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Atom interferometry using wave packets with constant spatial displacements
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A standing-wave light-pulse sequence is demonstrated that places atoms into a superposition of wave packets
with precisely controlled displacements that remain constant for times as long as 1 s. The separated wave packets
are subsequently recombined, resulting in atom interference patterns that probe energy differences of ≈10−34 J
and can provide acceleration measurements that are insensitive to platform vibrations.
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I. INTRODUCTION

Atom interferometry employs the interference of atomic de
Broglie waves for precision measurements [1]. In practice,
two effects limit the ultimate sensitivity of devices where
the interfering atomic wave packets are allowed to propagate
in free space: the effect of external gravitational fields upon
the atomic trajectories, and transverse expansion of the atom
cloud. By accounting for gravity, atomic fountains can increase
the interrogation time during which the interferometry phase
shifts accumulate [2]; alternatively one can use magnetic
dipole forces to balance the force of gravity [3]. Magnetic
waveguides [4,5] can trap atoms for times longer than a second,
suggesting the possibility of measuring energy differences
between interfering wave packets with an uncertainty <h̄/(1 s)
∼ 10−34 J; however, this remarkable precision cannot be
obtained if the decoherence time of the atoms is much shorter
than the trap lifetime. Early atom interferometry experiments
using atoms confined in magnetic waveguides showed that the
external state coherence of the atoms decayed quite quickly,
limiting interferometric measurements to times <10 ms [6,7].
More recent experiments using Bose condensates [8] have
shown that the external state coherence can be preserved for
approximately 200 ms, where the decoherence is dominated
by atom-atom interactions. Interferometry experiments using
either condensed atoms in a weak trap or noncondensate atoms
in a waveguide with precise angular alignments have been
shown to have phase-stable interrogation times of ≈50 ms,
where the dephasing is induced by inhomogeneities in the
confining potential [9–12].

This work demonstrates a new atom interferometer config-
uration that measures the differential phase shift of spatially
displaced wave-packet pairs. We demonstrate phase-stable
interferometry operations with up to 1 s interrogation time
by applying the technique to atoms in a straight magnetic
guide. We show that the matter-wave dephasing rate scales
linearly with the wave-packet displacement, suggesting that
dephasing in our interferometer is primarily caused by a weak
longitudinal confinement of the atoms. We also demonstrate
that the phase readout of the interferometer is less sensitive to
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vibration than conventional interferometery schemes, which
should enable precision measurements even in noisy environ-
ments such as moving platforms.

II. THE FOUR-PULSE GRATING ECHO SCHEME

Typical Talbot-Lau matter-wave interferometery [13–16]
employs a three-grating diffraction scheme. In the most com-
mon time-domain setup, an atomic wave packet is diffracted
by a periodic potential, applied briefly at time t = 0, into
a collection of wave packets that depart from each other
at multiples of the velocity vQ = h̄Q/m, where Q is the
potential’s wave vector and m is the atomic mass. The potential
is pulsed on again at t = T/2, and the different velocity classes
created by the first pulse, which have now moved away from
each other, are each again diffracted into multiple orders. After
the second pulse, there will be pairs of wave packets whose
relative velocity has been reversed from before; these will
move toward each other, then overlap and interfere near time
t = T . Those with relative velocity nvQ will generate density
fringes with wave vector ±nQ.

As in earlier experiments [14,17], we use an off-resonant
optical standing wave (SW) to create the pulsed periodic
potentials and observe the resulting atomic density fringes
by measuring the Bragg scattering of an optical probe. In
our experiment we observe the lowest-order fringes, n = ±1,
where the Bragg condition corresponds approximately to
backscattering of one of the beams that forms the standing
wave.

The interferometric technique presented here employs a
four-pulse scheme (Fig. 1), where the additional pulse is used
to halt the relative motion of the interfering wave-packet pairs.
After the first pulse is applied, the situation is identical to that
in the three-pulse case, with the original wave packet split
into different diffraction orders corresponding to velocities
±nvQ. Here we quickly apply a second pulse after a short time
t = Ts . The pairs of wave packets that we are interested in—
those that will eventually interfere—are those that now have
zero momentum difference; these pairs have the same velocity
but are displaced in space, having moved apart by a distance
d = vQTs during the interval between pulses. After waiting for
a time T − 2TS , the coherence between the wave packets is
measured by allowing them to interfere; a third pulse diffracts
the wave packets at t = T − Ts and the resulting interference
fringe is probed around t = T . This four-pulse sequence can
be imagined as a three-pulse sequence of length 2Ts that is
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FIG. 1. (Color online) Recoil diagram of the four-pulse scheme.
The light-shift potential of the standing wave is represented by the
array of circles. Straight lines show the centers of the diffracted wave
packets. A representative pair of interfering paths is marked with
thick lines. The matter-wave interference at around t = T is probed
with Ea . The backscattered light [e.g., the “grating echo” Eb(τ )] is
mixed with a weak local field from the Eb mode for phase retrieval.

“paused” between times T = TS and T − TS , though during
this time the relative phase of each separated wave-packet pair
continues to be sensitive to external fields.

The existing theory of Talbot-Lau interferometry can be
straightforwardly extended to this scheme. We consider the
SW field formed by the traveling light fields Ea and Eb with
associated k-vectors ka and kb, with Q = ka − kb = Qex.
Experimentally, we measure the backscattering of light from
ka into kb; this is characterized by an electric field component
Eb(τ ) that can be expressed in terms of the atomic density
operator:

Eb(τ ) = −igEpTr
[
ρ̂(T )eiQ(x̂+ p̂τ

m
)
]
. (1)

Here Ep gives the amplitude of probe light from the Ea mode;
g is a constant that depends on the atomic polarizability and the
number of atoms participating in the interaction; x̂ and p̂ are
the position and momentum operators, respectively, for atomic
motion along ex; and ρ̂(T ) is the single-atom density matrix at
time T . Consider an atomic sample with a rms velocity u and
a thermal de Broglie wavelength lc = h̄/(mu). In Eq. (1) we
use τ ∼ lc/vQ to specify a coherence-length-dependent time
window (T − lc/vQ,T + lc/vQ), during which the atomic
wave packets overlap so that the interference fringe contrast is
nonzero. Experimentally, the amplitude of Eb(τ ) is averaged
during this time window to extract the magnitude of the
interference fringe, which is referred to as the amplitude of
the “grating echo,” or Eg(Ts,T ) := 〈Eb(τ )〉τ [18].

For a SW pulse in the Raman-Nath regime, where the
atomic motion can be neglected for its duration, the nth-order
matter-wave diffraction is weighted by the amplitude inJn(θ ),
with Jn the nth-order Bessel function and θ the time-integrated
light shift or pulse area. We define {T1,T2,T3,T4} = {0,Ts,T −
Ts,T } and specify the position of standing wave nodes at
Ti with the SW phase ϕi . The interaction of the first three
SW pulses in the four-pulse interferometer can be effectively
described by

V̂SW(t) = h̄
∑3

i=1
θiδ(t − Ti) cos(Qx̂ + ϕi). (2)

Since the standing-wave phases ϕi involve simple algebra, we
ignore them during the following discussion and reintroduce
them when they become relevant.

In order to account for imperfections in the guide, we
consider the one-dimensional (1D) motion of atoms along ex
during the interferometry sequence to be governed by Ĥ =
Ĥ0 + V̂SW(t) and further Ĥ0 = p̂2/2m + V (x̂), where V (x̂)
is a general 1D potential. We introduce the time-dependent
position and momentum operators x̂(t) = eiĤ0t x̂e−iĤ0t and
p̂(t) = eiĤ0t p̂e−iĤ0t . For Ts to be sufficiently short, the atomic
motion can be treated as free during 0 < t < T − Ts and
T − Ts < t < T . For a thermal atomic sample with Qlc � 1,
we find that, at the leading order of Qlc, the interferometer
output is related to the initial atomic density matrix ρ̂(0) by

Eg(Ts,T ) = −igEpJ−1(2θ3 sin ωQTs)
∑

m1,m2

cmTr

× [
ρ̂(δxm,δpm,0)e

i
h̄
dp̂(T )e− i

h̄
dp̂(0)

]
, (3)

where cm = Jm1 (θ1)Jm1+1(θ1)Jm2 (θ2)Jm2−1(θ2)eiφm , φm =
(2m1 + 1)Qlc + (2m2 − 1)ωQTs , δxm = m1vQTs , and δpm =
(m1 + m2)Q. In Eq. (3), ωQ is the two-photon recoil frequency
of atoms and we have d = vQTs .

The second line of Eq. (3) composes a weighted sum
of matter-wave correlation functions. The initial conditions
of matter-wave states are specified by a density matrix
ρ̂(δx,δp,0) = ei(δxp̂+δpx̂)ρ̂e−i(δxp̂+δpx̂) that describes an atomic
ensemble that is identical to ρ̂(0), but with mean position
and momentum shifted by δx and δp, respectively. The
correlation function gives the average overlap of wave-packet
pairs propagating under an external potential displaced by
dex, with one example sketched with the thick lines in
Fig. 1. The correlation functions are directly analogous to the
neutron-scattering correlation function discussed in Ref. [19],
where momentum displacements were considered. Notice that
if the uniform atomic sample has a spatial extension L � δx

and with thermal velocity u � δp/m, the original and shifted
density matrix are approximately the same, and the correlation
functions are approximately independent of δxm or δpm. We
can thus use a sum rule of Bessel functions to simplify the
second line of Eq. (3):

Eg(Ts,T ) ≈ −ig̃J 2
−1(2θ2 sin ωQTs)Tr

[
ρ̂(0)e

i
h̄
dp̂(T )e− i

h̄
dp̂(0)

]
,

(4)

where we have chosen θ2 = θ3 and define g̃ = gEpθ1Qlc.
Three features of Eqs. (3) and (4) are worth noting. First,

though we have only considered the 1D motion of atoms in the
external potential V (x), the formula is readily applicable to a
three-dimensional time-dependent potential V (r,t) as long as
the external potential contributes negligibly to the differential
phase shift of wave-packet pairs during 0 < t < Ts and
T − Ts < t < T .

Second, the reduction from Eq. (3) to Eq. (4) requires
that the correlation functions be insensitive to momentum
transferred by the SW pulses. This condition is very well
satisfied if the displacements are much smaller than the
position and momentum spreadings of the atomic gas itself
since ρ̂(δx,δp,0) ≈ ρ̂(0). In addition, the approximation is
particularly well satisfied if the potential is periodic at small
wavelengths [20,21].

Finally, notice that both Eq. (3) and Eq. (4) can be
evaluated semiclassically by replacing Tr[ρ̂(0)e

i
h̄
dp̂(T )e− i

h̄
dp̂(0)]
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with 〈e imd
h̄

[v(T )−v(0)]〉c, where v(t) gives the classical velocity of
atoms along ex and 〈· · ·〉c gives the classical ensemble average
over the atomic initial conditions.

Now consider a weak quadratic potential V (x) = max +
1
2mω2

l x
2 with an acceleration force ma and with ωlT � 1

to model the potential variation along the nearly free (axial)
direction of propagation in the magnetic guide, also assuming
an atomic sample with a Gaussian spatial distribution along
ex given by ρ(x) = e−x2/(2L2). The expected amplitude of the
grating echo signal is then found to oscillate with Ts and to
decay as a Gaussian with the total interrogation time T :

Eg(Ts,T ) ≈ −ig̃J 2
−1(2θ2 sin ωQTs)

× e− 1
2 ( md

h̄
ω2

l T L)2
ei( md

h̄
aT +ϕ1,2−ϕ3,4). (5)

(Here we have reintroduced the standing-wave phase in Eq. (2),
where ϕi,j = ϕi − ϕj .)

III. EXPERIMENTAL SETUP

The experimental apparatus is described in detail in
Ref. [18]. A straight two-dimensional quadruple magnetic field
with a transverse gradient of 70 G/cm is generated by four
200 × 100 × 1.56 mm3 permalloy foils poled in alternating
directions. Approximately 107 laser-cooled 87Rb atoms in
the ground-state F = 1 hyperfine level are loaded into this
magnetic guide, resulting in a cylindrically shaped atom
sample 1 cm long and 170 µm wide. The average transverse
oscillation frequency of the atoms in the guide is on the order
of 80 Hz, estimated by displacement-induced oscillations of
the atomic sample using absorption images. A very weak
harmonic potential along the guiding direction is estimated
to be ωl ∼ 2π × 0.08 Hz [18].

The SW fields formed by two counterpropagating laser
beams with diameters of 1.6 mm are aligned to form a standing
wave with k-vector along the magnetic guide direction ex.
Precise angular adjustment is achieved by tuning the orienta-
tion of the magnetic guide using two rotation stages to within
2 × 10−4 rad. The optical fields are detuned 120 MHz above
the F = 1–F ′ = 2 D2 transition. We choose the SW pulse
with typical pulse area of θ ∼ 0.8–3.0, and with duration
of 300 ns, to be deep in the thin-lens regime of the 25-µK
atomic sample. With this pulse duration, the fraction of atoms
contributing to the final interference fringe is typically limited
by SW diffraction efficiency to about 10%. We probe the
λ/2 atomic density grating at around time t = T by turning
on only one of the traveling wave beams; the other beam
is attenuated and shifted by 6 MHz to serve as an optical
local oscillator, where the combined intensity is measured
using a fiber-coupled avalanche photodetector. The beat signal
is measured and numerically demodulated using the 6-MHz
rf reference to recover the grating echo signal Eg(Ts,T ) =
C(Ts,T )eiϕ(Ts ,T ). The interferometer signal amplitude C(Ts,T )
and phase ϕ(Ts,T ) are measured for different interferometer
parameters.

IV. RESULTS AND DISCUSSION

According to Eq. (5), the prefactor J 2
1 (2θ sin ωQTs) in the

backscattering amplitude is an oscillatory function of Ts , with

FIG. 2. (Color online) Examples of interferometry signal am-
plitude C(Ts,T ) oscillation vs Ts at fixed T . Scatterplots are from
experiments. Solid lines are calculated according to an extension of
Eq. (5) with complex pulse area θ̃ = θ (1 + 0.025i). (a) θ = 0.85 and
T = 50 ms. (b) θ = 2.8 and T = 30 ms. The data were taken during
different a period of experiments with different signal-to-noise ratios.

the periodicity determined by 2ωQ = 2π/33.15 µs−1. The am-
plitude oscillation is reproduced experimentally; two examples
are plotted in Fig. 2, where Ts is varied from 0.16 to 0.26 ms.
In Fig. 2(a) a relatively small SW pulse area, θ ≈ 0.85, was
chosen so that the Bessel function is approximately linear.
Correspondingly, we see that the oscillation is approximately
sinusoidal. In Fig. 2(b) a strong SW pulse with area θ ≈ 2.8
was chosen and the Bessel function becomes highly nonlinear.
Nevertheless, the experimental data still fit the theoretical
expectation from Eq. (5) fairly well. The values for the pulse
area in the calculation were found to be in agreement with
the SW pulse intensity-duration products. The solid lines in
Fig. 2 were calculated according to an extension of Eq. (5)
with a complex SW pulse area including an imaginary part to
account for the optical pumping effect at the 120-MHz SW
detuning [18].

With fixed Ts at the peak values of the amplitude oscilla-
tions, we now consider the dependence of the interferometer
signals on the total interrogation time T . Figure 3 gives
examples of the interferometer amplitude decay C(T ) and
phase shift ϕ(T ) at various d = vQTs . From Fig. 3(a) we see
that the amplitude decay is slower for smaller d, while all
the C(T ) fit fairly well to Gaussian decay, in agreement with
Eq. (5) derived from a weak harmonic confinement model. In
Fig. 3(b) we see that the phase readout is a linear function

FIG. 3. (Color online) (a) Backscattering amplitude decay. The
scatterplots give C(T ) at four different displacements d . The solid
lines are due to Gaussian fit. (b) Interferometry phase shift ϕ(T ) vs
T at different displacements d . Four of the data traces from the same
experiments as those in panel (a) are plotted with thick lines.
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FIG. 4. (Color online) (a) Backscattering amplitude decay rate
γ (d) [extracted from a Gaussian fit of C(T ) data such as those from
Fig. 3(a)] vs wave-packet displacement d . (b) Interferometry phase
shift rate f (d) = dϕ(T )

dT
[extracted from a linear fit of ϕ(T ) data from

Fig. 3(b)] vs d . The insets give the residuals of the linear fits.

of interrogation time T , which is also in agreement with
Eq. (5). By applying Eq. (5) to the observed phase shifts,
we consistently retrieve an acceleration a = 83.4 mm/s2 for
different d. The acceleration is due to a small component of
gravity along the SW and magnetic guide direction ex [18], as
confirmed by varying the tilt angle of the apparatus.

We extract the amplitude decay rate γ (d) by fitting the
C(T ) decay data with C(T ) ∝ e−[γ (d)T ]2

. The dephasing rate
γ (d) is plotted versus the displacement d in Fig. 4(a).
The d-dependence of γ (d) shows good agreement with a
linear fit. According to Eq. (5), for weak confinement along
ex with ωl ∼ 2π × 0.08 Hz and for L ∼ 2.5 mm of our
1-cm atomic sample, we expect γ (d) ∼ mω2

l dL/(h̄
√

2) ∼
0.6d/µm s−1. This agrees with the experimentally measured
γ (d) = (2.97 + 0.665d/µm) s−1 according to Fig. 4(a). The
offset of γ (d → 0) = 2.97 s−1 is partly due to the escape of
atoms from the interaction zone via collisions with the walls
of the 4-cm vacuum glass cell, which, if fit to a Gaussian,
would give γ̃ (d → 0) ∼ 1.6 s−1. The remaining discrepancy
is likely due to the inaccuracy of the Gaussian fit, which is
based on the assumption of a weak harmonic perturbation
V (x) in Eq. (5). For small d and thus a small dephasing rate,
local anharmonicity in V (x) might become important. Indeed,
for long interaction time T , the decay exhibits an exponential
feature, which is clearly seen in Fig. 5(a), where the amplitude
decay C(T ) with d = 0.418 µm and Ts = 35.4 µs is plotted.
For such a small wave-packet displacement d, the phase of the

FIG. 5. (Color online) Interferometry readouts C(T ) and ϕ(T ) at
d = 0.413 µm. (a) C(T ) vs T ; (b) ϕ(T ) vs T , with inset giving the
residual after a linear fit.

FIG. 6. (Color online) Interferometry phase readouts ϕ(T ) for a
three-pulse (open triangles, right and top axes) and a four-pulse (solid
squares, left and bottom axes; Ts = 0.4018 ms) configurations. Panel
(a) shows the phase readouts, and panel (b) gives the residual of a
quadratic (three-pulse) and a linear (four-pulse) fit.

backscattering signal remains stable for T > 1 s, as shown in
Fig. 5(b).

Last, we consider the effect of phase noise in the SW on the
sensitivity of our device, induced, for example, by vibrations of
mirrors in the SW path. For T � Ts , the SW phase variation
due to time-dependent changes in mirror positions is given
by ϕ1,2, which is not correlated with ϕ3,4. If we specify
the SW phase at time t with φ(t) such that ϕi = φ(Ti),
the mirror-vibration-induced interferometer phase noise is
given by Nϕ,mirror(Ts,T ) =

√
2〈[φ(t) − φ(t + Ts)]2〉t , which

does not depend on T . This is different from a three-pulse
atom interferometer with mirror-induced phase noise given by
N ′

ϕ,mirror(T ) =
√

〈[φ(t) − 2φ(t + T/2) + φ(t + T )]2〉t , where
increases in sensitivity due to increases in interaction time
necessarily also result in increases in phase noise. In con-
trast, in the four-pulse scheme considered here, T can be
increased to improve the sensitivity while keeping Nϕ,mirror(Ts)
unaffected.

In Fig. 6, we compare the three- and four-pulse interfer-
ometer phase readouts under the same noisy environmental
conditions. A white-noise voltage source is filtered to eliminate
frequencies below 100 Hz, then amplified and applied to a
piezodriven mirror in the SW optical path. As shown in Fig. 6,
the mirror vibration randomizes the phase of the three-pulse
interferometer for T > 5 ms. Under the same conditions,
the phase of the four-pulse interferometer is stable for times
longer than 150 ms. In this case the acceleration sensitivity
of the four-pulse interferometer δϕ/δa ∼ 1 rad/(mm/s2) at
T = 150 ms exceeds that for the three-pulse case of δϕ/δa ∼
0.4 rad/(mm/s2) at T = 10 ms. The insensitivity of the
four-pulse scheme to low-frequency mirror vibrations is a
feature of speedometers, as shown in Eqs. (4) and (5) in the
semiclassical limit with the phase proportional to the velocity
during the interrogation time T .

V. SUMMARY

We have demonstrated a four-pulse grating echo interfer-
ometer scheme to study the dephasing effects for atoms con-
fined in a magnetic guide. We find a linearly reduced dephasing
rate at reduced wave-packet displacements, indicating that the
matter-wave dephasing is due to very weak potential variation
along the waveguide in our setup. We have demonstrated
phase stability for an interferometry sequence with total
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interrogation time exceeding 1 s. We also showed that a
four-pulse interferometer can provide acceleration measure-
ments with very long integration times that are insensitive
to apparatus vibrations, though it is important to note that
the sensitivity of the interferometer scheme we describe is
compromised by the small wave-packet separations [10].

In the future, such a system could study the quantum
stability of wave packets due to displaced potentials [19]
by deliberately introducing time-dependent variations in the
potential along the waveguide direction [20,21]. Instead of
measuring the mixed-state correlation functions, a fidelity-type
measurement [19] can be performed with sub-recoil cooled

atoms occupying a single matter-wave state, where velocity-
selective beam-splitting schemes can be applied [22,23].
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