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Localization of a Bose-Einstein-condensate vortex in a bichromatic optical lattice
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By numerical simulation of the time-dependent Gross-Pitaevskii equation we show that a weakly interacting
or noninteracting Bose-Einstein condensate (BEC) vortex can be localized in a three-dimensional bichromatic
quasiperiodic optical-lattice (OL) potential generated by the superposition of two standing-wave polarized laser
beams with incommensurate wavelengths. We also study the localization of a (nonrotating) BEC in two and three
dimensions by bichromatic OL potentials along orthogonal directions. This is a generalization of the localization
of a BEC in a one-dimensional bichromatic OL as studied in a recent experiment [Roati et al., Nature 453, 895
(2008)]. We demonstrate the stability of the localized state by considering its time evolution in the form of a
stable breathing oscillation in a slightly altered potential for a large period of time. Finally, we consider the
localization of a BEC in a random one-dimensional potential in the form of several identical repulsive spikes
arbitrarily distributed in space.
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I. INTRODUCTION

The possibility of the localization of the electronic wave
function in a one-dimensional (1D) disordered potential as
predicted by Anderson in his pioneering work [1] has drawn the
attraction of researchers in different areas. Different forms of
localization have been observed experimentally in diverse con-
texts, such as in electromagnetic waves [2,3], in sound waves
[4], and also more recently in quantum matter waves [5–8].
Using a cigar-shaped noninteracting Bose-Einstein condensate
(BEC) [9,10] of 87Rb atoms, Billy et al. [5] demonstrated its
exponential localization when released into a 1D waveguide in
the presence of a controlled disorder created by a laser speckle.
In another experiment, using a cigar-shaped noninteracting
BEC of 39K atoms, Roati et al. [6] demonstrated its localization
in a 1D bichromatic optical-lattice (OL) potential created by
the superposition of two standing-wave polarized laser beams
with different wavelengths. The noninteracting BEC of 39K
atoms was created [6] by tuning the interatomic scattering
length to zero near a Feshbach resonance [11].

The localization of a BEC in a 1D bichromatic quasiperi-
odic OL potential and related topics have been the subject
matter of several theoretical [12–25] and experimental [5–8]
studies. After the pioneering experiments [5,6] on the local-
ization of a 1D cigar-shaped BEC, a natural extension of
this phenomenon would be to achieve localization in higher
dimensions [e.g., in two (2D) and three (3D) dimensions].
We address this important issue in the present investigation.
Using the complete numerical solution of the Gross-Pitaevskii
(GP) equation [26], here we study the localization of a
(nonrotating) disk-shaped BEC in 2D and also a BEC in 3D,
with a small nonlinearity, in the presence of bichromatic OL
potentials along orthogonal directions. (For zero nonlinearity
the problem of a stationary state of a d-dimensional [d = 2,3]
nonrotating BEC trivially decouples into d 1D problems and
for a large repulsive nonlinearity the localization is destroyed
[19,20].) In 3D, another nontrivial phenomenon can happen
(i.e., the generation of a stable vortex state of unit quantum).
Here we demonstrate the localization of a stable nontrivial

*adhikari@ift.unesp.br; URL: www.ift.unesp.br/users/adhikari

vortex state in a 3D BEC under the action of a bichromatic
OL potential along the axial direction and harmonic potentials
along radial directions. We find, as in 1D [19,20], a repulsive
nonlinearity has a strong effect on localization and a not-too-
large nonlinearity destroys localization in all cases. We exhibit
results for zero and small nonlinearities. (Effects of a weak
nonlinearity in the Anderson localization have been shown
experimentally in light waves in photonic crystals [6,27].)

In the presence of strong disorder, the localized state can be
quite similar to a localized state of Gaussian shape in an infinite
potential. However, the more interesting case of localization
is in the presence of a weak disorder when the system is
localized due to the quasiperiodic nature of the potential [5,6]
and not due to the strength of the lattice. When this happens
the localized state acquires an exponential tail. The present
localization with an exponential tail in a quasiperiodic OL
potential with a deterministic weak disorder is a special case
of Anderson localization in a fully disordered potential and is
well described by the Aubry-André model [14].

In the pioneering study, Anderson considered localization
of electron(s) in a 1D random potential generated by impurity
or disorder arbitrarily distributed on a lattice. This is of interest
in the study of a BEC and we consider its localization in a
disorder potential in the form of identical narrow repulsive
spikes (simulating delta functions) distributed randomly in
space. (This is different from a speckle potential where the
spikes also have different strength and width.) We find that as
small as four such spikes can localize a noninteracting BEC
in 1D. This is not just of academic interest as such potential
can be created in 1D and possibly in 2D for a BEC in an atom
chip [28,29]. A single repulsive spike separating the BEC into
two parts is now routinely created [29].

There have been theoretical studies on different aspects
of Anderson localization which are worth mentioning [20].
Wobst et al. [30] considered Anderson localization in higher
dimensions. Sanchez-Palencia et al. and Clément et al. consid-
ered Anderson localization in a random potential [16,17,31].
Damski et al. and Schulte et al. considered Anderson localiza-
tion in disordered OL potential [17]. There have been studies
of Anderson localization with other types of disorder [32].
The effect of interaction on Anderson localization was also
studied [24,33]. Anderson localization in the BEC under the
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action of a disordered potential in 2D and 3D has also been
investigated [34].

In Sec. II we present a brief account of the nonlinear
2D and 3D time-dependent GP equations used in our study
and of the variational solution of the same under appropriate
conditions. The generalization of the equation to study vortex
states in 3D is also presented. In Sec. III we present numerical
results of localization employing time propagation using the
semi-implicit Crank-Nicolson algorithm. The wave function of
the localized states has a central Gaussian (variational) form
with a long exponential tail. First we consider in Sec. III A
the localization of a 2D disk-shaped BEC. We also consider
localization of a 3D BEC and a 3D vortex BEC in bichromatic
OL potential(s) in Sec. III B. In Sec. III C we consider the
localization of a noninteracting BEC for a random potential
comprised of arbitrarily distributed narrow spikes. In Sec. IV
we present a brief discussion and concluding remarks.

II. THEORETICAL FORMULATION OF LOCALIZATION

The quasiperiodic bichromatic OL potentials generated by
two standing-wave polarized laser beams of incommensurate
wavelengths in the x direction have the following generic
forms [6]:

U (x) =
2∑

i=1

siEi cos2(kix), (1)

U (x) =
2∑

i=1

siEi sin2(kix), (2)

where si,i = 1,2, are the amplitudes of the OL potentials
in units of respective recoil energies Ei = 2π2h̄2/(mλ2

i ), and
ki = 2π/λi , i = 1,2 are the respective wave numbers and λi

are the wave lengths, h̄(≡h/2π ) is the reduced Planck constant,
and m the mass of an atom.

If we have a single periodic potential of forms (1) and (2)
with s2 = 0, the solution of the Schrödinger equation cannot
be localized. One can have localization if a second periodic
component with a different frequency is introduced in Eqs. (1)
and (2). These localized states are not the gap solitons, which
are localized states in the solution of a nonlinear Schrödinger
equation with a repulsive nonlinearity appearing in the band
gap of the spectrum of the linear Schrödinger equation [35].

The BEC in 3D is described by the GP equation

ih̄
∂φ(r,τ )

∂τ
=

[
−h̄2∇2

2m
+ V (r) + g|φ(r,τ )|2

]
φ(r,τ ), (3)

where g = 4πh̄2aN/m,
∫ |φ(r,τ )|2dr = 1, τ the time, N the

number of atoms, V (r) is the trap, and a is the atomic scattering
length. With three quasiperiodic, bichromatic OL potentials in
x,y, and z directions, after canceling the factor h̄2/m from both
sides of Eq. (3), the GP equation in explicit notation becomes

i
∂φ(x,y,z,t)

∂t
=

[
− 1

2

(
∂2
x + ∂2

y + ∂2
z

) + V (x) + V (y)

+V (z) + g|φ(x,y,z,t)|2
]
φ(x,y,z,t), (4)

where g = 4πaN , ∂x’s denote space derivatives, and time
t ≡ τh̄/m is now expressed in units of m/h̄. Note that Eq. (4) is
not expressed in dimensionless units. The variables x, y, z, and
λi are in actual units of length (L), |φ|2 is in units of L−3 with
normalization

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ |φ(x,y,z,t)|2dxdydz = 1. In

Eq. (4) the scaled potentials V (x) ≡ U (x)m/h̄2 are now
defined by one of the two following expressions:

V (x) =
2∑

i=1

2π2si

λ2
i

cos2

(
2πx

λi

)
, (5)

V (x) =
2∑

i=1

2π2si

λ2
i

sin2

(
2πx

λi

)
. (6)

In case of a 2D and 3D BEC, instead of having the same
potential [e.g., (5) or (6) in different directions] one can choose
different potentials along different directions.

For axially symmetric traps, the GP equation can be easily
generalized to include a vortex state, as shown in Refs.
[10,36], in axially symmetric coordinates r ≡ (ρ,z), where
ρ is the radial coordinate and z the axial coordinate. To obtain
a singly quantized vortex state of angular momentum h̄ around
the z axis, one has to explicitly introduce a phase (equal to
the azimuthal angle) in the wave function. (Vortex states of
higher angular momentum are unstable and decay into multiple
states of angular momentum h̄.) This procedure introduces
a centrifugal term in the GP equation representing a vortex
state [10,36]. Thus we can study a localized quantized BEC
vortex of unit angular momentum in the axially symmetric
potential, where the bichromatic OL potential V (z) is placed
along the axial z direction and a harmonic trap ρ2/2 along the
transverse radial ρ direction. The modified GP equation for
such a vortex is given by [36]

i
∂φ(ρ,z,t)

∂t
=

[
−1

2

∂2

∂ρ2
− 1

2ρ

∂

∂ρ
− 1

2

∂2

∂z2
+ 1

2ρ2

+ 1

2
ρ2 + V (z) + g|φ(ρ,z,t)|2

]
φ(ρ,z,t), (7)

where we have explicitly included the angular-momentum-
dependent centrifugal term 1/(2ρ2) [37]. Because of the
centrifugal term, the density of the vortex should be zero along
the z axis.

If there is a strong harmonic trap in the axial z direction,
one can derive a reduced quasi-2D GP equation for a disk-
shaped BEC, which can be written in dimensionless harmonic
oscillator units as [38]

i
∂φ(x,y,t)

∂t
=

[
−1

2

(
∂2
x + ∂2

y

) + V (x) + V (y)

+ g|φ(x,y,t)|2
]
φ(x,y,t), (8)

where g = 2
√

2πaN and V (x) is given by Eqs. (5) or (6). In
Eq. (8) the normalization is

∫ ∞
−∞

∫ ∞
−∞ |φ(x,y,t)|2dxdy = 1. In

Eq. (8) lengths are expressed in units of lz ≡ √
h̄/mωz with ωz

the frequency in the z direction, φ(x,y,t) in units of l−2
z and

time in units of ω−1
z .

Finally, for the sake of completeness we note that if there
is a strong harmonic trap in transverse y and z directions,
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one can derive a reduced quasi-1D GP equation for a cigar-
shaped BEC, which can be written in dimensionless harmonic
oscillator units as [38]

i
∂φ(x,t)

∂t
=

[
−1

2
∂2
x + V (x) + g|φ(x,t)|2

]
φ(x,t), (9)

where g = 2aN and V (x) is given by Eqs. (5) or (6). Now
the normalization is

∫ ∞
−∞ |φ(x,t)|2dx = 1. Equation (9) has

been used [18,20] for the study of localization in 1D in the
bichromatic OL potential. In Eq. (9) lengths are expressed in
units of l ≡ √

h̄/mω⊥ with ω⊥ the frequency in transverse
y and z directions, φ(x,t) in units of l−1, and time in units
of ω−1

⊥ .
Although we use potentials (5) and (6) in our study, there

is some difference between these two potentials. Potential
(6) generates a different type of localized state compared to
potential (5). Potential (6) has a local minimum at the center,
consequently stationary solutions with this potential have a
maximum there. However, potential (5) has a local maximum
at the center corresponding to a minimum of the stationary
solution.

Usually the stationary localized states formed with
quasiperiodic OL potentials (5) and (6) occupy many sites of
the quasiperiodic OL potential and have many local maxima
and minima. For certain values of the parameters, potential
(6) leads to localized states confined practically to the central
cell of the quasiperiodic OL potential. When this happens,
a variational approximation with Gaussian ansatz leads to
a reasonable prediction for the localized state in the central
region. (However, it has an exponential tail at large distances.)

To derive a simple variational solution of linear Eqs. (4), (8),
and (9) in 3D, 2D, and 1D, respectively, in a unified fashion,
we adopt the convenient notation r ≡ (x,y,z) in 3D, ≡(x,y)
in 2D, and ≡(x) in 1D. The stationary form of the linear
Schrödinger equations (4), (8), and (9) (with i∂/∂t replaced
by a chemical potential µ) with potential (6) can be derived
from the following Lagrangian

L =
∫ [

µ|φ(r)|2 − 1

2
|∇φ(r)|2

−V (r)|φ(r)|2 − g

2
|φ(r)|4

]
dr − µ, (10)

by demanding δL/δφ = δL/δµ = 0. To apply the variational
approximation we use the Gaussian ansatz [39]

φ(r) =
(

π−1/4

√
w

)d √
N exp

(
−

∑d
j=1 x2

j

2w2

)
, (11)

where d is the dimension of space, x1 ≡ x, x2 ≡ y, x3 ≡ z,

and the variational parameters are the norm N , width w, and
µ. This ansatz implies that the center of the stationary state
is placed at the local minimum at xi = 0, i = 1,2,3 of the
quasiperiodic OL potential. The substitution of ansatz (11) in
Lagrangian (10) leads to

L = µ(N − 1) − dN
4w2

+ dN
2∑

i=1

Ai

2

[
exp

(−α2
i w

2
) − 1

]

− gN 2

2

(
1√

2πw

)d

, (12)

where Ai = 2π2si/λ
2
i , αi = 2π/λi. The first variational equa-

tion from Eq. (12), ∂L/∂µ = 0, yields N = 1, which will be
used in other variational equations. The second variational
equation ∂L/∂w = 0, yields

1 =
2∑

i=1

2α2
i Aiw

4 exp
(−α2

i w
2
) − g

(2π )d/2wd−2
, (13)

and determines the width w. The last variational equation
∂L/∂N = 0, yields

µ = d

4w2
−

2∑
i=1

dAi

2

[
exp

(−α2
i w

2
) − 1

] + g

(
1√

2πw

)d

,

(14)
which determines the chemical potential.

In addition to considering a disorder potential in the form of
a bichromatic lattice, we also consider the following disorder
potential in the form of randomly distributed S repulsive
identical Gaussian spikes in 1D along the x axis

V (x) =
S∑

i=1

Bi exp[−ci(x − βi)
2], (15)

where Bi is the amplitude of the Gaussian spike, ci is its
width, and βi is its random position. If the spikes are placed
at constant periodic spacing, no localization can be obtained.
There will be localization if the positions βi are random. In
2D and 3D the appropriate potentials are V (x) + V (y) and
V (x) + V (y) + V (z). We study the localization of a BEC in
random potential (15).

For an analytical understanding of the problem, next we
present a variational analysis. As the potential (15) is Gaussian
a variational analysis based on the Gausssian ansatz is fully
integrable. [The potential will be so chosen that the numerical
wave function will be centered at x = 0, and we shall use
ansatz (11) for our purpose.] Only the potential term in the
Lagrangian gets modified and in this case the third term in the
Lagrangian of Eq. (12) becomes

− dN
S∑

i=1

Bi

exp
[−ciβ

2
i

/
γi

]
√

γi

, (16)

and Eq. (13) for width gets modified into

1 =
S∑

i=1

2ciBiw
4
[
2ciβ

2
i − γi

]
exp

[
ciβ

2
i

/
γi

] √
γi

− g

(2π )d/2wd−2
, (17)

where γi = 1 + ciw
2. The expression for the chemical poten-

tial becomes

µ = d

4w2
+

S∑
i=1

dBi exp
(−ciβ

2
i /γi

)
√

γi

+ g

(
1√

2πw

)d

.

(18)

III. NUMERICAL RESULTS

We performed numerical simulation employing imaginary
and real-time propagations with a Crank-Nicolson discretiza-
tion scheme [38,40] using adequately small space and the
time steps necessary for obtaining converged solutions. In
practice we used space and time steps smaller than 0.025 and
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0.0005, respectively, and sometimes as small as 0.0025 and
0.00002, respectively. We use the FORTRAN programs provided
in Ref. [38] for our purpose. For checking the consistency
of our calculation we compared our real-time results with
imaginary-time results and we verified that the two sets of
results were in agreement with each other. Because of the
oscillating nature of the bichromatic OL potential, great care
was needed to obtain a localized state precisely. The accuracy
of the numerical simulation was tested by varying the space
and time steps as well as the total number of space and time
steps. Although we used the time-dependent GP equation for
the study of localization, all results reported in this paper,
except those in Fig. 4, are stationary results independent of
time. In Fig. 4 we study time-dependent stability dynamics of
the localized states obtained with real-time propagation.

A. 2D bichromatic optical lattice

To study the localization of a BEC in 2D and 3D with
potentials (5) and (6), we set the ratio λ2/λ1 = 0.86 (roughly
the same ratio λ2/λ1 as in the experiment of Roati et al. [6]).
First we consider the solution of Eq. (8) for a disk-shaped BEC.
To understand the nature of these localized states, we consider
the localized states with larger values of λ1. Such states with a
large s2/s1(=1) occupy a small number of OL sites and hence
their numerical simulation can be performed relatively easily.
All results reported in Secs. III A and III B are obtained with the
following parameters in the bichromatic OL potentials (5) and
(6): λ1 = 5, λ2/λ1 = 0.86, and s1 = s2 = 4. It now remains to
be seen if with this set of parameters the localized state is in
the limit of weak disorder with an exponential tail. In 1D this
would mean φ(x) ∼ exp(−x/Lloc), where Lloc is the localiza-
tion length. In Fig. 1 we plotted the numerical probability φ2(x)
versus x on a log scale, together with a fitting exponential func-
tion with Lloc = 0.75, 1.5, and 2.2, respectively, for λ1 = 5,
10, and 15. These localization lengths are large compared to the
root mean square (rms) size of the localized states, which are
0.53, 1.05, and 1.55 for λ1 = 5, 10, and 15. The wave functions
shown in Fig. 1 are identical to those shown in Fig. 1(a) of
Ref. [20] where the central part of these wave functions are
well fitted to Gaussian variational approximations.

In Figs. 2(a) and 2(b) we plot the results for density φ2(x,y)
versus x and y from numerical and variational solutions of Eqs.
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FIG. 1. (Color online) Numerical density φ2(x) (line) and its
exponential fit (symbol) vs. x for λ1 = 15, 10, and 5.

φ2(x,y)

numerical

-2 -1  0  1  2
x -2

-1
 0

 1
 2

y
 0

 0.5

 1

 1.5

φ2(x,y)

(a) (b)

variational

-2 -1  0  1  2
x -2

-1
 0

 1
 2

y
 0

 0.5

 1

 1.5

φ2(x,y)

(c)

numerical

-4
-2

 0
 2

 4x -4
-2

 0
 2

 4

y
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.05

 0.1

 0.15

 0.2

(d)-4 -3 -2 -1  0  1  2  3  4

-4

-3

-2

-1

 0

 1

 2

 3

 4

φ2(x,y)

(e)

numerical

-4
-2

 0
 2

 4x -4
-2

 0
 2

 4

y
 0

 0.1

 0.2

 0.3

 0

 0.05

 0.1

 0.15

 0.2

(f)-4 -3 -2 -1  0  1  2  3  4

-4

-3

-2

-1

 0

 1

 2

 3

 4

FIG. 2. (Color online) (a) Numerical and (b) variational density
φ2(x,y) vs. x and y from a solution of Eqs. (8) and (6) for a disk-
shaped BEC for g = 0. (c) Numerical density φ2(x,y) vs. x and y

and (d) its contour plot from a solution of Eqs. (8) and (6) for a
disk-shaped BEC for g = 2. (e) Numerical density φ2(x,y) vs. x and
y and (f) its contour plot from a solution of Eqs. (8) and (5) for a
disk-shaped BEC for g = 2. Quantities φ2(x,y) and x,y are all in
dimensionless harmonic oscillator units.

(8) and (6) for g = 0, respectively. [The g = 0 case is trivial
as the 2D and 3D Eqs. (8) and (4) decouple into two and three
1D equations, respectively. Nevertheless, this case allows us
to test carefully the numerical programs by comparing the
variational result with the two numerical results obtained by
real- and imaginary-time propagation.] The variational width
(w = 0.4864) obtained from a solution of Eq. (13) produced
the density in good agreement with the numerical density in
Fig. 2(a). In Fig. 2(c) we plot the results for density φ2(x,y)
versus x and y from a numerical solution of Eqs. (8) and (6)
for the same set of parameters as in Fig. 2(a) but with g = 2.
(As in 1D [19,20], repulsive nonlinearity g has a strong effect
on localization. As g is increased to a small positive value,
the localized states occupy more and more lattice sites with
larger spatial extension.) In Fig. 2(d) we show a contour plot
of the density shown in Fig. 2(c). Because of the nonlinear
interatomic repulsion, the essentially single peak of Fig. 2(a)
now transforms into a multipeak structure, although the central
peak is still the strongest. Finally, in Figs. 2(e) and 2(f) we plot
φ2(x,y) versus x and y and its contour plot from a numerical
solution of Eqs. (8) and (5) for g = 2. Due to a change in
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the nature of the potential from Eq. (6) (sine, minimum of
potential at origin) to Eq. (5) (cosine, maximum of potential at
origin) the central region has a minimum of density in this case
and not a maximum as in Figs. 2(a) and 2(c). The difference
in the structure of the BEC densities can clearly be seen from
the respective contour plots.

We also calculated the chemical potential of the states illus-
trated in Fig. 2. The numerical result for energy for potential (6)
of Fig. 2(a) is 4.747, to be compared with the variational result
of Eq. (14) 4.791, calculated with width w = 0.4864 obtained
by solving Eq. (13). This agreement between the numerical
and variational results of the BEC density for potential (6) in
Fig. 2(a), and of the respective energies, provides assurance
about the accuracy of the numerical code used in simulation in
our investigation. We also calculated the (numerical) chemical
potential of the BEC density displayed in Figs. 2(c) (µ =
5.102) and 2(e) (µ = 5.103). The two chemical potentials are
practically the same. A similar finding was noted in the 1D case
as the potential was changed from sine to cosine type [20].

As we are considering two potentials (5) and (6) in 2D and
3D it is possible to have a distinct potential along each axis.
We consider this possibility in the case of the localized state
in a disk-shaped BEC where we take potential (5) along the x

direction and potential (6) along the y direction with g = 0.
The density and the contour plot of the BEC in this case are
shown in Figs. 3(a) and 3(b). Just to illustrate the effect of
a small nonlinearity on the localized state we repeated the
numerical simulation in this case with a nonlinearity g = 2.
The density and the corresponding contour plot of the resulting
localized state are shown in Figs. 3(c) and 3(d). The density in
Fig. 3(c) is quite similar to that in Fig. 3(a), with the exception
that the density in Fig. 3(c) extends over more sites due to the
repulsive nonlinearity.
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FIG. 3. (Color online) (a) Density φ2(x,y) of a disk-shaped BEC
from a numerical solution of Eq. (8) with (b) its contour plot for
potential (6) along the x direction and potential (5) along the y

direction for g = 0. (c) Same as (a) but with g = 2. (d) Same as
(b) but with g = 2. All quantities are in oscillator units.
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FIG. 4. (Color online) Time evolution of the rms sizes of the
BEC’s depicted in Figs. 2(c) and 2(e) as the potential is multiplied
suddenly by a factor of 1.02 or 1.05. All quantities are in oscillator
units.

Next we explicitly demonstrate that the densities shown
in Fig. 2 corresponds to stable states. For this we consider
the time evolution of the BEC’s illustrated in Figs. 2(c) and
2(e) in a slightly altered potential (e.g., the potential obtained
by multiplying the original potentials by a factor of 1.02 and
1.05). The resultant rms sizes as calculated by the real-time
propagation routine are plotted in Fig. 4. The curves in
Fig. 4 are labeled by Fig. 2(c) or 2(e) and the factor 1.02
or 1.05 which multiplies the potential. In all cases the rms
sizes execute breathing oscillation over a long period of time
as shown in Fig. 4 and this demonstrates the stability of the
localized states.

B. 3D bichromatic optical lattice

Now we consider a few cases of the localized states in
3D as obtained from a solution of Eq. (4) together with
potential (5) or (6) along three orthogonal directions. First,
as in 2D, we consider the solution of Eq. (4) with potential
(6) for g = 0. The result is illustrated in Figs. 5(a) and 5(b).
In Fig. 5(a) we plot three sections of the density −�2(x) ≡
φ2(x,0,0) versus x, �2(r) ≡ φ2(r/

√
3,r/

√
3,r/

√
3) versus r ,

and �2(ρ) ≡ φ2(0,ρ/
√

2,ρ/
√

2) versus ρ—together with the
variational result. Here �2(x) corresponds to the density in
the axial x direction with polar angle θ = 0, �2(r) that in the
diagonal direction with polar angle θ = π/4 and azimuthal
angle ϕ = π/4, and �2(ρ) that in the transverse direction
with polar angle θ = π/2 and azimuthal angle ϕ = π/4.
In Fig. 5(b) we show the 3D contour plot (obtained using
MATHEMATICA) of the BEC density showing the actual shape
of the localized state. [The value of the density at the
boundary of the plot is 0.001 in Figs. 5(b), 5(d) and 5(f).]
As g = 0 in Fig. 5(a), the 3D wave function is trivial and
decouples in the three directions. The variational result in this
case is in good agreement with the numerical result for the
density in the diagonal direction −�2(r). Next we consider
the nontrivial 3D case with g = 2 for potential (6). In this
case the 3D solution has no 1D counterpart. In Figs. 5(c)
and 5(d) we plot the sections of the densities and the 3D
contour plot, respectively, for potential (6) with g = 2. The
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FIG. 5. (Color online) (a) Sections of density φ2(x,y,z) for a 3D
BEC from a solution of Eq. (4) with the (b) 3D contour plot of
density φ2(x,y,z) for potential (6) with g = 0; (c) same as (a) with
g = 2; (d) same as (b) with g = 2; (e) same as (a) with potential
(5) with the parameters λ1 = 5, λ2/λ1 = 0.86, s1 = s2 = 4 and g =
2; (f) contour plot for (e). The sections plotted in the left panel
are �2(x) ≡ φ2(x,0,0) vs. x, �2(ρ) ≡ φ2(0,ρ/

√
2,ρ/

√
2) vs. ρ, and

�2(r) ≡ φ2(r/
√

3,r/
√

3,r/
√

3) vs. r . For potential (6) the variational
result for �2(r) vs. r is also plotted.

shape of the BEC density is similar to the g = 0 case with
a maximum at the origin, the only difference being that in
Fig. 5(c) the density extends over a larger distance in space
due to the repulsion introduced by a positive g value. The
density has secondary maxima in adjacent OL sites in this
case. Finally, in Figs. 5(e) and 5(f) we show the results for the
density and its 3D contour plot, respectively, with potential
(5) and g = 2. Now the density has a minimum at the origin
in contrast to the maxima in Figs. 5(a) and 5(c). Also, in
Figs. 5(e) and 5(f) the density is zero along the three axes
[explicitly shown in the x direction with �2(x) = 0].

Next we consider the localization in a 3D bichromatic OL
potential of a BEC vortex with g = 5 rotating around the
z direction with unit angular momentum from a numerical
solution of Eq. (7). In this case we consider potentials (6)
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FIG. 6. (Color online) (a) 2D contour plot of the BEC density
φ2(ρ,z) for a localized 3D vortex in bichromatic OL potential (6)
with g = 5, obtained by solving Eq. (7). The vortex core appears as
the line ρ = 0. (b) Same as (a) in bichromatic OL potential (5). As
potential (5) has a maximum at z = 0 the matter density is zero there.

and (5) along the z direction. For a localized 3D vortex state
rotating around the z direction and described by Eq. (7) under
the action of the bichromatic OL potentials (6) and (5), a vortex
core of zero density passing through the origin develops along
the z axis. To illustrate the vortex state we solve Eq. (7) with
potentials (6) and (5) for g = 5. In Figs. 6(a) and 6(b) we show
the contour plot of the density φ(ρ,z) for potentials (6) and
(5), respectively. For potential (5), in addition to the vortex
core along the z axis, the density is also zero along the z = 0
line. Both vortices are localized exponentially along the axial
z direction.

C. Random spike potential

Now we consider the localization of a BEC in the 1D
random potential (15). For small values of the amplitude Bi ,
a large number S of spikes is needed for a good localization.
However, we consider the minimum number S(=4) of spikes
for localization. For a robust localization with S = 4, we take
Bi = 8 and ci = 100 corresponding to a Gaussian spike of very
small width. Next we had to choose the random positions βi .
Different sets of unevenly distributed βi produced localization
and here we take βi = −12, − 6,6,14 for i = 1,2,3,4. This
choice of the points sets the center of the localized BEC
approximately at x = 0. In Fig. 7 we plot the localized BEC
density φ2(x) vs. x for nonlinearity g = 0. The variational
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FIG. 7. (Color online) The numerical (num) and variational (var)
BEC density φ2(x) vs. x for the random potential (15) with Bi = 8,
ci = 100, x10 = −12, x20 = −6, x30 = 6, x40 = 14 and g = 0. The
potential V (x) is also plotted in arbitrary units.

043636-6



LOCALIZATION OF A BOSE-EINSTEIN-CONDENSATE . . . PHYSICAL REVIEW A 81, 043636 (2010)

and numerical chemical potentials are 0.03739 and 0.03093,
respectively. The plot of the potential (in arbitrary units) is also
shown in Fig. 7. With this potential the localization is destroyed
for a very small nonlinearity g(∼1), unless the number of
spikes is increased and we do not consider the localization of
an interacting BEC here.

IV. SUMMARY

In this paper, using the numerical solution [38] of the GP
equation [26] in 2D and 3D, we studied the localization [5,6] of
a noninteracting and weakly interacting BEC in a quasiperiodic
bichromatic OL potential along different axes. We considered
two analytical forms (sine and cosine) of the OL potential [e.g.,
(5) and (6)] and considered the same or different potentials
along different axes. First we consider the localization of a
disk-shaped BEC with a small repulsive nonlinearity under
the action of the bichromatic OL potential (5) or (6). We
considered the localization of a full 3D BEC under the action of
bichromatic OL potentials (5) or (6) along the three axes with
or without a small nonlinear atomic interaction. The increase
of nonlinearity destroys localization in all cases considered
[19,20,24]. We also considered the localization of a BEC
vortex of unit angular momentum with a 3D bichromatic OL
potential (6) or (5) along the axial direction and harmonic
traps along the transverse radial directions. The clear stable
vortex cores in 3D as shown in Figs. 6(a) and 6(b) are the most
important findings of this paper. In all cases, including the
vortices, we consider weak exponential localization. Finally,
we showed that one can have localized noninteracting BEC

states under the action of random potentials taken in the form
of repulsive spikes randomly distributed in space. All these
localized states are found to be dynamically stable.

We hope that the present work will motivate new studies,
especially experimental ones, on localization in a more realistic
2D and 3D BEC under the action of bichromatic OL potentials
along different axes. Especially challenging is the localization
of a singly quantized vortex BEC in 3D as predicted in this
work. The consideration of a vortex lattice of BEC [41] in
bichromatic OL potentials is of great interest also. It remains
to be seen if one has vortex pinning in a rotating BEC as
observed in a monochromatic OL potential superposed on a
harmonic trap [42]. The effect of a bichromatic OL potential
on a two-species mixture of BEC’s [43] is also of interest.
In the bichromatic OL potential considered in this paper, the
disorder term is taken in the form of a periodic potential with an
incommensurate wave length. We also considered a disordered
potential in the form of narrow identical repulsive spikes
distributed randomly in space. Further work needs be done
to study the effect of different types of disorder terms. The 2D
and 3D localizations of BEC under the action of bichromatic
OL potentials and of a random potential—as predicted in this
paper—may find application in other contexts in 2D and 3D,
for example, in the localization of electron waves in 2D and
3D lattices as well as in the localization of electromagnetic
waves, or sound waves in the presence of disorder.
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[7] J. Chabé, G. Lemarie, B. Gremaud, D. Delande, P. Szriftgiser,

and J. C. Garreau, Phys. Rev. Lett. 101, 255702 (2008).
[8] E. E. Edwards, M. Beeler, T. Hong, and S. L. Rolston, Phys.

Rev. Lett. 101, 260402 (2008).
[9] L. Pitaevskii and S. Stringari, Bose Einstein Condensation

(Oxford University Press, Oxford, 2003).
[10] C. J. Pethick and H. Smith, Bose Einstein Condensation in Di-

lute Gases (Cambridge University Press, Cambridge, England,
2002).

[11] S. Inouye et al., Nature (London) 392, 151 (1998).
[12] P. G. Harper, Proc. Phys. Soc. London, Sect. A 68, 874 (1955).
[13] D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus, Phys.

Rev. A 75, 063404 (2007).
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