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Anomalous quantum reflection as a quasidynamical damping effect
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We develop a quasianalytical theory for the quantum reflection amplitude of Bose-Einstein condensates. We
derive and calculate the decay width of a Bose-Einstein condensate (BEC). A general relation between the
time-dependent decay law of the system and its quantum reflection amplitude allows us to explain the quantum
reflection anomaly of Bose-Einstein condensates present in BEC-surface systems as a direct consequence of the
repulsive particle interaction.
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I. INTRODUCTION

In recent experiments, the quantum reflection of a sodium
Bose-Einstein condensate (BEC) from a silicon surface has
been investigated [1,2]. Surprisingly the quantum reflection
probability fell off to zero at threshold and did not approach
unity as expected from corresponding single-atom beam
theory, e.g., [3,4], and experiments, e.g., [5–9].

Theoretically so far, two numerical studies were able
to qualitatively produce the quantum reflection anomaly. In
[1,2], a model was used to motivate the quantum reflection
anomaly by introducing an empirical potential which modifies
the atom-surface interaction. This led qualitatively to the
observed effect. In the second numerical study [10], an
ab initio numerical simulation of the experimental situation
reported in [1] in three dimensions was used to explain the
anomalous behavior of the quantum reflection probability with
the formation of scattering halos and the building of vortices
that destroy the coherence of the condensate while being
reflected. The anomalous behavior of the reflection probability
emerged when taking into account only regions of the reflected
BEC with more than 25% of its initial density.

In the following, we present a quasianalytical approach to
describe the anomalous behavior of the quantum reflection
probability |R|2. Due to its simplicity, the origin of the
anomaly is elucidated. Furthermore, we identify scattering
along the axis of normal incidence on the surface as being
mainly responsible for the anomalous behavior of the quantum
reflection probability. On the base of this, we may use
the framework of the well-understood spherical quantum
reflection trap model [11,12]. A spherical model has the
advantage that there is only the normal direction for s waves.
This property strongly reduces the technical complexity of the
general three-dimensional system and allows us to focus on the
physics behind the quantum reflection of a BEC. Furthermore,
our model relies solely on the presence of particle-interaction
and mean-field dynamics.

II. QUANTUM REFLECTION

For monochromatic atomic beams or linear wave packets,
the universal law of quantum reflection is obtained by the
fact that atom-surface potentials behave as step potentials
for incident momenta close to threshold, see [3,4,11,13]. The
universal threshold law of quantum reflection is given by

lim
k →0

|R(k)| = 1 − 2bk, (1)

where the parameter b is called the threshold length and k is the
incident momentum. In the case of an atom-surface potential,
it has been shown [4,6,14] that close to threshold the retarded
Casimir-Polder tail of the potential dominates the process of
quantum reflection. The retarded Casimir-Polder tail is given
by

U (z) = − h̄2

2m

β2
4

|z − L|4 , (2)

where L denotes the location of the surface. For low incident
momenta, such potentials behave like

U (z) = − h̄2

2m
b−2θ (z − L), b = β4. (3)

For the quantum reflection of linear wave packets it has been
shown in [11] that the quantum reflection amplitude |R(k)| can
be extended to the whole k space by

|R(k)| = 1 − 2bk ≈ exp[−2bk], (4)

with reasonable accuracy. It further has been shown that the
decay-law for a linear wave packet is linked to Eq. (4) by

P (k, t) = |R(k)| 2kt
2mL = exp

[
−4

bk2t

2mL

]
. (5)

III. DERIVATION OF THE CONDENSATE’S DAMPING
FUNCTION

To study the influence of particle interaction on the
threshold-behaviour of quantum reflection, we turn to the
radial system that we have examined in detail from a dynamical
point of view [12]. The radial Gross-Pitaevskii equation that
describes the time evolution of an initial state �(x, τ = 0) in
the atom-surface system in scaled form is given by

i
∂

∂τ
ψ(x, τ ) = − ∂2

∂x2
ψ(x, t) − σ 2θ (x − 1)ψ(x, τ )

+ γ
|ψ(x, τ )|2

x2
ψ(x, τ ). (6)

Scaling is carried out by the intrinsic length of the system L,

x = r

L
, κ = kL, σ = L

β4
,

(7)
γ = 2aint

L
N, τ = th̄

2mL2
.
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In [12] we have shown that a repulsive self-interaction provides
an additional contribution to the total energy of the system
that is responsible for a faster decay of the particle density
than found in the linear case. Dynamically, this is explained
by a transformation of the self-interaction energy into kinetic
energy as the initial state evolves in time. In k space, we
interpret the presence of the self-interaction as an additional
barrier. The k modes close to threshold lie at the base of
this barrier and are thus damped away by driving them over
the edge of the potential. The effect of the self-interaction is
strongest at the beginning of the time evolution, because its
magnitude is directly related to the incident particle density.
For larger times, a considerable fraction of particle density has
already decayed, such that the influence of the self-interaction
becomes more and more negligible.

For small times, we assume that the decay of the system
can be described by a product ansatz

P (κ, τ ; σ, γ ) = Pσ (κ, τ )Pγ (κ, τ ) = |Rσ (κ)Rγ (κ)|2κτ

= exp

[
−4

κ2

σ
τ

]
|Rγ (κ)|2κτ . (8)

In Eq. (8), the additional damping induced by the particle
interaction is described by Pγ (κ, τ ). The product ansatz of
Eq. (8) reflects our assumption that for early times the effects
of the step potential and the particle interaction can be treated
independently. By this assumption, we derive the additional
damping induced by the particle interaction without taking
into account the presence of the atom-surface potential in
Eq. (6).

The wave function ψ that solves Eq. (6) without potential
can be decomposed into its momentum components by
setting

ψ(x, τ ) =
∫

dκA(κ)ϕκ (x) exp[−iκ2τ ]φγ (κ, τ ),
(9)

φγ (κ, τ ) = exp

[
−i

∫ τ

0
dτ ′Eγ (κ, τ ′)

]
.

All effects of particle interaction in Eq. (9) are described by φ.
The Fourier decomposition in Eq. (9) is defined by

A(κ) =
∫ 1

0
dx�(x, τ = 0)ϕκ (x), (10)

and the basis of the system is

ϕκ (x) =
√

2

π
sin[κx]. (11)

The decay can be calculated from the time-dependent
dispersion, which is obtained by inserting the Fourier decom-
position (9) into Eq. (6), neglecting the atom-surface potential,
multiplying by ϕ from the left, integrating out x, and separating
off the noninteracting parts. We thus obtain the time-dependent
dispersion of the self-interacting system:

i
∂τφγ (κ, τ )

φγ (κ, τ )
= Eγ (κ, τ ) = γ

∫ ∞

0
dκ1dκ2

×V (κ, κ1, κ2)φ∗
γ (κ2, τ )φγ (κ1, τ )

× exp
[−i

(
κ2

1 − κ2
2

)
τ
]
. (12)

The function V (κ, κ1, κ2) in Eq. (12) is a vertex function,
which describes the interaction of the modes of the system in
momentum space. The main contribution to the vertex stems
from the threshold region. We find

V (κ, κ1, κ2) = 3κ−2A(κ1)A(κ2)
2

π

×
∫ 1

0
dx sin2[κx]

sin[κ1x] sin[κ2x]

x2
. (13)

The decay of the system is described by the imaginary part of
the dispersion, which can be identified by the linewidth γ .
To calculate γ , we expand Eγ (κ, τ ), φγ (κ, τ ) in frequency
space, obtaining

Eγ (κ, τ ) =
∫

dω

2π
Eγ (κ, ω) exp[−iωτ ],

(14)
φγ (κ, τ ) =

∫
dω

2π
φγ (κ, ω) exp[−iωτ ].

By using Eq. (14) we can perform a Laplace transform
on Eq. (12). The imaginary part we are interested in can
be extracted by using the well-known relation 1

�−ω+iε
=

P 1
�−ω

− iπδ(� − ω). We integrate out the δ function and
find

−ImEγ (κ,�) = γ (κ,�)

= γ

∫ ∞

0
dκ1dκ2V (κ, κ1, κ2)

∫
dω2

2π
φ∗

γ (κ2, ω2)

×φγ

(
κ1,� − κ2

1 + κ2
2 + ω2

)
. (15)

So far, we have only neglected the atom-surface potential.
Since we are interested in the damping that is induced by the
initial state, we now make a relaxational ansatz that treats γ

independent of ω by setting

φγ (κ, ω) ≈ i

ω + iγ (κ)
. (16)

We insert Eq. (16) into Eq. (15), carry out the remaining
integration by the residual theorem, and arrive at

γ (κ) = iγ

∫ ∞

0
dκ1dκ2

V (κ, κ1, κ2)

κ2
2 − κ2

1 + i[γ (κ1) + γ (κ2)]
.

(17)

Equation (17) is a self-consistent equation for the linewidth of
the self-interacting part of the system. From Eqs. (16) and (17)
it follows that the self-interacting part of the system initially
decays like

|φγ (κ, τ )|2 ≈ Pγ (κ, τ ) = exp[−2γ (κ)τ ]. (18)

Together with Eq. (8), the quantum reflection amplitude readily
follows as

|R(κ; σ, γ )| = |Rσ (κ)Rγ (κ)|

= exp
[
−2

κ

σ

]
exp

[
−γ (κ)

κ

]
. (19)

Following [11], the quantum reflection amplitude in Eq. (19)
describes the decay of the initial state in a uniform and

043610-2



ANOMALOUS QUANTUM REFLECTION AS A . . . PHYSICAL REVIEW A 81, 043610 (2010)

0 5 10 15 20 25 30 35 40 45 50
κ

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Γ γ(κ
)

FIG. 1. Damping function γ (κ) calculated by Eq. (17) for
γ = 0.5.

quasistationary way by

〈ρ(τ )〉 =
∫ ∞

0
dκ |A(κ)|2 |R(κ; σ, γ )|2κτ , (20)

where 〈ρ(τ )〉 stands for the mean value of the time-dependent
particle density ρ(τ ) = ∫ 1

0 dx|ψ(x, τ )|2, which is obtained
from numerics.

IV. DISCUSSION

Now we are going to test the fidelity of our theory by
comparing it to numerical results. To make contact with our
analysis in [11,12], we use the initial state

�(x, τ = 0) = Nx exp [−ax] θ [1 − x] , (21)

where N is the normalization constant and a is the diffuseness
of the wave packet. A diffuseness of a = 5, gives an initial
kinetic energy Ekin = 1.5 × 10−15 a.u. for sodium that corre-
sponds to temperatures of approximately 1 nK, comparable
to the experimental setup in [1,2]. As in [11], we chose a
length scale L = 4.47 × 105 a.u., and together with a potential
strength β4 = 1.494 × 104 a.u. and mass m = 4.22 × 105 a.u.
for sodium, we obtain a scaled potential strength σ = 30. To
illustrate the effect of particle interaction, we chose γ = 0.5.

Figure 1 shows the additional damping that is induced by
the particle interaction. It is clearly visible that the low-lying k

modes are strongly damped, while higher k modes experience
only a moderate to negligible additional damping and thus
show a regular decay according to universal quantum reflection
[Eqs. (4) and (5)].

Figure 2 shows a comparison between numerically cal-
culated densities as function of the scaled time τ and their
mean-value approximation according to Eq. (18) for early
times of the decay of the system. We have chosen a logarithmic
ordinate for a better resolution. Figure 2 shows clearly that after
the einschwingvorgang is completed, the mean-value approxi-
mation (18) interpolates the numerical curves. Approximation
(18) describes the decay in a quasistationary and uniform way
and thus does not reflect the oscillations of the numerically
obtained data, which originate from the motion of the wave
packet on the spatial range of the step. For times τ � 0.35,
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FIG. 2. Comparison between numerically obtained decaying
densities ρ(τ ) (full lines) and approximated decaying densities
〈ρ(τ )〉 (dashed lines) by Eq. (18) for (σ = 30, γ = 0) above and
(σ = 30, γ = 0.5) below.

our approach is not reliable anymore, because it takes only
into account the damping according to the initial state, which
naturally must overestimate the decay of the particle density
for later times. A scaled time τ ∼ 0.35 as a range of fidelity
corresponds to times t ∼ 0.144 s.

Figure 3 shows the quantum reflection probabilities cal-
culated according to Eq. (19). Figure 3 clearly demonstrates
how the additional damping that is induced by the particle
interaction influences the quantum reflection probability. The
depletion of the quantum reflection probability for low-lying
k modes corresponds to the results reported in [1,2,10]. The
curves shown in Fig. 3 must be interpreted as a quasistationary
mean value of the quantum reflection probability that is to be
expected for times τ � 0.35. For later times, as the influence of
particle interaction declines along with the decaying density,
we expect a reduction of the anomalous behavior that, for very
large times, will experience a crossover to the universal law of
quantum reflection [Eqs. (1) and (5)].
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FIG. 3. Quantum reflection probabilities according to Eq. (19)
for (σ = 30, γ = 0.5) (full line) and (σ = 30, γ = 0) (dashed line).
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V. SUMMARY AND CONCLUSION

Together with our investigations on the dynamical proper-
ties of a BEC-surface system [12], the behavior of Eq. (19)
as shown in Fig. 3 proves that quantum reflection has only
a limited effect on BECs with repulsive particle interaction.
We thus explain the quantum reflection anomaly by the fact
that especially the low energetic, collective components of the
wave packet moving normal to the surface react extremely
sensitively in the presence of an additional positive energetic
contribution as a repulsive particle interaction provides. The
crucial role of the repulsive particle interaction and its
transformation into kinetic energy was already mentioned
in [1] and theoretically demonstrated in [12]. The influence
of the repulsive interaction on higher energetic components is
by far less dramatic, explaining the regular behavior of Eq. (19)
for higher momenta. The fact that we can explain the quantum
reflection anomaly with the behavior of the linewidth as a
function of momentum may give hints for future experiments
to measure the linewidth of the condensate instead of the
reflection probability, which, as emphasized in [1,2], is quite
sensitive to external influences.

The purpose of our present theory is not to exactly
recalculate either the experimental data from [1,2] or the
numerical results reported in [10], but to elucidate the physical
mechanism that is responsible for the anomalous behavior of
the quantum reflection probability on the basis of a simple but
well-understood model. Our quasianalytical theory focuses
exclusively on the direction of normal incidence, which we
have assumed and proved that it contributes significantly to
the quantum reflection anomaly. Our analysis demonstrates
that the anomaly exists and that it may be found in experiments.
Furthermore, the experiments reported in [1,2] so far contain
enough uncertainties to doubt the relevance of a direct and
quantitative comparison between theory and experiment in the
present state of the art. However, our analysis may encourage
further experimental work in this field.

In the framework of the simple spherical model [12], we
have developed a quasianalytical theory for the anomalous be-
havior of quantum reflection probability. Our theory explains
the anomalous behavior of the quantum reflection probability
of BECs as a direct consequence of the repulsive particle
interaction. The key quantity for understanding the quantum
reflection anomaly of BECs was shown to be the linewidth of
the condensate as a function of momentum.
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