)|T 〉.

(8)

Therefore, according to definition (6), the untrapped compo-
nent is given by

|�U (t)〉 = − i

h̄

∫ t

0
ds e−iE0s/h̄〈U |HI (s)|T 〉

×
∫

dE e−iE(t−s)/h̄〈ψE|φ〉|ψE〉. (9)

Defining the outcoupling rate function 
 and the respective
instantaneous outcoupled state |�〉, corresponding to a delta-
peak outcoupling rate function, as


(t) ≡ − i

h̄
e−iE0t/h̄〈U |HI (t)|T 〉, (10)

|�(t)〉 ≡
∫

dE e−iEt/h̄〈ψE|φ〉|ψE〉 = 〈U |e−iH0t/h̄|φ,U 〉,
(11)

the full time-dependent solution for the outcoupled atomic
beam can be written in a compact form as a convolution

|�U (t)〉 =
∫ t

0
ds 
(s)|�(t − s)〉 = [
 ∗ (�|�〉)](t), (12)

where the Heaviside theta function, for which �(t) equals
zero for t < 0 and unity for t > 0, takes care of a proper
temporal causality. The instantaneous outcoupled state |�(t)〉
matches the static-Hamiltonian-induced evolution [cf. Eq. (2)]
of the spatial component of the initial trapped state |φ〉, only
its internal state is the untrapped one. Finally, we remind that

(t) vanishes for t < 0 according to our previous definition.

D. Continuous spectrum of states

Let us consider the matrix element of the interaction Hamil-
tonian between the trapped and untrapped states 〈U |HI |T 〉.
Since the trapped and the untrapped states are separated
by a single quantum of angular momentum, 〈T |Fz|T 〉 =
sgn(gF )h̄ = ±h̄ and 〈U |Fz|U 〉 = 0, the transition between
the states |T 〉 → |U 〉 is induced by the operator Fα , where
α = + (−) for systems with negative (positive) gF . Therefore,
Eq. (7) is

d

dt
c̃E(t) = − i

2
√

2h̄2
µ0gF B0(t)〈ψE|φ〉〈U |Fα|T 〉

× {(ê∗
α · êrf )e

−i[(E0+ωrf−E)t+θ]

+ (ê∗
α · ê∗

rf )e
−i[(E0−ωrf−E)t−θ]}, (13)

where the factor
√

2 comes from the identity ê± · F = F±/
√

2.
With a constant rf field, B0(t) = B0�(t), the time integra-

tion gives the terms

c̃E(t) ∝ t〈ψE|φ〉sinc

(
E0 ± ωrf − E

2
t

)
. (14)

Therefore, the spectrum concentrates in the vicinity of resonant
energy levels E = E0 ± ωrf as time passes. According to the
physical setup, on the other hand, the overlap integral 〈ψE |φ〉 is
concentrated around E � −mg〈φ|x|φ〉 � E0. Consequently,
the significant contribution accumulates around the resonant
energy level

Eres ≡ E0 − ωrf . (15)

In terms of the generalized eigenstates, there will always be
a continuous range of occupied states around the resonant
energy Eres.

III. VISIBILITY OF THE INTERFERENCE PATTERN

The form of the free-falling atomic cloud |�U 〉 was
expressed in Eq. (12) as a convolution of the outcoupling rate
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function 
(t) and a spatial term |�(t)〉. Next we consider the
emerging interference patterns due to multiple rf fields driving
the coupling simultaneously.

The corresponding (classical) magnetic field components
Bi

rf(t) interfere with each other, such that the total field
is Brf(t) = ∑

i Bi
rf(t). Correspondingly, the outcoupling rate

function 
(t) = ∑
i 
i(t) and, because of the linearity of

Eq. (12), the outcoupled component is

|�U (t)〉 = [
 ∗ (�|�〉)](t) =
∑

i

[
i ∗ (�|�〉)](t)

=
∑

i

∣∣�i
U (t)

〉
. (16)

The interference pattern appears similarly in the (quantum)
matter fields as a sum of atomic streams, each of which
corresponds to an atomic beam outcoupled by a single rf-field
component.

A. Interference of classical fields

The point of view expressed in Ref. [33] was that the
combination of the (classical) magnetic fields, which operate
at frequencies ω1 and ω2 with equal constant amplitudes,
corresponds to a single field whose carrier frequency is the
average ω+ = (ω1 + ω2)/2 and the pulse envelope is modu-
lated at frequency ω− = (ω1 − ω2)/2 (cf. Fig. 1). Moreover,
the relative phase difference between the circular components
driving the outcoupling,

�θ = arg(ê∗
α · ê∗

rf,1e
iθ1 ) − arg(ê∗

α · ê∗
rf,2e

iθ2 ), (17)

shifts the envelope of the interference pattern and, con-
sequently, the intensity profile of the falling stream of
atoms. Generally, the interference pattern depends on (i) the
relative amplitudes, (ii) the relative phase difference, and
(iii) frequency separation.

Based on this description, one might expect that whenever
the carrier frequency ω+ falls into the region where the overlap
integral |〈ψE0−h̄ω+|φ〉| is finite, there would be a finite stream
of atoms falling from the trap, and the intensity of the stream
would be modulated at frequency ω−, such that the maxima of
the rf field coincide with the maxima of the atomic intensity
(see Fig. 3 in Ref. [33]).

B. Interference of quantum fields

The wave-packet result derived in Sec. II C explains why
the above-mentioned simplistic analogy from the classical
interference is not exactly true. According to Eq. (16),
the visibility of the interference pattern is affected by two
contributions: (i) the interference pattern of the magnetic fields
and (ii) the convolution by the temporal free-fall evolution of
the initial trapped-state profile. If we look at the stream at a
particular position x as a function of time, the interference
pattern of the magnetic fields, possibly with perfect visibility,
is smoothed by the temporal width of the instantaneous
outcoupled state |�(x,t)〉 falling past this point.

For a Gaussian initial state |φ0〉, the analytical solution

|�(x,t)〉 ∝ exp

[
−

(
x − x0 − 1

2gt2
)2

2σ (t)2

]
, (18)

TABLE I. Physical parameters used in the examples. Here a0 =
5.5 × 10−11 m is the Bohr radius.

Quantity Symbol Value

Trap frequency (x and z directions) ωx,z/2π 160 Hz
Trap frequency (y direction) ωy/2π 6.7 Hz
Rabi frequency |
|/2π 50 Hz
Bias frequency ωbias/2π 900 kHz
Number of atoms N 105

Scattering length a 103 a0

where x0 = g/ω2 and σ (t) =
√

σ 2
0 + t2/σ 2

0 , with σ0 =√
h̄/mω, allows us to estimate the temporal width. Namely,

at time t the wave packet has a spatial width of σ (t)
centralized around position x0 + 1

2gt2, and the center of
mass falls with velocity v(t) = gt , so the passing time is
approximately σ (t)/v(t) � 1/σg; this value corresponds to
a balance between dispersion and gravitational acceleration.
Therefore, even with an infinitely long coupling time, the
interference pattern is still smoothed by a distribution with
a finite width.

With a single rf field, the amplitude of the falling atomic
flux depends on the applied rf frequency ωrf . This can be
seen from resonance energy condition (15) as compared
to the overlap integral 〈ψE |φ〉. Therefore, two different
rf frequencies generally produce atomic streams with different
amplitudes, even if the rf-field amplitudes are the same.
According to Eq. (16), the relative phase difference of two
magnetic fields [Eq. (17)] maps directly to the relative phase
difference of the resulting matter waves. This was explicitly
demonstrated in the experiment of Ref. [33].

IV. APPLICATION AND COMPARISON TO NUMERICAL
RESULTS

In the following, we concentrate on 87Rb atoms and in
particular the hyperfine ground state F = 1. In this case the
Landé factor is gF = −1/2 and, therefore, the trapped low-
field-seeking Zeeman sublevel is |T 〉 = |F = 1,MF = −1〉
and the untrapped one is |U 〉 = |F = 1,MF = 0〉 (see Fig. 1).
The physical parameters are adopted from Ref. [33] and are
summarized in Table I.

In this section we compare wave-packet solution (12) to
numerical simulations including all the Zeeman sublevels. Es-
pecially we show the impact of the atomic contact interactions

906 907 908 909 910 911 912 913 914 915
RF FREQUENCY  (2π kHz)
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FIG. 2. (Color online) The overlap integral 〈ψE0−h̄ωrf |φ0〉, in
arbitrary units, as a function of rf frequency ωrf . As mentioned in the
text, the form is well approximated by a Gaussian shape centralized
at (E − mgx0)/h � 910.3 kHz with width mgσ/h � 1.8 kHz.
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FIG. 3. (Color online) The density profile of the instantaneous
outcoupled state |�(x,t)|2 (arbitrary units). Initially the state is the
Gaussian ground state of a harmonic potential. In the linear potential
slope the functional form is maintained, while the center of mass
accelerates according to classical mechanics, x0(t) = x0 + 1

2 gt2, and
the width disperses, σ 2(t) = σ 2

0 + t2/σ 2
0 .

by solving the corresponding Gross-Pitaevskii equation [4,5].
Both the model and the simulations are one dimensional (1D).
The contact interactions appear as an additional nonlinear
mean-field term Uint(x,t) = g1D|�(x,t)|2. The scaled interac-
tion coefficient is g1D = (

√
ω1ω2m/2πh̄)g3D [40], where the

three-dimensional (3D) interaction term is g3D = 4πh̄2aN/m,
with scattering length a and number of particles N [4,5].

When neglecting the atomic contact interactions, the ground
state of the harmonic trapping potential is a Gaussian |φ0〉. The
overlap integral between the Gaussian state and the generalized
energy eigenstates |ψE〉 can be calculated analytically [19,23].
In the limit of a steep gravity slope, g � 0, the generalized
energy eigenfunction approaches Dirac’s δ distribution as
|ψE(x)〉 ∼ δ(x + E/mg)/

√
mg. Since the width of the trapped

state σ clearly exceeds the characteristic length scale of the
Airy distribution l, the overlap integral is well approximated
by 〈ψE|φ0〉 � [π (mgσ )2]−1/4 exp[−(E + mgx0)2/2(mgσ )2],
as is obvious in Fig. 2.

In Fig. 3 the time evolution of the instantaneous outcoupled
state (11) for the noninteracting case is shown. The state
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FIG. 4. (Color online) Output-coupled atomic density for a
5-ms-long box-shaped pulse with rf frequency ωrf/2π = 910 kHz.
The density is in units of 103 m−1 and is flattened from above to
increase clarity.
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FIG. 5. (Color online) Output-coupled atomic density profiles
8 ms after the beginning of a 5-ms-long box-shaped pulse. The plot
shows eight different rf frequencies, from lowest to highest density:
ωrf/2π = 907, 907.5, . . . , 910.5 kHz (cf. Fig. 2).

corresponds to falling atoms outcoupled by an infinitesimally
short rf pulse. The total wave packet due to an rf pulse
with a finite duration is achieved by integrating this state
over time, in accordance with Eq. (12). In the examples, we
use a 5-ms-long box-shaped pulse form for the rf field. The
field amplitude is such that the maximum Rabi frequency
is |
|/2π = 50 Hz. However, in the spirit of Ref. [33],
we assume linear polarization and the coupling is therefore
suppressed by a factor of 1/

√
2. The density profile of the

resulting stream of outcoupled atoms versus time is shown in
Fig. 4. The number of outcoupled atoms, as well as the density
profile, depends on the applied rf frequency. This dependency
is shown in Fig. 5. The increase in the density follows the
amplitude of the overlap integral shown in Fig. 2.

The density profile of a pulsating outcoupled stream,
which is produced by two simultaneous resonant rf pulses
separated in frequency by �ωrf/2π = 1 kHz and in phase
by �θ = π , is shown in Fig. 6 as a function of time.
In Fig. 7 we compare the analytically calculated density
profile to the numerically computed one. In the numeri-
cal computation the time-dependent Schrödinger equation
was evolved, taking into account three states: one har-
monically trapped, one harmonically antitrapped, and one
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FIG. 6. (Color online) As Fig. 4 but with two simultaneous
equally strong pulses with rf frequencies ωrf,1/2π = 910 kHz and
ωrf,1/2π = 911 kHz, and with a relative phase difference of π .
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rf fields with ωrf,1/2π = 909 kHz and ωrf,2/2π = 908 kHz, and a
relative phase difference of π . Analytical model (thick line) agrees
well with numerical simulation (thin line).

affected by a linear potential with the slope corresponding
to the gravity. The numerical computations were done for
both interacting and noninteracting cases. Overall, we find
good agreement between the analytical and the numerical
results.

Due to the atomic contact interactions, the trapped ground
state is broadened from a Gaussian into a Thomas-Fermi dis-
tribution. Accordingly, the range of radio frequencies capable
of producing outcoupling changes. In Fig. 8 we show how, also
in the interacting case, the visibility of the interference pattern
due to two equally strong rf fields is not perfect. In particular,
our example shows the interesting case where one of the rf
frequencies outcouples hardly any stream while the other one
and the average do. As in the noninteracting case, applying
the equally strong fields simultaneously produces interference
with low visibility.
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rf frequency (ωrf,1 + ωrf,2)/2 (middle thin straight line) again a clear
stream. Applying both equally strong fields simultaneously, with a
relative phase difference of π , shows interference with a limited
visibility (thick oscillating line) in accordance with the noninteracting
examples.
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FIG. 9. (Color online) The perfect interference patterns of the
coupling magnetic fields (left panels) map to smoothed interfer-
ence in the corresponding atomic density (right panels) because
of the finite spatial extent of the trapped state. The frequencies
used are ωrf,1/2π = 911 kHz and (i) ωrf,2/2π = 906 kHz (top row)
(ii) ωrf,2/2π = 908 kHz (middle row), and (iii) ωrf,2/2π = 910 kHz
(bottom row). The relative phase difference between the 5-ms-long
pulses is π and the atomic density is plotted at time t = 8 ms.

Finally, in Fig. 9, we compare the rf pulses and in-
duced outcoupling streams. The figure clearly shows how
the visibility in the outcoupled atomic stream diminishes
with increasing frequency separation in the causative out-
coupling rf fields, even if the rf field itself is with perfect
visibility.

V. CONCLUSIONS AND DISCUSSION

We have derived a linear wave-packet solution for an output
coupling scenario. The model establishes a bridge between two
different ways of looking at the interference of overlapping
atom lasers and shows that the effect can be understood equally
as interference of spatially extended atomic clouds as well as
interference of classical magnetic fields causing the output
coupling.

The model is built in terms of generalized energy eigen-
states of a linear potential caused by gravity, and it shows how
the total wave packet can be interpreted as being constructed by
a continuous loading of a continuous spectrum of these states,
which individually do not correspond to a physical solution.
In general, our model does not suffer from unphysical infinite
quantities [21,31].

Through the analysis of the solution, it was shown that the
visibility of the observed interference pattern is limited by the
spatial extent of the trapped cloud, which serves as a source
for the atomic beams. Furthermore, the visibility is shown
to be affected by the rf frequencies in the sense of selecting
a resonant energy and, moreover, amplitude for the atomic
stream.

The simple linear model was then compared to numerical
simulations including the atomic interactions as well as all the
Zeeman sublevels, and the qualitative match was shown to be
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excellent using experimentally realistic parameters. The model
is one dimensional and assumes weak coupling. The appli-
cability is therefore restricted to cases where the transversal
extent of the source condensate is wide [11,23,24]. Within
these restrictions, the presented linear model also generalizes
straightforwardly for multiple dimensions and to an outcou-
pling scenario based on a Raman transition including an initial
momentum kick.
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