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Detecting the tunneling rates for strongly interacting fermions on optical lattices
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Strongly interacting fermionic atoms on optical lattices are studied through a Hubbard-like model Hamiltonian,
in which tunneling rates of atoms and molecules between neighboring sites are assumed to be different. In the
limit of large on-site repulsion U , the model is shown to reproduce the t-J Hamiltonian, in which the J coefficient
of the Heisenberg term depends on the particle-assisted tunneling rate g: explicitly, J = 4g2/U . At half-filling,
g drives a crossover from a Brinkman-Rice paramagnetic insulator of fully localized atoms (g = 0) to the
antiferromagnetic Mott insulator of the standard Hubbard case (g = t). This is observed already in the number
of doubly occupied sites under the intermediate coupling regime, thus providing a criterion for extracting from
measurements the effective value of g.
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I. INTRODUCTION

In recent years, the field of ultracold atoms has proven
to be a very rich and growing research area [1], one of the
basic motivations residing in the possibility of experimental
access to and probing of a wide range of prominent problems
in condensed-matter physics. For example, the rapid devel-
opment of experiments on ultracold atomic gases loaded onto
optical lattices has supported the observation of the superfluid–
Mott-insulator transition in the Bose-Hubbard model [2].

One of the most relevant challenges in this field turns out
to be the simulation of the fermionic Hubbard model [3,4]
and its extensions [5,6], which are believed to be the major
candidates in describing high-temperature superconductivity.
Most recently, in very intriguing experiments with fermionic
6Li [7] and 40K [8] atoms loaded onto optical lattices, a Mott-
insulating phase was found under the regime of strong on-site
repulsion between particles, characterized by the presence
of one atom per site and by a number of doubly occupied
sites (doublons), depending on the strength of the external
parameters. Such a state turns out to be relatively easy to
achieve experimentally—due to its incompressibility—and
its observed behavior is qualitatively consistent with well-
established properties of the Hubbard Hamiltonian [9]. In
addition, it has been pointed out that under a regime of
strong interaction, the necessary Feshbach resonance could
induce highly nontrivial processes, which involve multiband
populations and off-site interactions. These are described by
a generalized Hubbard Hamiltonian proposed by Duan [10],
previously known in the literature as the Simon-Aligia model
[11]. In fact, this model differs from the standard Hubbard
model in the effective tunneling rates between neighboring
sites, which are assumed to be dependent on the type of
particles involved, at variance with the standard case. The
fact that in experiments it is possible to control separately the
dynamics of molecules (doublons) and that of single atoms is
explicitly included in the Hamiltonian. Here we show that this
fact can be used to induce a strong coupling regime already at a
moderate repulsive interaction U . Such a regime can possibly
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be observed in experiments, for instance, as a lower number of
doublons in the insulating phase, with respect to the standard
Hubbard case.

In the following, we first investigate analytically the
strong-coupling regime for the Duan Hamiltonian at arbitrary
tunneling rates and fillings. Then we focus on the half-filled
case and explore—also numerically by means of DMRG
simulations—the behavior of the insulating state. The ultimate
aim is to infer from experimental data the effective value of
the tunneling rates in real systems.

II. LATTICE MODEL HAMILTONIAN

The model Hamiltonian reads

H = −
∑
〈ij〉,σ

[t + δg(niσ̄ + njσ̄ ) + δtniσ̄ njσ̄ ]c†iσ cjσ

+ U

2

∑
i

ni(ni − 1), (1)

where σ = ±1 (σ̄
.= −σ ) identifies the two internal states of

the fermionic atoms, 〈ij 〉 denotes two neighboring sites on
a d-dimensional regular lattice, and ni

.= ni+ + ni−. Here t

describes the direct hopping of atoms of a given population
between neighboring sites, while δg = g − t and δt = t +
tad − 2g are the deviation from the direct hopping case (in
which δg = 0 = δt), induced by correlations in proximity
of a wide Feshbach resonance. More precisely, as shown
schematically in Fig. 1, g describes the tunneling configuration
in which one atom is transferred to a site already occupied by
an atom of a different species; tad accounts for the motion of
one atom between two already-occupied sites, thus exchanging
a molecule and a fermionic atom located at neighboring sites.
Finally, U is the energy cost of the molecule, which works as
an effective detuning parameter.

The derivation of Hamiltonian (1) for a system of ultracold
fermionic atoms trapped on an optical lattice has been given
in [10] and [12]. In the case of a double-well lattice, the
numerical solution for two fermions interacting across a
Feshbach resonance was also used to infer the range of
parameters in which H works as an effective Hamiltonian [13].
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FIG. 1. Processes between neighboring sites described by the
three independent tunneling rates t , g, and tad. Here slashed and
filled circles represent single atoms (of arbitrary spin orientation) and
diatomic molecules (doublons), respectively.

In one dimension, the ground state of H has been inves-
tigated in detail in the context of high Tc superconducting
materials for the choice δt = 0 (see, e.g., Ref. [14] and
references therein). Some results have also been achieved
at δt �= 0 [15–17]. Most recently the case of imbalanced
atoms has also been explored [10,18]. The ground-state phase
diagram in the moderate interaction regime U � 4t differs
substantially from what one would get by considering the
standard Hubbard model. In particular, for δg > t/2 and
U < Uc(g), it is characterized by a phase that is supercon-
ducting even at half-filling and that displays an enhanced
number of doublons per site, nd . By increasing the population
imbalance, nd remains unchanged up to a critical polarization
pc, beyond which some pair breaks and macroscopic phase
segregation takes place [18]. At half-filling, the presence of
such a superconducting phase shifts the insulating behavior
characteristic of the Hubbard model to higher U values,
U > Uc(g) > 0.

In the following, we investigate how the actual δg value
also affects the behavior of the system in the intermediate to
strong coupling region U > Uc. In fact, it will turn out that the
choice of δt is irrelevant to the strong coupling behavior.

III. THE STRONG-COUPLING LIMIT

To perform the strong-coupling limit of Eq. (1), we gener-
alize to the present case a procedure developed in Ref. [19] for
the Hubbard model. As the first step, we rewrite Hamiltonian
(1) in terms of Hubbard projectors X

αβ

j = |α〉jj〈β|, where |α〉j
are the four states spanning the basis of the vector space
at a given site j, with α = {0, + , − ,2} and |2〉j

.= | + −〉j.
Explicitly,

H = U
∑

i

X22
i −

∑
〈ij〉σ

[
tXσ0

i X0σ
j + tadX

2σ
i Xσ2

j

+ g(−)
1+σ

2
(
X2σ

i X0σ̄
j + Xσ̄0

i Xσ2
j

)]
. (2)

We observe that the hopping terms in Eq. (2) can be classified
according to the change in the number of fermion pairs

involved:

T0 =
∑
〈ij〉σ

(
tXσ0

i X0σ
j + tadX

2σ
i Xσ2

j

) = T
(0)

0 + tadT
(2)

0 ,

T+1 =
∑
〈ij〉σ

(−1)
1+σ

2 X2σ
i X0σ̄

j , (3)

T−1 = T
†
+1.

More precisely, T0 leaves unchanged the number of local pairs,
whereas T+1 (−1) creates (destroys) a pair. It is important to note
that T

†
m = T−m and [Nd,Tm] = mTm, where Nd = ∑

i X
22
i , its

expectation value being the total number of doublons in the
system. In terms of the above operators, the Hamiltonian (2)
reads H = UNd + T0 + g(T+1 + T−1).

In the strongly interacting regime t/U � 1, we may
decompose the fermionic Hilbert space of the model into
subspaces characterized by different values of Nd :

H =
N/2⊕

Nd=0

HNd
. (4)

Indeed, in this case the energy spectrum of H splits into
well-separated subbands with different Nd , and a gap (∼U )
opens between them. Hence, within this limit, we consider
an effective Hamiltonian which does not mix different sectors
of the Hilbert space, namely, conserving the total number of
fermionic pairs. To obtain such a Hamiltonian we perform
a unitary transformation that eliminates to the lowest order
in U (the zeroth order) the terms not commuting with Nd .
Explicitly,

S = S(1) = g

U
(T+1 − T−1), (5)

so that, to the first order in U−1, the rotated Hamiltonian H (1)

reads

H (1) = eSHe−S

= H + [S,H ]

1!
+ [S,[S,H ]]

2!
+ · · ·

= UNd + T0 + U−1(g2[T+1,T−1]

+ g[T0,T−1] + g[T+1,T0]).

Now one can think to iterate this procedure, eliminating the
terms not conserving Nd also to the first order in U−1. This is
implemented by choosing

S(2) = gU−2 ([T+1,T0] − H.c.) , (6)

so that the rotated Hamiltonian, up to second order in U−1,
reads

H (2) = UNd + T0 − 2g2

U
[T−1,T+1] + O(U−2). (7)

The effective Hamiltonian in the lowest-energy sector (i.e.,
Nd = 0) is hence obtained as

Heff = T
(0)

0 − J
∑
〈ij〉

(
S̄i S̄j − 1

4
ninj

)
+ O(U−2), (8)

where—as usual—the three-site term has been neglected [20].
Remarkably, Heff is still in the form of the t-J model, as in the
strong-coupling limit of the standard Hubbard case (g = t).
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However, in the present case the J coefficient has changed
to J = 4g2/U . Note that by specializing to half-filling, one
recovers the antiferromagnetic Heisenberg model.

IV. DISCUSSION

Equation (8) provides—in the strong-coupling limit—the
ground-state energy of the model Hamiltonian (1) in arbitrary
dimension, at arbitrary g and tad, starting from the known
results for the t-J (generic filling) and Heisenberg (half-filling)
models. Given the dependence of J on g, Eq. (8) in fact
describes the crossover from an antiferromagnetic insulator
to a Brinkman-Rice [21] paramagnetic insulator of fully
localized fermions (at g = 0). The effect was already predicted
[17] in one dimension by means of numerical investigation
of the model of Eq. (1), and here it finds its analytic
confirmation.

Such a result can be viewed as a consequence of the
interplay of the exchange term (with coefficient ∝ g2/U )
and the kinetic term describing the motion of single atoms
in a background of empty sites. The latter, which is also
known as the infinite-U Hubbard model, in one dimension
describes the physics of a system of spinless fermions, with
a vanishing number of doubly occupied sites, and energy per
site e = −2/π sin πn. In particular, at n = 1 it describes an
insulator in which each fermion is fully localized at a different
lattice site—no matter its spin orientation: the Brinkman-Rice
insulator. Increasing g (and hence J ) amounts to a gain in
energy, thanks to magnetic interactions, without affecting e:
the insulator progressively increases its magnetic ordering
and diminishes its energy, to reach the Hubbard limit value.
Even for Nd �= 0, inspection of Eq. (7) still shows that higher
g values correspond to lower energies, so that one expects
the spinless character of the insulator to emerge (and Nd to
diminish) with decreasing g.

Some implications of the strong-coupling limit, (7) and
(8), on the behavior of the system described by Eq. (1) at
intermediate values of the repulsive interaction U are given
here, with the help of numerical analysis. Since J also depends
on g, one may expect that, with decreasing g, the strong-
coupling regime—identified as the regime characterized by
Hamiltonian (8)—is reached at lower values of U . This is
shown in Fig. 2, where we report the ground-state energy for
Hamiltonian (1), compared to that of the corresponding t-J
limit, Eq. (8), at different g values and t = 1. If we define U∗
as the value of the interaction at which the difference between
the two energies is lower than 1%, it is seen that in fact U∗
decreases with decreasing g. This is in agreement with exact
results on the two limiting cases known in the literature: while
in the g = 0 limit [16] the Brinkman-Rice insulator is the exact
ground state at large enough finite U > Uc (in one dimension,
Uc = 4t), for g = t the Heisenberg antiferromagnet limit is
reached exactly only at U = ∞. From an experimental point
of view, this observation suggests that the strong coupling
regime could be explored even at a not too large detuning U ,
in the case where g is low enough.

Moreover, since J in Eq. (8) does not depend on tad, the
same should happen for the ground-state energy versus J , at
large enough U values. This is shown in the inset in Fig. 2,
where in one dimension the ground-state energy is plotted and

FIG. 2. (Color online) Ground-state energy density egs at half-
filling, t = 1, versus U at three different g values, as obtained by
numerical simulations with DMRG on L = 80 ÷ 120 sites. Dotted,
dashed, and dot-dashed lines represent the results obtained for
Hamiltonian (1), whereas solid lines are the results obtained for the
Heisenberg model at the same parameter values. Asterisks denote in
each case the value of U (U∗) at which the two energies differ by
less than 1%. Inset: egs versus J at tad = 0.8 (diamonds), tad = 0.4
(squares), and tad = −0.8 (triangles).

compared to that of the Heisenberg model at different tad values
and fixed U . It is seen that already at a moderate value of the
repulsive interaction U , the effect of tad is in fact negligible.

In Fig. 3 the role of g for intermediate values of the interac-
tion U is exploited to investigate the dependence of the number
of doublons nd = Nd/L on U . This analysis confirms that the
strong coupling behavior also characterizes this regime, since
nd still decreases by decreasing g, approaching smoothly the
strong coupling value 0 for g = 0. This result is consistent with
the intuitive picture which emerges from the formulation given

FIG. 3. (Color online) DMRG results for the number of doubly
occupied sites (doublons) as a function of g at different tad values,
with U = 4t . The solid horizontal lines represent the range of values
of g consistent with a given value of nd . Dashed curves are guides
for the eyes.
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in (2) of the Hamiltonian H : the lower is g, the more processes
requiring the presence of no doubly occupied sites (those with
coefficient t) are favored with respect to those requiring nd �= 0
(with coefficients g and tad). The result is, instead, in contrast
with what happens in the moderate coupling region U < Uc(g)
[17] where, as mentioned, nd could even increase slightly with
decreasing g.

Since nd is typically measured in experiments, Fig. 3
offers a straightforward way to extract information about the
actual value of g in the experimental setup. We highlight
with horizontal straight lines the region in which the range
of values of g is compatible with a measured value of nd at a
given U . Indeed, the range |tad| > t can be mapped into that
with |tad| < t shown in the figure. It is seen that at fixed U

the standard Hubbard case reaches the highest relative values
of nd .

Besides, lower values of nd (and hence of g) are consistent
with experimental data in [8] at moderate values of the
energy trap, assuming that the dimension of the lattice enters
only through the bandwidth. Note that already in the case
of a double well [13], the value of g consistent with the
observed spectrum was found to be lower than 1 (g ≈ 0.8t).

Moreover, in the case of real condensed matter systems,
g ≈ 0.5t [9].

V. CONCLUSIONS

In summary, we have shown that the strong-coupling regime
of Hamiltonian (1) is described by the t-J Hamiltonian in
which J = 4g2/U . At half-filling, the effect of the particle-
dependent tunneling rate g is to drive the Mott insulator from
an antiferromagnet toward a paramagnetic configuration of
fully localized atoms. At intermediate values of the interaction
U , this behavior induces a related behavior of the number of
doubly occupied sites nd , which decreases down to 0 with g,
thus providing a criterion for inferring the effective value of g

directly from experimental measurements of nd .
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