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Stability of Bose-Einstein condensates in two-dimensional optical lattices
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Both Landau instability and dynamical instability of Bose-Einstein condensates in moving two-dimensional
optical lattices are investigated numerically and analytically. Phase diagrams for both instabilities are obtained
numerically for different system parameters. These phase diagrams show that the Landau instability does not
depend on direction for weak lattices while the dynamic instability is direction dependent. These features are
explained analytically.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) in optical lattices have
been attracting much attention for their rich physics and
the possibility of precise and flexible control of system
parameters [1,2]. Extensive work, both experimental and
theoretical, has been done on such systems from various
perspectives. They include fundamental quantum phenomena
such as superfluidity [3–7], quantum phase transition [8–10],
and quantum vortex formation [11]; effects long predicted but
not cleanly observed in solid-state systems, for example, Bloch
oscillations [12,13] and Landau-Zener tunneling [14–16];
and nonlinear effects such as various kinds of instabilities
[4,17–22] and gap solitons [23,24].

In this article we focus on the superfluidity and instabilities
of BECs in optical lattices. They are the basic properties of
superfluids and therefore of fundamental interest. In free space,
there exists the Landau criterion for superfluids; that is, there
is a critical speed above which any small disturbances lead to
a drop in energy and thus the breakdown of superfluidity [25].
A similar question can be asked for a BEC in a moving optical
lattice: What is the critical speed of the lattice above which
the system loses its superfluidity [26]? Such a breakdown of
superflow is called Landau instability or energetic instability
[27]. Interestingly, another type of instability, dynamical
instability, exists in the preceding periodic system. This
instability can be viewed as a new way of loss of superfluidity.
As demonstrated in experiment [21], the dynamical instability
has a much shorter time scale and manifests itself in the form
of fragmentation of the BEC.

So far, most of theoretical work concerns only BECs in
one-dimensional (1D) optical lattices [28–35]. Studies in two-
or three-dimensional optical lattices are scarce. In the present
article we study both Landau and dynamical instabilities of
BECs in two-dimensional (2D) optical lattices, both numeri-
cally and analytically. We obtain the stability phase diagrams
numerically. We find that the Landau instability is independent
of directions for weak optical lattices while the dynamical
instability is direction dependent. We manage to explain all the
salient features in our numerical results with analytical results.

The article is organized as follows. In Sec. II, we briefly
introduce our theoretical model and the methods that we use
to study the instabilities. In Sec. III, the results for Landau
instability are presented and discussed. In Sec. IV, we present
and analyze the results for dynamical instability. Finally, in
Sec. V, we discuss the results and conclude.

II. MODEL AND METHODS

A. Mean-field theory of Bose-Einstein condensates

We focus on the situation where the BEC system can be
well described by a mean-field macroscopic wave function ψ .
The wave function is governed by the following Hamiltonian:

H =
∫

d3�r
{
ψ∗

[
−1

2
∇2 + Vlatt

]
ψ + c

2
|ψ |4

}
. (1)

In our case, the external potential is a 2D optical lattice created
by four laser beams and has the form

Vlatt = υ(cos x + cos y), (2)

where υ characterizes the strength of the optical lattice. In
Eq. (1), all of the variables are scaled to be dimensionless
by the system’s basic parameters, following the scheme of
Ref. [4].

The Gross-Pitaevskii (GP) equation is obtained by the
variation of the Hamiltonian, i∂ψ/∂t = δH/δψ∗,

i
∂ψ

∂t
= −1

2
∇2ψ + Vlattψ + c |ψ |2 ψ. (3)

Generally speaking, the preceding periodic wave equation
has Bloch wave solutions, which can be written as ψ(�r, t) =
ei�k·�r−iµtφ�k(�r). The wave vector �k marks different eigenstates
and φ�k(�r) is a periodic function with the same period as the
potential. The band index is ignored here since we consider
only the lowest Bloch band.

B. Analysis of linear stability

The linear stability of a system is about how the system
responses to a small disturbance. The dynamical response
of a BEC to a perturbation is governed by the Bogoliubov
equation [27],

i
∂

∂t

(
u�k
v�k

)
= σzM�k(�q)

(
u�k
v�k

)
, σz =

(
I 0

0 −I

)
, (4)

with the perturbation matrix

M�k(�q) =
(
L(�k + �q) cφ2

�k
cφ∗2

�k L(−�k + �q)

)
(5)

and

L(�k′) = − 1
2 (∇ + i�k′)2 + Vlatt(�r) − µ + 2c|φ�k|2, (6)
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where �k denotes the wave vector of Bloch states and �q
represents the mode of perturbation.

We can see from Eq. (4) that once the matrix σzM�k has
complex eigenvalues, which appear always in conjugate pairs,
certain modes of perturbation grow exponentially in time. This
means that the superflow breaks down and the system becomes
dynamically unstable.

The real eigenvalues of σzM�k can be grouped into two. For
the first group, the eigenvectors have positive norm while the
eigenvectors in the second group have negative norm. Only the
first group are physical and they are called phonon modes [4].
When the eigenvalues of σzM�k for all the phonon modes are
positive, the Bloch wave φ�k is a local energy minimum and it
represents a superflow. Otherwise, φ�k is an energy saddle point
and the system in this state suffers Landau instability.

Note that, generally, people use the eigenvalues of M�k
to determine the Landau instability in literature, instead of
σzM�k [4]. As shown in the Appendix, these two criteria
are equivalent. As a result, one only needs to diagonalize
σzM�k numerically to investigate the onset of both instabil-
ities; this reduces the numerical computation load by half.
However, analytically, we find that it is more convenient to
use M�k to study Landau instability. The reason is that if
σzM�k is used, two sets of criteria are obtained: one from
singling out the phonon modes and the other from the
phonon having positive eigenvalues. The criterion of Landau
instability is the combination of the two. This turns out to
be much more complicated than using M�k . So, in this work
we still use M�k in our analysis to determine the Landau
instability.

III. LANDAU INSTABILITY

A. Numerical results

We have numerically computed the eigenvalues of the
matrix σzM�k(�q) based on which instability of the system—
Landau or energetic—can be determined. The results are
summarized in the stability phase diagrams shown in Fig. 1.
We are interested in two features of the diagrams: the shape
of the stability boundary and the location of the boundary,
or the critical value �kc where the Landau instability begins
to appear.

(i) When the lattice strength is weak, the boundary of the
Landau instability appears as an arc (see the left column of
Fig. 1). This indicates that the critical value of �k for the Landau
instability is independent of directions.

(ii) We notice that, similar to the 1D results [4], the
unstable region shrinks with increasing nonlinear interaction.
This implies that the system becomes more robust against
long-wavelength disturbance. In particular, the dependence
of the stability boundary on the lattice strength varies as the
nonlinear interaction c changes. In Fig. 2, we have plotted how
the critical value kxc along the x direction changes with the
lattice strength v. It is clear from the figure that kxc decreases
with v for large c while it increases with v for small c. It also
appears that kxc approaches 1/4 when v becomes very large.

In the following sections, we try to explain these features
both qualitatively and quantitatively.

FIG. 1. Phase diagrams of Landau instability for a BEC in a 2D
optical lattice, with kx, ky being the wave numbers of BEC Bloch
states. The shaded region is where Landau instability occurs. The
solid triangles in the left column are the boundaries obtained with
the effective mass theory and the solid diamonds in the right column
represent the boundaries obtained with the hydrodynamical analysis.
Both theoretical results agree very well with our numerical results.

B. Weak lattice limit

The direction-independent behavior seen in the first column
of Fig. 1 is easily understandable from two aspects. First, the
critical velocity of a BEC in free space does not depend on its
direction; weak lattice, which can be treated as perturbation,
should not bring qualitative changes. Second, the Landau
instability is determined by long-wavelength perturbations,
which are insensitive to the lattice structure.

Here we attempt to provide a quantitative understanding
through a simple effective mass theory. When the lattice is
weak, the effect of periodic potential can be absorbed into an
effective mass m∗. In other words, the system can be mapped
to an effective one in which the condensate moves in free space

FIG. 2. The critical value of �k along the x direction for the onset
of Landau instability as a function of lattice strength v. The results are
for three representative values of interaction strengths. We set ky = 0
for simplicity.
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with the renormalized dispersion E(�k) ≈ (h̄�k)2/2m∗. Thus, we
can use the method used by Landau to analyze the condition
for the onset of Landau instability and find the critical velocity
as follows [26]:

vt = m∗

m
u0 = h̄kxc

m
, (7)

where u0 is the sound velocity of a BEC in a Bloch state at
�k = 0 and kxc is the corresponding wave number. If we define
�vg = m�v/m∗, then the preceding condition for the appearance
of Landau instability can be rewritten as

vg > u0. (8)

This criterion has the same form as the Landau criterion of
superfluidity in free space.

Since the sound velocity is direction independent, the
boundary of the Landau instability region should also be
direction independent. Having computed different sound
velocities according to the formula in Ref. [36], we obtain
the corresponding critical wave numbers with Eq. (7). These
results are plotted as solid triangles and compared with our
previous numerical results in the first column of Fig. 1. The
perfect match indicates the validity of the preceding effective
mass theory.

C. Tight-binding approximation

With a strong lattice, the condensate can be regarded
as a chain of weakly linked small condensates localized in
different potential wells. In this case, the system goes into
the tight-binding regime. In the tight-binding approximation,
we expand the macroscopic wave function as ψ(�r, t) =∑

n,m ψn,m(t)wn,m(�r), where wn,m is the Wannier function
for the (n,m)th site of the lattice. With this expansion, the
dimensionless GP equation (3) is transformed into a set of
discretized equations [37],

i
∂ψn,m

∂t
= −K(ψn+1,m + ψn−1,m + ψn,m+1 + ψn,m−1)

+χ |ψn,m|2ψn,m, (9)

where K = − 1
4π2

∫
d�r ∑

〈n,m,n′,m′〉[
1
2
�∇w∗

n,m · �∇wn′,m′ +
w∗

n,mVlattwn′,m′ ] and χ = c
4π2

∫
d�r|wn,m|4. The symbols 〈 〉

denote the nearest neighbors.
The perturbation matrix for the above model is

M�k(�q) =
(
L(�k + �q) χ

χ L(−�k + �q)

)
, (10)

with

L(�k + �q) = χ + 4K sin(πqx + 2πkx) sin(πqx)

+ 4K sin(πqy + 2πky) sin(πqy). (11)

When Landau instability happens, M�k(�q) is no longer
positive definite. From this, we obtain two set of conditions.
One is

cos(2πkx) < 0 or cos(2πky) < 0; (12)

the other is

4K[sin2(πqx) cos(2πkx) + sin2(πqy) cos(2πky)]2

−K[sin(2πqx) sin(2πkx) + sin(2πqy) sin(2πky)]2

+ 2χ [sin2(πqx) cos(2πkx) + sin2(πqy) cos(2πky)] < 0.

(13)

Considering that Landau instability is caused by long-
wavelength disturbance, we simplify inequality (13) by taking
the limit qx,y → 0 and neglecting the second order quantities.
We obtain

q2
x cos(2πkx) + q2

y cos(2πky),
(14)−2K

χ
[qx sin(2πkx) + qy sin(2πky)]2 < 0.

We finally arrive at the criterion for Landau instability.
There are three sets.

(i)

cos(2πkx) <
2K

χ
sin2(2πkx); (15)

(ii)

cos(2πky) <
2K

χ
sin2(2πky); (16)

(iii)

cos(2πki) >
2K

χ
sin2(2πki), (i = x, y),

(17)
2K

χ
[sin2(2πkx) cos(2πky) + sin2(2πky) cos(2πkx)]

> cos(2πkx) cos(2πky).

Landau instability occurs when any set of these criteria is
satisfied.

The preceding criteria are not the direct generalization of
its 1D correspondence [27]. Criterion (17) arises as the effect
of higher dimension. It is clear from the preceding criteria
that deep in the tight-binding regime, the border of Landau
instability is at kx = ky = 1/4.

The general trends seen in Fig. 2 can now be understood. In
a weak lattice limit, we should have kxc = s ∼ √

c. Therefore,
depending on the value of c, kxc can either be larger or smaller
than 1/4, which is the critical value at the limit of deep tight
binding. As the lattice strength increases and the system enters
the deep tight-binding regime, the kxc-v curves approach 1/4
either from above or from below. This is exactly what we see
in Fig. 2.

D. Hydrodynamic analysis of long-wave disturbance

We have presented analytical results for both weak and
strong lattice limits, which are found to agree very well with
numerical results. In general, the hydrodynamic approach is
applicable since the onset of the Landau instability occurs at
long wavelengths. We follow the work of Machholm [38,39]
and Taylor [40].

We work with the average particle density n(r) and an
average phase, where the averages are to be taken over a
volume having linear dimensions much greater than the lattice
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spacing but still much smaller than the wavelength of the
disturbance. We assume the energy density is given as follows:

E =
∫

d�rẼ(n(�r), k(�r)). (18)

Here Ẽ is the energy of a uniform system having a wave vector
�k and particle density n.

We denote changes in local density by δn and those in
the wave vector by δk. After expanding the energy functional
around the original state and ignoring the higher-order terms,
we find the energy deviation

δE =
∫

d�r
{

1

2

[
∂µ

∂n
δn2 + Ẽkx,kx

δk2
x + Ẽky ,ky

(δky)2

+ 2 Ẽkx ,ky
δkxδky + 2δn

(
∂µ

∂kx

δkx + ∂µ

∂ky

δky

)]}
,

(19)

where µ = ∂Ẽ
∂n

and Eki,kj
= ∂2Ẽ

∂ki∂kj
. The first-order terms have

been dropped because they vanish given the total number of
particles and the phase of the wave function at the boundaries
are fixed [38]. Once the quadratic order terms becomes
negative, which means that perturbation helps to lower the
system’s energy, Landau instability appears. We look into the
preceding equation and seek the conditions for δE < 0.

With the given fact that ∂µ

∂n
> 0 and treating the right-hand

side of Eq. (19) as a quadratic function of δn, we arrive at the
following inequality:

∂µ

∂n

[
Ẽkx ,kx

δk2
x + Ẽky ,ky

δk2
y + 2Ẽkx ,ky

δkxδky

]
<

[
∂µ

∂kx

δkx + ∂µ

∂ky

δky

]2

. (20)

We focus on inequality (20) and now treat it as a quadratic
function of δkx . We also notice the symmetry of the preceding
inequality about δkx and δky . Performing a similar analysis
as previously described, the general conditions for Landau
instability are derived finally as follows:(

∂µ

∂kx

)2

>
∂µ

∂n
Ẽkx,kx

; (21)(
∂µ

∂ky

)2

>
∂µ

∂n
Ẽky,ky

; (22)

and (
∂µ

∂ki

)2

<
∂µ

∂n
Ẽki ,ki

, (i = x, y),

∂µ

∂n

(
Ẽ2

kx ,ky
− Ẽkx ,kx

Ẽky ,ky

)
> 2

∂µ

∂kx

∂µ

∂ky

Ẽkx,ky
(23)

−
(

∂µ

∂kx

)2

Ẽky ,ky
−

(
∂µ

∂ky

)2

Ẽkx ,kx
.

Sufficient conditions for Landau instability are that any one of
conditions (21)–(23) is satisfied.

Actually, both the effective mass theory and the tight-
binding criteria can be reproduced from these hydrodynamical
criteria and the hydrodynamical approach indeed provides us
with a unified prescription of Landau instability. We also have

computed the boundaries of Landau instability according to
these hydrodynamical criteria and compared them with our
numerical results. The comparison is shown in the second
column of Fig. 1 with the solid diamonds representing the
theoretical results, which shows a perfect match with the
numerical results.

IV. DYNAMICAL INSTABILITY

A. Numerical results

We numerically diagonalize the matrix σzM�k and determine
whether the system is dynamically stable from its eigenvalues:
Once there exists any complex eigenvalue, the system becomes
dynamically unstable. The results are summarized in the
dynamical instability phase diagrams shown in Fig. 3.

Similar to the situation of Landau instability, increasing
interaction strength leads to obvious shrinking of the region of
dynamical instability. Also, stronger lattice strength causes the
critical values of kx and ky for the onset of instability approach
1/4 for the tight-binding regime.

The obvious difference from Landau instability is the
critical value of �k for dynamical instability depends on
directions, as clearly shown in Fig. 3. This is partially
due to that dynamical instability is induced by short-wave
disturbance; thus, the configuration of the lattice potential
intervenes and plays an important role. Another point that
must be noticed is the shape of the stability boundary. For our
numerical calculation precision and the range of the parameters
that we considered, we find that almost all phase boundaries
can be divided into three sections: one section parallel to the kx

direction, another section parallel to the ky direction, and the
third section perpendicular to the diagonal line (kx = ky). We
also find that when nonlinear interaction is weak, the critical

FIG. 3. Dynamical instability phase diagram of a BEC in a
2D optical lattice under different parameters. The shaded regions
represent dynamical instability. kx and ky are Bloch wave numbers
along x and y direction, respectively.

043611-4



STABILITY OF BOSE-EINSTEIN CONDENSATES IN . . . PHYSICAL REVIEW A 81, 043611 (2010)

wave vector of the onset of dynamical instability along either
x or y direction almost equals its 1D counterpart with the same
parameters. In the following, we shall analyze these interesting
features one by one.

B. Reduction to 1D dynamics

The two parallel sections of the stability boundaries in Fig. 3
strongly suggest that the x and y motions of the 2D system are
decoupled. Therefore, we decompose the 2D Bloch state into
two independent 1D motions

ψ � ψxψy, (24)

where 1
2π

∫ 2π

0 |ψx|2dx = 1
2π

∫ 2π

0 |ψy|2dy = 1. Plugging Eq. (24)
into Eq. (3) and integrating along the y direction, we obtain

−1

2

∂2

∂x2
ψx + v cos(x)ψx + c′ |ψx |2 ψx = µ′ψx, (25)

with c′ = c
2π

∫ 2π

0

∣∣ψy

∣∣4
dy . In this way, the 2D motion is

decomposed to two orthogonal 1D motions, each with its
renormalized nonlinear parameters. The two parallel sections
of the boundary are just the result of this decoupled motion.
By assuming ψy as the solution of the 1D GP function, we
have computed the values of c′ under typical parameters and
found that it does not change much. This implies that the
critical values of kx,y for the 2D dynamical instability are
close to the ones for the 1D system with the same parameters.
A comparison is shown in Table. I.

Similarly, the section perpendicular to the diagonal line
suggests an effective 1D motion along the diagonal direction.
To see this more clearly, we introduce a new set of coordinates
x ′-y ′, with the relations x ′ = (x + y)/2, y ′ = (−x + y)/2,
which is equivalent to rotating the former coordinates coun-
terclockwise 45◦ and rescaling them by

√
2/2. In the rotated

frame, the potential possesses a different configuration, and
Eq. (3) becomes

i
∂ψ

∂t
= −1

2
∇2ψ + 4v cos(x ′) cos(y ′)ψ + 2c |ψ |2 ψ. (26)

From this equation, the dynamical instability phase diagram
in x ′-y ′ coordinates can be obtained and is shown in Fig. 4.
A section parallel to k′

y , which corresponds to the diagonal
1D motion in the x-y coordinates, is clearly seen. Note that
Figs. 3 and 4 are related by kx ′ = kx + ky and ky ′ = ky − kx .
Note that when we talk about Fig. 3, we refer to its lower left
subgraph, which has the same parameters as Fig. 4.

We have numerically seen that it is also true in 2D
that the onset of dynamical instability of the usual Bloch
states coincides with the appearance of period-doubled states
with the same energy and wave number [39], which can be

TABLE I. Critical values of kx of dynamical instability of a
BEC in a 2D optical lattice and the corresponding k 1D motion.

Parameters 2D critical value (kx) 1D critical value (k)

c = 0.01, v = 0.01 0.27 0.27
c = 0.05, v = 0.05 0.32 0.32
c = 0.1, v = 0.1 0.34 0.34
c = 0.2, v = 0.2 0.37 0.36

FIG. 4. Dynamical instability phase diagram in the rotated x ′-y ′

coordinates for c = 0.05, v = 0.05. The marked border near k′
x = 0.6

corresponds to the section perpendicular to the diagonal line in Fig. 3.

understood in terms of four-wave mixing [27,41–43]. For
period-doubled states corresponding to the section parallel
to the axes, period doubling occurs in either the x or the
y direction, while, for the section parallel to the diagonal
direction, period doubling occurs in both the x and the y

directions.

C. Tight-binding approximation

We consider again the situation of strong lattice potential in
which the tight-binding approximation works and an explicit
result is obtained. By solving the eigenequation of σzM , we
find the condition for dynamical instability

− χ

2K
< sin2(πqx) cos 2πkx + sin2(πqy) cos 2πky < 0 .

(27)

When this inequality is violated for any qx, qy , dynamical
instability occurs, As a result, the boundary of dynamical
instability is simply at kx = 1

4 , ky = 1
4 , which is the same as

in the 1D case.

V. CONCLUSION

In the present work we have carried out extensive analytical
and numerical analysis on Landau and dynamical instabilities
for a BEC in a 2D optical lattice with the focus on the instability
phase diagram and the property of the phase boundary. Our
analytical results are able to provide understanding of many of
salient features in our numerical results.

In a weak lattice, the criterion for the onset of Landau
instability is similar to the classic Landau superfluid criterion:
when the group velocity exceeds the sound velocity, the system
becomes unstable against long-wavelength disturbance. This
implies direction-independent behavior of the phase diagram
boundary, as demonstrated in our numerical results. We have
also found that the hydrodynamic analysis works for a wide
range of parameters, including the tight-binding regime.

Our numerical results show that the shape of of the
boundary of the dynamical instability phase diagram is nearly
squarelike. Our analysis shows that this kind of shape is an
indication that the 2D motion can be decomposed into two 1D
motions.
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Our theoretical results can be tested experimentally with
BEC in moving 2D optical lattices. Finally, we stress that
Landau instability and dynamical instability are universal
phenomena in nonlinear periodic systems. Therefore, our
results should also be very useful for other similar systems,
such as nonlinear photonic crystals [44–46] and nonlinear
waveguides [47–49].

ACKNOWLEDGMENTS

We thank Yongping Zhang for useful discussions. This
work was supported by the “BaiRen” program of the Chinese
Academy of Sciences, the NSF of China (10825417), and the
MOST of China (2005CB724500, 2006CB921400).

APPENDIX: A PROOF

Since the appearance of complex eigenvalues of σzM means
that M is no longer positive definite [27], we assume all the
eigenvalues are real. In this appendix we shall prove that M�k(�q)
is positive definite for all �q if all eigenvalues of σzM�k(�q) for
the phonon modes are real and positive.

We consider the eigenequation

σzM(�q)|X〉 = µ|X〉, (A1)

with the phonon mode

〈X|σz|X〉 = (u, v)σz

(
u

v

)
= 1. (A2)

In the preceding and from now on all the subscripts are dropped
for simplicity. We multiply both sides by σz and find

〈X|M(�q)|X〉 = µ〈X|σz|X〉 = µ . (A3)

This means that if M(�q) is positive definite, then the eigenvalue
µ for the phone mode must be positive. Physically, this means
that a phonon mode with negative µ can lower the energy of
the system, leading to Landau instability.

We are now to prove that when all the eigenvalues of phonon
modes of σzM(�q) are positive, M(�q) is positive definite for all
�q. Denote the antiphonon mode as |X̃〉 and its corresponding
eigenvalue as µ̃. Since |X〉 and |X̃〉 form a complete orthogonal
set, we can expand any vector as

|Y 〉 =
∑

n

(an|Xn〉 + bn|X̃n〉). (A4)

With this, we have

〈Y |M(�q)|Y 〉 = 〈Y |σzσzM(�q)|Y 〉
=

∑
n

(|an|2µn − |bn|2µ̃n). (A5)

According to Ref. [27], if (u, v) is a phonon mode of σzM(�q)
with eigenvalue µ, then (v∗, u∗) is an antiphonon mode of
σzM(−�q) with −µ. Therefore, if all the eigenvalues µn of
σzM(�q) for phonon modes are positive, then all the eigenvalues
µ̃n for the antiphonon modes are negative. As a result, the right-
hand side of Eq. (A5) is positive. This leads us to conclude that
〈Y |M(�q)|Y 〉 is positive for any vector |Y 〉; therefore, M(�q) is
positive definite for all �q. This completes our proof.

The implication of this proof is that σzM(�q) can also be
used to determine the Landau instability other than M(�q),
especially the onset of which. This mathematical result is
certainly consistent with the well-accepted physics: When
some phonon modes have negative excitations (corresponding
to the eigenvalues in mathematics), they can lower the system
energy, causing the Landau instability.
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[6] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz,
Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999).

[7] R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P.
Chikkatur, and W. Ketterle, Phys. Rev. Lett. 85, 2228 (2000).

[8] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 (1989).

[9] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[10] E. Altman, A. Polkovnikov, E. Demler, B. I. Halperin, and
M. D. Lukin, Phys. Rev. Lett. 95, 020402 (2005).

[11] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys.
Rev. Lett. 84, 806 (2000).

[12] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Phys. Rev. Lett. 76, 4508 (1996).

[13] K. Berg-Sørensen and K. Mølmer, Phys. Rev. A 58, 1480 (1998).

[14] B. Wu and Q. Niu, Phys. Rev. A 61, 023402 (2000).
[15] J. Liu, L. Fu, B.-Y. Ou, S.-G. Chen, D. I. Choi, B. Wu, and

Q. Niu, Phys. Rev. A 66, 023404 (2002).
[16] O. Morsch, J. H. Muller, M. Cristiani, D. Ciampini, and

E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001).
[17] J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and

K. Promislow, Phys. Rev. E 63, 036612 (2001).
[18] V. V. Konotop and M. Salerno, Phys. Rev. A 65, 021602(R)

(2002).
[19] P. G. Kevrekidis and D. J. Frantzeskakis, Mod. Phys. Lett. B 18,

173 (2004).
[20] M. Cristiani, O. Morsch, N. Malossi, M. Jona-Lasinio,

M. Anderlini, E. Courtade, and E. Arimondo, Opt. Express 12,
4 (2004).

[21] L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers,
C. Fort, and M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004).

[22] J. Mun, P. Medley, G. K. Campbell, L. G. Marcassa,
D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 99, 150604
(2007).

[23] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles,
L. D. Carr, Y. Castin, and C. Salomon, Science 296, 1290 (2002).

[24] Y. P. Zhang and B. Wu, Phys. Rev. Lett. 102, 093905 (2009).

043611-6

http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1134/S1054660X09010010
http://dx.doi.org/10.1126/science.282.5394.1686
http://dx.doi.org/10.1103/PhysRevA.64.061603
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.83.2502
http://dx.doi.org/10.1103/PhysRevLett.85.2228
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.95.020402
http://dx.doi.org/10.1103/PhysRevLett.84.806
http://dx.doi.org/10.1103/PhysRevLett.84.806
http://dx.doi.org/10.1103/PhysRevLett.76.4508
http://dx.doi.org/10.1103/PhysRevA.58.1480
http://dx.doi.org/10.1103/PhysRevA.61.023402
http://dx.doi.org/10.1103/PhysRevA.66.023404
http://dx.doi.org/10.1103/PhysRevLett.87.140402
http://dx.doi.org/10.1103/PhysRevE.63.036612
http://dx.doi.org/10.1103/PhysRevA.65.021602
http://dx.doi.org/10.1103/PhysRevA.65.021602
http://dx.doi.org/10.1142/S0217984904006809
http://dx.doi.org/10.1142/S0217984904006809
http://dx.doi.org/10.1364/OPEX.12.000004
http://dx.doi.org/10.1364/OPEX.12.000004
http://dx.doi.org/10.1103/PhysRevLett.93.140406
http://dx.doi.org/10.1103/PhysRevLett.99.150604
http://dx.doi.org/10.1103/PhysRevLett.99.150604
http://dx.doi.org/10.1126/science.1071021
http://dx.doi.org/10.1103/PhysRevLett.102.093905


STABILITY OF BOSE-EINSTEIN CONDENSATES IN . . . PHYSICAL REVIEW A 81, 043611 (2010)
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[31] M. Krämer, C. Menotti, L. Pitaevskii, and S. Stringari, Eur. Phys.

J. D 27, 247 (2003).
[32] A. J. Ferris, M. J. Davis, R. W. Geursen, P. B. Blakie, and A. C.

Wilson, Phys. Rev. A 77, 012712 (2008).
[33] M. Modugno, C. Tozzo, and F. Dalfovo, Phys. Rev. A 70, 043625

(2004).
[34] Y. Zheng, M. Kostrun, and J. Javanainen, Phys. Rev. Lett. 93,

230401 (2004).
[35] K. Iigaya, S. Konabe, I. Danshita, and T. Nikuni, Phys. Rev. A

74, 053611 (2006).
[36] Z. X. Liang, X. Dong, Z. D. Zhang, and B. Wu, Phys. Rev. A

78, 023622 (2008).
[37] A. Smerzi, A. Trombettoni, P. G. Kevrekidis, and A. R. Bishop,

Phys. Rev. Lett. 89, 170402 (2002).

[38] M. Machholm, C. J. Pethick, and H. Smith, Phys. Rev. A 67,
053613 (2003).

[39] M. Machholm, A. Nicolin, C. J. Pethick, and H. Smith, Phys.
Rev. A 69, 043604 (2004).

[40] E. Taylor and E. Zaremba, Phys. Rev. A 68, 053611 (2003).
[41] G. K. Campbell, J. Mun, M. Boyd, E. W. Streed, W. Ketterle,

and D. E. Pritchard, Phys. Rev. Lett. 96, 020406 (2006).
[42] K. Mølmer, New J. Phys. 8, 170 (2006).
[43] K. M. Hilligsøe and K. Mølmer, Phys. Rev. A 71, 041602(R)

(2005).
[44] M. D. Iturbe-Castillo, M. Torres-Cisneros, J. J. Sánchez-
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