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Dynamic matter-wave pulse shaping
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In this article we discuss possibilities for manipulating a matter wave with time-dependent potentials. Assuming
a specific setup on an atom chip, we explore how one can focus, accelerate, reflect, and stop an atomic wave packet,
with, for example, electric fields from an array of electrodes. We also utilize this method to initiate coherent
splitting or an arbitrary wave form. Special emphasis is put on the robustness of the control schemes. We begin
with the wave packet of a single atom and extend this to a Bose-Einstein condensate in the Gross-Pitaevskii
picture. In analogy to laser pulse shaping with its wide variety of applications, we expect this work to form
the base for more complex time-dependent potentials, eventually leading to matter-wave pulse shaping with
numerous applications.
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I. INTRODUCTION

Light-pulse shaping has given rise to numerous versatile
applications [1–6]. In the past decade the control of matter
waves has become comparable in its accuracy to the control
over light. Production, manipulation, and measurement of
cold atoms with a de Broglie wavelength of the order of a
micron has become common practice. It is therefore interesting
to see whether matter-wave pulse shaping, analogous in
some way to the optical counterpart, is possible, and what
the similarities and differences are. While we do not claim
to have realized in this work a complete set of universal
operations enabling any matter-wave pulse-shaping target, we
have indeed demonstrated several fundamental operations for
the manipulation of matter waves.

As a specific example for the analogous role the two pulse-
shaping realms may play, one can study the topic of control
of chemical reactions. Such control is one of the highest goals
in today’s theoretical chemistry. Over the past ten years, the
concept of coherent control has been developed as one of the
ways to achieve the desired control. This concept has up to
now mostly been used based on coherent laser light pulses
that were optimized to perform a certain task, like steering
a chemical process toward a specific reaction channel. The
flexibility of these control schemes, like optimal control theory
(OCT) [7–13] or some stochastic schemes [14–16], stems from
the fact that laser pulses can be shaped in many different ways,
by employing chirping, pulse trains, etc. Recently, a different
approach to coherent control has emerged, which relies on the
coherent properties of matter waves. In an example exhibiting
the potential of such a method, Jørgensen and Kosloff [17]
used the parameters of two matter-wave packets to control an
Eley-Rideal reaction.

To examine if a realistic scheme for matter-wave pulse
shaping is feasible, two things have to be considered. The
first is the natural dispersion of matter waves, and the second
involves the experimental constraints. The effect of dispersion
can best be illustrated by comparison with the free propagation
of a chirped laser pulse. Consider a light pulse with a chirp,
which is red at the beginning and blue at its end. This order
will be preserved as long as the pulse travels through vacuum.

The atom laser analog would be a wave packet with a small
momentum at the front and a high momentum at its trailing
part. A configuration which corresponds to this momentum
chirp may be naturally achieved for atoms by using a parabolic
potential which accelerates the rear part relative to the front
part of the wave packet. However, the consequent dynamics
is different than that of light in vacuum. The trailing part
will overtake the slower frontal part, reversing the order, with
possibly some complex interference pattern in the process.
(This is not quite true anymore when more than one particle
is considered; see Sec. III.) Thus, there are limitations on the
realization of chirping for matter waves, which will also apply
to other control tasks.

Second, one has to take into account the basic experimental
setting. In this article we take as an example the atom chip
[18–20], which provides a unique microlab for experimen-
tation with ultracold gases and Bose-Einstein condensates
(BECs) [21,22]. The chip has micro- and nanostructured wires
and electrodes on its surface [23,24], creating static magnetic
or electric fields, as well as microwave and radio-frequency
fields to trap, guide, and manipulate clouds of neutral atoms
as close as a few hundred nanometers from the surface (below
that, the Casimir-Polder force overcomes the other forces).
The atom chip has proven to enable spatial coherence close to
the surface [25].

Previous schemes for the manipulation of atomic wave
packets were based mainly on harmonic potential traps whose
harmonic parameters, namely the frequency and center, may be
changed in time to control either the width of the wave packet
[26] or its center-of-mass position [27,28]. Other schemes are
based on periodic light potentials [29–31]. All these schemes
maintain potential symmetries which limit the possibility of
creating arbitrary wave forms. To make a step forward, here
we use optimization methods and arbitrary potentials toward
a general scheme for matter-wave pulse shaping.

In this article we study the possibility of manipulating the
shape of a coherent wave packet with an array of electrodes that
produce a quasistatic electric field. Such an array, combined
with a magnetic guide to create a potential barrier between
the atoms and the surface, has been successfully employed
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[32]. The setup is such that the wave packet travels along a
one-dimensional (1D) magnetic waveguide over the array of
electrodes. In the quasistatic regime, the interaction between
wave packet and electric field is given by the potential energy

V (x,t) = −α

2
|E(x,t)|2, (1)

where x is the coordinate along the waveguide, α is the
static polarizability, and E is the field generated by the
electrodes. The electrodes can be switched with a time scale
of microseconds and below and may have a distance of less
than a micrometer from each other. The fabrication limitation
and atom-surface distance noted previously limit the spatial
resolution in constructing such a potential to a few hundred
nanometers, which is much smaller than the wave-packet
extent and is sufficient for pulse-shaping needs. In this work
we utilize temporal and spatial resolutions that are much less
demanding than those noted previously.

Given this basic setup, we will explore in the following
sections the possibility of shaping an atom laser pulse or
simply a wave packet released from its trap into the guide.
As fundamental building blocks of matter-wave shaping,
several basic shaping or control tasks are considered in the
following: focusing, accelerating, reflecting, and stopping the
wave packet. Finally, we show how the same technique could
be used for the more complex tasks of coherently splitting the
wave packet and creating an arbitrary wave form.

For each task, we discuss how it can be achieved, how
sensitively the result depends on the parameters of the external
potential, and what differences are to be expected if a
BEC, described by the Gross-Pitaevskii equation [33–35], is
considered. Namely, we put special emphasis on the robustness
of the control schemes. Similar control tasks have been studied
before [36], but by means of optical transitions. Let us note
that optical schemes such as the latter or the previously
mentioned optical manipulation techniques [29–31] have a
limited resolution (relative to the de Broglie wavelength)
and are hard to perform close to material objects, such as
those required in chemical reactions as noted in the preceding
example [17].

In Sec. II we give a brief description of the theoretical
methods used in this article, Sec. III analyzes the results of
the basic tasks described previously, and Sec. IV describes
the more complex tasks of coherent splitting, as well as the
creation of an arbitrary wave form. Section V summarizes and
gives an outlook.

II. THEORY

We begin by solving the time-dependent Schrödinger
equation (TD-SE),

�̇ = − i

h̄
H�, (2)

for a single 87Rb atom on the atom chip. Here the Hamiltonian
H is given by

H = T + V (x,t) + Vtrans(y,z), (3)

where T is the kinetic energy, V (x,t) is a slowly varying time-
dependent potential along x, and Vtrans is the time-independent

transverse waveguide potential. The wave function can then be
written as a product �(x,y,z,t) = �trans(y,z)�(x,t), where
the transverse part �trans is assumed to correspond to the
transverse ground state at all times, so that we are left with
a 1D problem. Here, we are not interested in the electric
field responsible for the potential V (x,t), but work with the
potential directly. We choose a rather simple temporal-spatial
form, which will turn out to be sufficient for the control tasks
at hand. More complicated forms could be achieved, but will
not be considered in this article. The potential is parametrized,
and the parameters have to be optimized in such a way that the
target is achieved. For optimization we use a simplex-downhill
algorithm, with Nelder-Mead parameters [37], together with a
random walk.

At time t = 0 our initial wave packet in the longitudinal
coordinate is a Gaussian,

�(x,t = 0) = 1√
σ
√

π
e−x2/(2σ 2)+ip0x/h̄, (4)

where the amplitude |�(x,t = 0)| has a full width at half
maximum (FWHM) of 10 µm. The initial momentum has
been chosen to correspond to a center-of-mass velocity vc.m.

of 10 cm/s. This initial shape of the wave-packet may be
generated by starting from a ground state in a harmonic trap,
which is then released and accelerated to the velocity vc.m..

For comparison, and in order to estimate the robustness of
our optimized external potentials, we repeat the propagations
with the time-dependent Gross-Pitaevskii equation (TD-GPE),
which governs the evolution of BECs with a repulsive
interparticle contact interaction. There, � is interpreted as
a single-particle function or orbital, which evolves in the mean
field of all other atoms:

�̇ = − i

h̄

(
H + 4πh̄2αsN

m
|�|2

)
�. (5)

The mean-field potential contains the s-wave scattering length
αs , which for 87Rb in the |2, 2〉 state is 95.5a0 [38]. N is
the total number of atoms. The mean field is repulsive and
proportional to the density at position r. To reduce the TD-GPE
into a 1D form, we assume that the transverse potential has the
harmonic form Vtrans(y,z) = 1

2mω2(y2 + z2) such that the
transverse ground-state energy h̄ω of the ground state is
larger than the repulsive potential. In this case the TD-GPE
reduces to a 1D form in which the scattering length αS

is replaced with αS → αS/a⊥, where a⊥ = πh̄/mω is the
effective area occupied by the ground state in the transverse
directions. For the sake of better comparison, we use the same
initial wave packet �(x,t = 0) as in the TD-SE case.

III. RESULTS

As mentioned in the Introduction, we have chosen four
control tasks to study the versatility of this approach. The
following sections report results for focusing, acceleration,
reflection, and stopping and discuss the physics and the
robustness of the solutions.
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FIG. 1. (Color online) Focusing of a wave packet. The time-
dependent external potential is given by contour lines in steps of
30 µK.

For all four tasks we have chosen an external potential of
the form

V (x,t) =−V0 exp

[
−

(
t − t0

τ

)4
]

cos2

(
π

x − xc

σx

+ φ

)
(6)

for |x − xc| � σx/2, and V (x,t) = −V0 sin2 φ otherwise. For
the three first tasks we use φ = 0, namely, the potential is
attractive at the center x = xc and forms a well with a minimum
at the center. For the stopping task we use φ = π/2, such that
the potential is attractive far from the center and zero at x = xc,
forming a potential barrier. The times t0 and τ , the width
σx , the depth V0, and the potential center xc are chosen with
constraints such that the potential is experimentally feasible.
The parameter xc was chosen to be fixed in the laboratory
frame for the first three tasks and has a time-dependent form
xc = x0 + vt (with two optimization parameters x0 and v)
for the stopping task. We have tested other functional forms
for V (x,t), like a Gaussian in time and a simple half-cosine
in space, and found that this does not change the quality or
robustness with which the control tasks are achieved.

A. Focusing

The first target is to focus the pulse, that is, the external
potential should minimize the width of the wave packet �x =√

〈x2〉 − 〈x〉2. The optimized external potential is shown in
Fig. 1 as contour lines (optimal parameters can be found in
Table I), together with the time-dependent density from a
solution of the TDSE, that is, for a single 87Rb atom.

TABLE I. Optimal parameters of the external potential for the
control tasks. For focusing, the task was to minimize the width �x;
for acceleration, the kinetic energy was doubled; for reflection, the
momentum inverted; and for stopping, the kinetic energy minimized.

Focus Acceleration Reflection Stopping

V0 (µK) 97.73 100.0 131.4 100.0
t0 (µs) 203.4 32.50 284.9 267.4
τ (µs) 134.3 35.83 136.0 103.5
σx (µm) 50.0 34.03 31.93 52.36
xc (µm) 13.23 13.23 13.23 −0.2927 + 0.4297vc.m.t

φ 0 0 0 π/2

At its minimum, �xmin = 0.1079 µm, a factor F = 27.8
smaller compared to its initial width. This value could have
been increased further if the external potential had been
allowed to be arbitrarily wide. However, to remain within
typical experimental parameters, the width of the potential had
been fixed to σx = 50 µm (in the next tasks, 50 µm was left as
an upper limit). Therefore, we optimized for this goal only the
three parameters—V0, t0, and τ—as presented in Table I. V0

was restricted to be about 100 µK or less. Such a trap depth has
been achieved with an electric field even at the considerable
height of 50 µm [32].

The physics of the focusing process is rather simple: In this
example the external potential is switched on when the wave
packet is over a region with a relatively small gradient, and as
time evolves the atoms are facing a hill. Focusing is explained
by the gradient of the force, so that a different force is applied
by the potential on the different parts of the wave packet.
The parabolic shape of the potential implies that while the
wave packet is climbing up the potential slope at x > xc, the
front part of the wave packet experiences a stronger retarding
force in the backward direction relative to the trailing part. This
causes these two parts to run into each other while the wave
packet becomes narrower until the front and rear parts reach
each other at maximum focusing and then pass each other and
continue to move further away as the wave packet expands. In
the case of a BEC, the interaction between the particles may
modify this dynamics, as we show in what follows.

How sensitive is the focus factor F to errors in the
parameters of the external potential? In order to answer this,
we changed each of the optimal parameters by ±1% and reran
the simulations. Table II reports the mean of the modulus of the
change in the minimal width, given in percent of the optimal
�xmin reported previously. For all three parameters, the change
is less than 1%, which implies good stability against external
perturbations.

At this point the question of how a BEC would behave
arises. For the same set of optimized parameters and the same
initial � that were used for the TD-SE, we solved the TD-GPE
for various densities. Roughly, the time evolution looks like
the one in Fig. 1. The width of the BEC is slightly larger at
early times, because of the repulsive potential, but this could
not be discerned given the scale of Fig. 1. The expectation
then is that the repulsive mean-field potential counteracts the
focusing. However, we find that this is not strictly true (see
Fig. 2). For a certain range of densities, the focusing is even
more efficient. This can be best understood by considering
the motion of the frontal and trailing parts of the wave packet
in the center-of-mass frame of reference. Unlike the case of
noninteracting particles, where these parts of the wave packet
can freely pass through each other, in the case of a BEC the

TABLE II. Stability of target achievement, in percent. No
stability analysis was done for the stopping task (see text).

Focus Acceleration Reflection

V0 0.147 0.275 0.523
t0 0.674 0.130 0.152
τ 0.277 0.181 0.857
σx − 0.200 0.920
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FIG. 2. Focusing efficiency as a function of BEC density. The
dashed horizontal line indicates the TD-SE solution.

repulsive interaction potential counteracts the movement of
the trailing and frontal parts through the central part when they
are already close together. As the shape of the wave packet is
not Gaussian at this stage and contains significant tails, this
counteraction serves to concentrate these parts better around
the center. Another implication of this process is that the
momentum distribution narrows down significantly near the
maximum focusing points, as shown in Fig. 3. This focusing
both in position and momentum space appears only in the case
of the BEC and is absent when the TD-SE is solved as no
significant change in the momentum distribution is seen. If
the density of the BEC is increased further, then the expected
decrease of the focusing efficiency is observed.

A question that may arise is the validity of the 1D
approximation for the dynamics of a BEC when it is focused.
It may appear that even if initially the repulsive energy is
smaller than the transverse confinement potential and the
transverse part of the wave function is roughly the ground state
of the transverse potential, then after focusing the density is
increased significantly and the wave packet may experience
significant expansion in the transverse direction. In order
to resolve this, we have solved the TD-GPE in cylindrical
coordinates for the case of a BEC with N = 1000 atoms
and transverse confinement of ωtrans = 2π × 400 Hz (initial
peak density of 1.45 × 1014 atoms/cm3). As shown in Fig. 4,
the focusing efficiency is almost unchanged relative to the
1D approximation and the transverse expansion is not very
significant before and at the time of maximum longitudinal

FIG. 3. (Color online) Time-dependent momentum density of a
BEC that is focused in position space. At the time when the spatial
width is minimal, an additional feature appears, which is not present
in the Schrödinger case.
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FIG. 4. (Color online) Mean longitudinal and transverse width of
a BEC wave packet during the focusing process. The longitudinal
focusing efficiency is similar to that obtained in a 1D simulation,
and the transverse expansion is not significant while the maximum
longitudinal focusing is reached.

focusing. The effect of the transverse repulsion leads to
significant expansion in the transverse direction only after
maximum longitudinal focusing is reached, when the BEC
significantly expands in all directions.

B. Acceleration

The second control task is to increase the momentum of
the wave packet. As an example of a possible application, one
may imagine a train of atom laser pulses, where an acceleration
protocol can be a way of adjusting the separation of the packets.
In another application it might be used to change the energy or
de Broglie wavelength. The target for our second optimization
has therefore been chosen to increase the kinetic energy by a
factor of 2. The main constraint is the limit that we have put
on the maximal depth of the potential (of about 100 µK). This
limitation may be overcome by performing the task repeatedly,
using a sequence of potential wells. For example, in the
“downhill” acceleration described here, once the wave packet
reaches the end of the potential, a new potential would appear
and the acceleration process would continue. For simplicity,
we will not discuss these extensions in the framework of this
article.

Figure 5 shows the time-dependent density and potential.
The straight black line projects the position of the center of
mass if momentum did not change. When the wave packet
enters the region of the attractive potential, it gains energy, until
the potential is shut off at the right time. The final momentum
changes by less than 0.3% if the parameters of the potential are
changed by ±1% (see Table II). The parameter t0 = 32.5 µs
is the shortest time scale involved in this study. It should be
noted that a precision of 1% here means to switch the electrodes
with a precision of about 3 MHz or better, which is typically
doable. A simulation with the TD-GPE, using a density of
1015 atoms/cm3, gives a result which is almost identical to the
TD-SE: The final momentum exceeds the target momentum
by a mere 0.08%.
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FIG. 5. (Color online) Accelerated wave packet. The straight line
indicates the center of mass without acceleration. The time-dependent
external potential is given by contour lines in steps of 30 µK.

C. Reflection

The third goal is to reflect the wave packet, that is, to invert
the momentum. This kind of coherent mirror is an essential
part of matter-wave optics. The first solutions found by the
optimization algorithm were based on quantum reflection,
but these were very unstable against perturbations in the
parameters. In order to obtain a good result, we had to allow a
slightly larger potential well depth (see Table I). The solution
is shown in Fig. 6.

At around t = 150 µs, when the wave packet is over the
center of the potential, it is switched on. Because at that time
and position the wave packet does not feel a gradient of the
potential, it is not accelerated, while the potential is lowered
with time. At around t = 200 µs the wave packet hits an
almost time-independent potential wall. At around 270 µs all
its kinetic energy has been transformed into potential energy,
and it is reflected. The final momentum was about 0.1% smaller
than p0, due to the influence of the time-dependent potential,
which also perturbs the initial Gaussian shape of the wave
packet. Again we found good stability (see Table II). The final
momentum from the solution of the TD-GPE deviated by less
than 0.01%.

D. Stopping

In this example our goal is to bring the atomic wave packet
to an almost complete stop, not just by achieving a zero final

FIG. 6. (Color online) Reflection of a wave packet. The time-
dependent external potential is given by contour lines in steps of
30 µK.

FIG. 7. (Color online) Stopping of a wave packet at a mobile
barrier, created by adiabatically lowering the external potential. The
contour lines of the potential are at 3, 30, and 90 µK.

momentum of the center of mass, but also by minimizing the
total kinetic energy of the target wave packet. Different from
the previous tasks, here the central point xc of the potential is
not fixed in time. In classical mechanics, a particle is stopped
when it collides with a much heavier particle moving in the
same direction at half the velocity. For the present case, this
means a collision with a mobile potential barrier, which is
created from the purely attractive external potential of Eq. (1),
by lowering the potential in front of the barrier. To describe this
situation, we use the same form of the potential of Eq. (6) with
φ = π/2, representing a potential barrier with a moving center
xc = x0 + vt , which is more attractive far from this center. For
this task, we have chosen V0 to be fixed at 100 µK so that
the potential has a total of five parameters to be optimized.
A perfect stopping implies a kinetic energy of exactly zero,
but this can only be achieved for an infinitely wide wave
packet. Therefore, we limited the optimization procedure to a
reduction of the kinetic energy to 0.903% (see Fig. 7). As this is
not an extremum of the kinetic energy, stability is not achieved
in the normal sense. However, we give the reduction of the
kinetic energy for parameters changed by ±1% in Table III,
from which the sensitivity of the mechanism can be estimated.
A comparison with the dynamics of a BEC gave a very similar
result, with a final kinetic energy which was lower by 0.2 µK
than that achieved for noninteracting particles.

IV. SPLITTING

A. Splitting into two parts

In order to show that this method may be used also for
complex tasks, we turn our attention to the goal of coherently
splitting the wave packet. We have chosen a double Gaussian
target density, separated by 4σ of the initial width of the wave

TABLE III. Remaining kinetic energy in percent of the initial
kinetic energy, when the parameters of the stopping potential are
changed by ±1%. The original set of parameters led to 0.903%
remaining.

t0 τ σx xc offset xc slope

+1% 0.909 0.912 0.932 0.903 0.919
−1% 0.909 0.910 0.898 0.902 0.890
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FIG. 8. (Color online) Splitting of the wave packet. The time-
dependent external potential is given by contour lines at 60, 90, 180,
and 360 µK. (Inset) A closer look at the intersection region, revealing
the interference pattern.

packet [see Eq. (4)]. The absolute position, where the target is
achieved, was not fixed.

For the splitting, we employed a potential,

V (x,t) = −2V0 exp

[
−

(
t − t0

τ

)4
]

|x − vc.m.t |
σx

, (7)

for |x − Vc.m.t | � σx/2 and V (x,t) = −V0 otherwise. This is
a potential barrier that travels with the initial center-of-mass
velocity mentioned previously and has a total width of σx .

Figure 8 shows the density as a function of time for
parameters V0 = 94.6 µK, t0 = 189.0 µs, τ = 183.4 µs, and
σx = 82.2 µm. Because a maximum of the potential energy is
created under the center of the moving wave packet, it splits
neatly into two parts. In addition, we added a parabolic barrier
at large x, so that one part is reflected and can interfere with
the second partial beam. When the two cross, at approximately
t = 405 µs, an interference pattern appears, which depends
on the relative momenta of the two parts. Figure 9 shows
in detail, at a specific time, the atom density during the
crossing. As expected, the fringe visibility is practically 100%
as no dephasing mechanisms have been introduced. These are
beyond the scope of this article.

Last, we again repeated the splitting calculation with
the TD-GPE. We assumed a relatively high density of
1015 atom/cm3, and no noticeable differences have been found
compared to the TD-SE case.
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FIG. 9. Interference pattern during the crossing of the two partial
beams.

FIG. 10. (Color online) Asymmetric splitting of the wave packet
into three parts. Here we clearly show that the time-dependent
potentials suggested here may take an asymmetric form, enabling
the creation of asymmetric matter-wave pulses.

B. Splitting into three parts

Finally, we use the most complex task yet, the splitting
into three peaks, to emphasize the uniqueness of our scheme
relative to previous schemes [26–31]. In the Introduction we
noted that our new scheme aims at making a step forward in two
ways: First, optical schemes have the disadvantage of not being
feasible very close to a surface because of light diffraction.
This limits the potential usefulness of such schemes to being
applied to surface chemistry. Second, all the previous schemes
utilize potentials with a high degree of symmetry either in the
laboratory frame or in some moving frame. This symmetry
makes the task of creating arbitrary wave forms, which are in
general asymmetric, hard to realize. In order to demonstrate
this, we present in the following the creation of an asymmetric
wave form.

We have chosen to split the wave packet asymmetrically into
three unequal parts, so as to form an asymmetric wave form.
The same functional form of the external potential as in the
previous subsection has been chosen, but it was applied twice
(see Fig. 10). The target ratio of integrated densities under the
three peaks was chosen to be 4 : 2 : 1. This was achieved with
very good accuracy: We obtained 3.999 : 2.003 : 0.999. When
the same potential was used to split a BEC, this deteriorated
only slightly to 3.993 : 2.001 : 1.006 (see Fig. 11). Although
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FIG. 11. Asymmetric splitting of the wave packet into three parts.
The target ratio for the integrated density of the three peaks was
4 : 2 : 1. The solid line shows the result from the TD-SE; the dashed
shows the result line from the TD-GPE. The latter shows broader and
smoother peaks, because of the repulsive atom-atom interaction.
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the target was achieved with almost the same quality, there
is a big difference in the actual shape of the peaks, as the
repulsive force between the atoms smoothes and broadens
them significantly.

Let us briefly describe the details of this task. The total
potential V (x,t) is given by the maximum of

V0e
−[(t−t0)/τ ]4

[
1 − |x − (vc.m.t + x1)|

σ

]

+V0e
−{[t−(t0+2τ )]/τ }4

[
1 − |x − (v2t + x2)|

σ

]
(8)

and zero. Only the velocity v2 and the offsets x1, x2 were
optimized. V0, t0, τ , and σ were kept constant with values
40 µK, 90 µs, 75 µs, and 20 µm, respectively.

The target functional was constructed as follows: If the
integrated norm under peak i is Ni , then

deviation =
√

(N1 − 4/7)2 + (N2 − 2/7)2 + (N3 − 1/7)2

measures the deviation from the target (evaluated at t =
400 µs). The best parameter set (x1 = 3.207 µm, v2 =
8.000 cm/s, x2 = 1.778 µm) achieved a deviation of
0.000 231. If x1 (x2) is changed by ±1%, the average deviation
was found to be 0.003 41 (0.003 28), which is equivalent to
about 1% in the integrated norm under the peaks. We note
that a 1% change in position is equivalent to the few tens of
nanometer fabrication resolution we expect in the electrode
array producing the potential. Last, if v2 is changed by ±1%,
the average deviation is 0.029 12.

V. SUMMARY AND OUTLOOK

We have shown that considerable control over the shape
of an atomic wave packet is possible by using a quasistatic
potential. As a specific realization, one may utilize the weak
electric field from an array of electrodes on an atom chip.

We have shown that four basic control tasks, namely,
focusing, acceleration, reflection, and stopping, can be per-
formed. The control schemes were found to be robust, with
regards to both the parameters of the external potential and the
density of the BEC. The nontrivial dependence of the focusing
efficiency on the density of the BEC and the narrowing of the
momentum distribution may also prove to be useful tools in
future applications. We have also described the application of
our method to coherent splitting.

Finally, we have described the use of an asymmetric
potential for the creation of an asymmetric wave form. Such
versatility is the main advantage of our scheme.

We have limited ourselves in this study to a rather simple
external potential, while an array of electrodes is capable of
much more complex forms. The limits of this remain to be
investigated in the future. Ultimately, the shaping of atom
laser wave packets is not a goal in itself, but rather a tool for
achieving control in other areas, such as ultracold chemistry.
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(London) 413, 498 (2001).
[22] H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and

C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001).
[23] P. G. Petrov, S. Machluf, S. Younis, R. Macaluso, T. David,

B. Hadad, Y. Japha, M. Keil, E. Joselevich, and R. Folman,
Phys. Rev. A 79, 043403 (2009).

[24] R. Salem, Y. Japha, J. Chabe’, B. Hadad, M. Keil, K. A. Milton,
and R. Folman, New J. Phys. 12, 023039 (2010).

[25] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth,
S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger,
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