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Dimer of two bosons in a one-dimensional optical lattice
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We investigate theoretically the stationary states of two bosons in a one-dimensional optical lattice within
the Bose-Hubbard model. Starting from a finite lattice with periodic boundary conditions, we effect a partial
separation of the center-of-mass and relative motions of the two-atom lattice dimer in the lattice momentum
representation, and carefully analyze the eigenstates of the relative motion. In the limit when the lattice becomes
infinitely long, we find closed-form analytic expressions for both the bound state and the dissociated states of the
lattice dimer. We outline the corresponding analysis in the position representation. The results are used to discuss
three ways to detect the dimer: by measuring the momentum distribution of the atoms, by finding the size of the
molecule with measurements of atom number correlations at two lattice sites, and by dissociating a bound state
of the lattice dimer with a modulation of the lattice depth.
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I. INTRODUCTION

Optical lattices containing quantum degenerate Bose and
Fermi gases [1] have been a major topic in atomic, molecular,
and optical physics of late, one motivation being experimental
realizations of long-standing lattice models in condensed-
matter physics and statistical mechanics [2,3]. In an optical
lattice the transition amplitude (hence, probability) for an
atom to tunnel from one lattice site to the next can be tuned
over a wide range by adjusting the intensity of the lattice
light. Feshbach resonances also permit a precise broad-range
adjustment of the atom-atom interactions [4,5]. This means
that both the effective mass of the atoms and the atom-atom
interactions are subject to experimental control.

Our broad theme is aggregates of atoms—call them lattice
molecules—that can be formed and controlled in an optical
lattice by controlling both the one-particle properties and the
atom-atom interactions. The simplest one is the composite
of two atoms, which we and others term a “lattice dimer.”
Literature on variations of the lattice dimer is accumulating
steadily (see [6–17] and references therein) and the trimer
problem has also been addressed [18]. It seems to us, however,
that in the general quest toward novel physics seemingly
elementary aspects such as the stationary states of the dimer
and their limits when the lattice becomes infinitely long have
been overlooked. The purpose of the present article is to
remedy the situation.

We analyze the eigenstates of the Bose-Hubbard
Hamiltonian for two bosonic particles in a lattice. We start
in Sec. II with a finite lattice, employing periodic boundary
conditions. We transform the Hamiltonian into lattice momen-
tum representation and separate what are the lattice analogs
of the center-of-mass motion and relative motion of the atoms
in a two-atom lattice dimer. The separation is, however, not
complete [7,9,14]: In the analysis of the relative motion, the
amplitude of the tunneling between lattice sites will get scaled
by a factor that depends on the center-of-mass motion. We,
of course, have a numerical solution of the time-independent
Schrödinger equation on hand, but also discuss qualitative
features of the solution analytically. One bound state is found
regardless of whether the atom-atom interactions are attractive
or repulsive [8], along with what is the finite-lattice analog of

the dissociation continuum of the lattice dimer. A surprising
number of mathematical issues arise from the discreteness of
the lattice and the boson symmetry of the states. We clarify
them carefully.

The limit of a long lattice is the subject of Sec. III.
The main item here is the development of a closed-form
analytic expression for the dissociated state of the dimer in
the lattice momentum representation. Again, in contrast to
past discussions in terms of Green’s functions or scattering
theory, we are after stationary states of the time-independent
Schrödinger equation. Many past publications analyze the
limit of a long lattice, occasionally without ever saying so.
Inasmuch as a direct comparison is possible, our results agree
with the previous results [8,14].

Section IV presents the analysis of both the finite lattice and
the long-lattice limit in the position (lattice site) representation
[14]. We reaffirm the results found from the momentum
representation, and also find additional results such as an
analytical approximation to the energies of the would-be
dissociated states when there are many lattice sites.

As an example of the utility of our analytical results, we
discuss possible ways of detecting the lattice dimer in Sec. V.
Momentum distribution of the atoms [8], pair correlations of
atom positions, and dissociation rate of a bound dimer when
the depth of the lattice is modulated [8] are the specific cases.
The remarks in Sec. VI conclude the article.

II. FINITE LATTICE

Let us start with the Bose-Hubbard model, ostensibly in
one dimension, though the same mathematics apply with
straightforward modifications in multiple dimensions. The
Hamiltonian with standard conventions reads

H

h̄
= −J

2

∑
k

(a†
k+1ak + a

†
k−1ak) + U

2

∑
k

a
†
ka

†
kakak. (1)

The index k runs over the lattice sites, L of them; k =
0, . . . , L − 1. We use periodic boundary conditions, so that
k = L is the same as k = 0, and likewise k = −1 means
k = L − 1. This would be physically valid for a ring lattice. We
do not intend to restrict the discussion to ring lattices, but the
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motivation is twofold. First, in a long-enough lattice the results
will obviously be similar for arbitrary boundary conditions.
Second, we have a sound framework to go mathematically to
the limit of an infinitely long lattice.

The periodic boundary conditions bring in some subtle
topology that we will not address but rather hide with our
subsequent choices of the parameters. The principal one is
that the number of lattice sites L is taken to be even. This,
again, is something that cannot materially influence the results
for a very long lattice. The sign of the site-to-site hopping
amplitude J is a matter of choice and can be flipped with
the trivial canonical transformation ak → (−1)kak . Here we
take the native hopping amplitude to be positive, J > 0.
A similar freedom does not apply to the strength of atom-
atom interactions at each site; U > 0 and U < 0 correspond
to repulsive and attractive interactions between the atoms,
respectively.

In order to take advantage of the translation invariance, we
next convert to momentum representation. The operators

cq = 1√
L

∑
k

e−iqkak (2)

are also boson operators when q runs over a suitable set of
values, for instance, q = 2πQ/L with the integers Q picked
so that we have L quasimomenta in the first Brillouin zone of
the lattice. For an even number of sites L our standard choice is
to allow the values Q = −L/2 + 1,−L/2 + 2, . . . , L/2; L of
them. The addition of quasimomenta q is understood modulo
2π , so that the result belongs to the same set. The standard
discrete Fourier transform relations∑

k

eiqk = Lδ[q,0],
∑

q

eiqk = Lδ[k,0], (3)

where the brackets remind us of the fact that comparison of
quasimomenta is modulo 2π and comparison of lattice sites
modulo L, give the inverse of the definition (2)

ak = 1√
L

∑
q

eiqkcq . (4)

The Hamiltonian in momentum representation then becomes

H

h̄
=

∑
q

ωqc
†
qcq + U

2L

∑
q1,q2,q3,q4

δ[q1+q2,q3+q4]c
†
q1

c†q2
cq3cq4 ,

(5)

where the transformation has diagonalized the term in the
Hamiltonian describing site-to-site hopping,

ωq = −J cos q. (6)

We study the most general state vector for two bosons,

|ψ〉 =
∑
p1,p2

A(p1, p2) c†p1
c†p2

|0〉. (7)

Here p1 and p2 again are lattice momenta from the first
Brillouin zone, and |0〉 is the particle vacuum. As the two
creation operators commute, we assume without any loss of
generality the symmetry of the A coefficients A(p1, p2) =
A(p2, p1). Action of the atom-atom interaction part in the

Hamiltonian then leads to∑
q1,q2,q3,q4

δ[q1+q2,q3+q4]c
†
q1

c†q2
cq3cq4 |ψ〉

= 2
∑

q1,q2,p1,p2

A(p1, p2) δ[q1+q2,p1+p2]c
†
q1

c†q2
|0〉; (8)

see the Appendix The atom-atom interaction therefore
conserves the total lattice momentum of the atom pair,
modulo 2π .

Suppose the state vector is confined to the subspace with the
total momentum P and write p1,2 = 1

2P ± q. For clarification,
we note that we refer to p1, p2, and q as quasimomenta and
P as the total momentum even though all of the quantities
are obviously dimensionless. This notation introduces a set
of lattice-momentum-like quantities q to describe the relative
motion of the two atoms in such a way that the state (7) reads

|ψ〉 =
∑

q

A(q) c
†
1
2 P+q

c
†
1
2 P−q

|0〉, (9)

where A(q) now has the symmetry

A(q) = A(−q). (10)

As always, the sums 1
2P ± q are modulo 2π so that they have

the proper values of a lattice momentum in the first Brillouin
zone.

There are two details to consider. First, as Eq. (8) shows, the
comparison of the total momenta P in atom-atom interactions
is modulo 2π . Two particles at the edge of the Brillouin
zone can scatter into two particles at the center of the
Brillouin zone. On the other hand, 1

2P stands for the average
momentum of the two atoms, and two atoms at the center of
the Brillouin zone (P = 0) clearly have a different physical
signature than two atoms at the edge of the Brillouin zone
(P = 2π ). The proper range of P is therefore (−2π, 2π ].
Second, the newly introduced summation index q may have
some peculiar properties. If 1

2P in itself is a legal lattice
momentum, then so is q, and the sum in (9) is taken to run
over the first Brillouin zone as usual. In contrast, if 1

2P is not
a lattice momentum, the summation indices q are of the form
q = 2πQ/L with a half-integer Q, and the sum is taken to run
over the values Q = −L/2 + 1/2, . . . , L/2 − 1/2. We then
say that the relative motion is governed by half-integer lattice
momenta.

At least in principle, a state with a half-integer lattice
momentum may be prepared experimentally. Suppose that
the atom-atom interactions are first turned off, for instance,
by means of a Feshbach resonance, and two atoms are put
in the states with q1 = 0, q2 = 2π/L. This is a state with
a half-integer relative momentum. Moreover, if subsequently
the atom-atom interactions are turned on so that the lattice
translation invariance is not broken in the process, a nontrivial
half-integer state is liable to arise for the relative motion of the
two atoms. In the limit of an infinitely long lattice the difference
between ordinary and half-integer lattice momenta must be
irrelevant, but for completeness we occasionally mention it.

Let us continue with an ansatz of the form (9). In view of
Eq. (8), the action of the Hamiltonian on the state vector will
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give

H

h̄
|ψ〉 =

∑
q

[(
ω 1

2 P+q + ω 1
2 P−q

)
A(q) + U

L

∑
q ′

A(q ′)

]

× c
†
1
2 P+q

c
†
1
2 P−q

|0〉, (11)

where q ′ is a legal or a half-integer lattice momentum exactly
like q. The time-independent Schrödinger equation H |ψ〉 =
E|ψ〉 is obviously satisfied if the coefficients of the products
of the boson creation operators are the same for each q on both
sides of the equation, which is the case if the coefficients A(q)
satisfy

(
ω 1

2 P+q + ω 1
2 P−q

)
A(q) + U

L

∑
q ′

A(q ′) = E

h̄
A(q). (12)

Under the restriction (10), Eq. (12) is not only sufficient but
also necessary for the solution of the Schrödinger equation.
This could be shown by restricting the summation index q

in the ansatz (9) to non-negative values only. The ambiguity
in the argument that the states c

†
1
2 P+q

c
†
1
2 P−q

|0〉 are the same

for q and −q would thereby be removed, but at the cost of
severe complications elsewhere. We therefore retain the double
counting of the states in the formal analysis. So far we have
restricted the values of the summation indices q and q ′ to
the first Brillouin zone. However, if convenient, A(q) may be
regarded as a periodic function of q with the period of 2π . In
that case the sums run over appropriate discrete values within
a period, including an end point of the period only once.

Unlike for free atoms with a quadratic dispersion relation
when the total momentum simply provides an additive constant
to the energy, here the total momentum—center-of-mass
momentum if you will—has a profound effect on the stationary
states of the relative motion of the two atoms. Using (6) we
have

ω 1
2 P+q + ω 1

2 P−q = −2J cos
(

1
2P

)
cos q, (13)

so that the center-of-mass motion couples to the relative
motion described by the quasimomenta q and effectively scales
the hopping amplitude J . The center-of-mass motion and the
relative motion do not completely separate [7]. For future
use we define the frequency scale of the relative motion of
the atoms for a given total center-of-mass quasimomentum
P as

�P ≡ 2J cos
(

1
2P

)
. (14)

We also scale the dimensional parameters in the problem to
�P , defining the dimensionless quantities representing energy
of a state and strength of the atom-atom interactions as follows:

ω ≡ E

h̄�P

, K ≡ U

�P

. (15)

With these ingredients the solution of the time-independent
Schrödinger equation is reduced to two steps. First, Eq. (12)
gives

A(q) =
U
L

∑
q ′ A(q ′)

E/h̄ + 2J cos
(

1
2P

)
cos q

, (16)

and this further gives the equation for the energy eigenvalue

U

L

∑
q

1

E/h̄ + 2J cos
(

1
2P

)
cos q

= 1. (17)

In the dimensionless variables (15), Eq. (17) reads

f (ω,L) = 1

L

∑
q

1

ω + cos q
= 1

K . (18)

Whether we deal with integer or half-integer quasimo-
menta, we may always pair them up in the sum in Eq. (17)
so that for every q there is a q ′ such that cos q = − cos q ′.
This implies that the sign of the factor 2J cos

(
1
2P

)
has no

effect on the possible solutions E of Eq. (17), that is, on the
energy spectrum. The energy eigenvalues are the values of
E that satisfy (17). The problem can also be discussed in
terms of the dimensionless scaled energy ω. In this view, the
solutions are the values of ω that satisfy (18). Using either of
these two equations, it is easy to solve the energy spectrum
numerically for a wide range of parameters. From this point
onward, unless otherwise stated or implied, we employ the
dimensionless scaled energy ω.

A standard discussion ensues from Eq. (18) when we plot
f (ω,L) as a function of ω. In Fig. 1 the lattice has 16 sites,
L = 16, and the added horizontal line depicts the value of the
right-hand side of Eq. (18) for K = − 1

2 . It is clear that f (ω,L)
may attain any finite value between two successive arguments
ω = − cos q for the given discrete set of quasimomenta q.
Vertical asymptotes (dashed lines) are plotted in Fig. 1 at
each value of ω = − cos q. For L = 16 there are eight regions
bounded by such asymptotes, obviously because cos(q) =
cos(−q). This does not signal doubly degenerate energies ω,
but is one manifestation of the fact that we have counted the
basis vectors with q �= 0 and q �= π twice.

For a noninteracting system with K → 0, the left-hand side
of Eq. (18) approaches plus or minus infinity depending on
the sign of the interaction parameter U , and the spectrum of
the scaled energies is then precisely the numbers ω = − cos q.
This is the finite-lattice analog of the continuum of the relative
motion of two noninteracting atoms. The essential twist is that

−2 −1 1 2
ω

−5

5

f (ω, L)

FIG. 1. (Color online) The function f (ω,L) [Eq. (18)] for
L = 16. The horizontal line represents the right-hand side of Eq. (18)
for K = − 1

2 . The dashed vertical lines are the asymptotes of f (ω,L)
at the values of ω = − cos q such that f (ω,L) = ±∞.
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the width of the continuum band of energies �E = 2h̄�P

depends on the center-of-mass momentum of the atom pair P .
Let us next restore the atom-atom interactions so that

1/|K| < ∞. The scaled energies ω that resided between the
values of − cos q, in the band with −1 < ω < 1, will stay this
way. These states are the finite-lattice analog of the dissociation
continuum of the lattice dimer. For brevity, we call the states
with −1 < ω < 1 continuum states, even though there are
never true continuum states in any finite-length lattice. The
dimensionless energy values for the continuum states are
labeled ωc.

Moreover, as may be seen from Fig. 1, there is one energy
value that moves away from the dissociation continuum when
|K| increases and therefore 1/|K| decreases. This is obviously
the bound state of the lattice molecule. The bound state is
characterized by |ω| > 1, and we label the corresponding
dimensionless energy value ωb. The unscaled energy of the
bound state E = h̄�P ωb also varies with the center-of-mass
motion, another feature that does not exist in free space.
For attractive interactions, U < 0, the bound state is the
lowest-energy state of the lattice dimer and lies below the
dissociation continuum. However, for repulsive interactions,
U > 0, the bound molecular state lies above the dissociation
continuum, a situation that also has no analog for molecules
in free space. The bound state above the continuum is a
manifestation of the trivial symmetry of the Hamiltonian,
H (J,U ) = −H (−J,−U ), combined with the observation
that we have already made that the transformation J → −J

alone has no effect on the spectrum of energy eigenstates.
Having discussed the energy spectrum, we next determine

the state vectors. The generic form is specified by Eq. (9). The
coefficients A(q) are given by Eq. (16), where the numerator
is just a constant and will eventually be absorbed into the
normalization. There is another subtlety here. Namely, in
quantum mechanics one wants to do explicit calculations
using expansion coefficients with respect to an orthonormal
basis, but in the present case the states c

†
1
2 P+q

c
†
1
2 P−q

|0〉 are

not orthonormal for all q. The states corresponding to q and
−q are the same, and moreover the states with q = 0 and
q = π , which occur for integer quasimomenta, are normalized
to two, not one. All of this requires a careful documentation
of the range of the summation index q and, depending on the
range used in the calculations, may lead to peculiar factors in
the expressions governing the normalization of the state. The
true dimension of the state space is L/2 + 1 if we deal with
integer quasimomenta and L/2 for half-integer quasimomenta.

In our subsequent calculations we continue the double
counting but normalize the expansion coefficients so that
the underlying quantum states are always normalized in the
standard way. Now, the inner product of two states of the form
(9) with the expansion coefficients A(q) and B(q) as inherited
from quantum mechanics is

〈ψA| ψB〉 = 4
∑

0<q<π

A∗(q)B(q)+2A∗(0)B(0)+2A∗(π )B(π )

= 2
∑

−π<q�π

A∗(q)B(q); (19)

if q is a half-integer quasimomentum, then the last two terms
in the second form are missing, but the final result again holds

true. We therefore define the inner product for the expansion
coefficients,

(A,B) = 2
∑

−π<q�π

A∗(q)B(q), (20)

and normalize accordingly. Orthonormality with respect to
the inner product (20) is equivalent to orthonormality of
the underlying quantum states. Since the version of the
Schrödinger equation (12) is Hermitian with respect to this
inner product, the true quantum states come out with the proper
orthonormality properties as well.

In view of the eigenvalue equation (16) and the definition
of the dimensionless variables (15), the eigenstate for the
eigenvalue ω is defined by the expansion coefficients

A(ω, q) = C(ω)

ω + cos q
. (21)

Moreover, the choice of the overall numerical factor

C(ω) =
[∑

q

2

(ω + cos q)2

]−1/2

(22)

ensures unit normalization with respect to the inner
product (20).

What these results mean in terms of site occupation
numbers is seen by converting the momentum representation
state (9) back to lattice site (position) representation using
Eq. (2). The result is

|ψ(ω)〉 = 1

L

∑
q,k1,k2

A(ω, q) e
1
2 i(k1+k2)P ei(k1−k2)qa

†
k1

a
†
k2

|0〉 .

(23)

For P = 0 this state remains unchanged in lattice translations;
for P �= 0 the phase of the state changes by eiP when one
moves the reference point k = 0 back by one step in the lattice,
meaning that k1 → k1 + 1 and k2 → k2 + 1. The quantum
mechanical stationary state of a molecule is evenly spread
along the entire lattice. Lest this appear odd, the same applies to
any aggregate of atoms also in free space. How the spread-out
stationary states relate to our intuition that a molecule is a
localized object will be demonstrated in Sec. V B.

At this point it is tempting to introduce the analogs of the
center-of-mass position and the relative position for the two
atoms, expressed in terms of the atomic positions k1 and k2 as

K = 1
2 (k1 + k2), k = k1 − k2. (24)

Formally, we write from Eq. (23)

|ψ(ω)〉 = 1√
L

∑
K

(
eiPK

{∑
k

[
1√
L

∑
q

A(ω, q)eiqk

]

× a
†
K+ 1

2 k
a
†
K− 1

2 k
|0〉

})
. (25)

However, this expression is incorrect, formal only, since the
summation indices K and k do not decouple in a simple way.
For instance, K ± 1

2k should be a legitimate lattice index, an
integer. Equation (25) appears to represent a superposition of
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copies of the molecule with the center of mass fixed at K = 0,

|ω〉 =
∑

k

[
1√
L

∑
q

A(ω, q)eiqk

]
a
†
1
2 k

a
†
− 1

2 k
|0〉 , (26)

translated along the lattice to each site K , although problems
with the summation indices persist.

This unsuccessful attempt is as close as we have got
to separating the center-of-mass and relative motions in
second-quantized position representation. Nonetheless, we
qualitatively think of the expression inside the square brackets
in Eq. (26) as the wave function of the relative motion of the
atom pair.

III. LIMITING CASE OF A LONG LATTICE

While it is easy to solve both the energy spectrum and
the state vectors numerically for a wide range of parameters,
some analytical work is also possible in the limit of a large
number of lattice sites. In the limit L → ∞ the quasimomenta
q make an infinitely dense set over the interval (−π, π ]. Our
main technical tool is the continuum approximation for the
quasimomenta

∑
q

f (q) 
 L

2π

∫ π

−π

dqf (q), (27)

valid for “sufficiently smooth” functions of quasimomentum
f (q).

Now consider the would-be continuum states in the limit
of an infinite number of lattice sites. A simple argument can
be found by examining Fig. 1. As L → ∞, the curves in the
domain −1 < ω < 1 get closer and closer together in such a
way that they in effect become straight vertical lines. Thus,
the solutions for the continuum energies in the limit of a
large number of lattice sites are given by the locations of the
asymptotes that occur at

ωc(Q) = − cos

(
2πQ

L

)
. (28)

As before, we use the subscript c as in ωc to mark a
consideration that is specific to the continuum states with
−1 < ωc < 1, and likewise b for the bound state with |ωb| > 1.

The continuum energies become infinitely dense with L →
∞. An attempt to isolate any individual energy and eigenstate
eventually becomes futile, and all observable quantities must
be expressible as sums over the energies ωc. Originally, we
had the integer Q run over the interval (−L/2, L/2], but,
as already noted, this range duplicates all but at most one
energy eigenvalue. Given a “sufficiently smooth” function of
the energy, g(ω), we therefore approximate

∑
ωc

g(ωc) 

L/2∑
Q=1

g

[
− cos

(
2πQ

L

)]



∫ L/2

1
dQ g

[
− cos

(
2πQ

L

)]


 L

2π

∫ 1

−1

dωc√
1 − ω2

c

g(ωc). (29)

This expression identifies

�(ωc) = L

2π

1√
1 − ω2

c

(30)

as the density of continuum states, normalized to the dimen-
sionless energy of the variable ωc.

Regardless of the ultimate limit of an infinitely long lattice,
L → ∞, we always think of the lattice as finite. All inner
products, normalizations, and so on, are with respect to discrete
sums. When appropriate, these sums are just approximated as
in Eqs. (27) and (29).

A. Bound state

First we will analyze the energy and the normalization of
the bound state. In the limit of a large number of lattice sites,
we approximate

1

L

∑
q

1

ωb + cos q

 L

2π

1

L

∫ π

−π

dq
1

ωb + cos q

= sgn(ωb)√
ω2

b − 1
, (31)

a valid process since for any K �= 0 the bound state has |ωb| >

1 and the function of q to be summed does not become singular
in the limit L → ∞. We therefore find the bound-state energy
by substituting (31) in (18) and solving for ωb,

ωb = sgn(K)
√

1 + K2. (32)

In the limit of strong atom-atom interactions, this reduces to
ωb 
 K and so in dimensional units the energy of the bound
state is Eb = h̄U , but while |K| ∼ 1 the energy of the bound
state depends on the center-of-mass motion. These results for
the bound-state energy agree with those found, for example,
in [8] and [14], although these authors do not mention the limit
L → ∞.

The state vector for the bound state is of the form of (21)
and (22) with ω = ωb = ±√

1 + K2. To find the normalization
coefficient in the limit L → ∞, we calculate

[Cb(ωb)]−2 
 2L |ωb|(
ω2

b − 1
)3/2 . (33)

The bound state is specified by (21), (33), and (32) as

Ab(ωb, q) = |K|3/2

√
2L|ωb|

1

ωb + cos q
. (34)

B. Continuum states

We next consider the state vectors for the continuum states.
While the bound state has a straightforward limit as L → ∞,
the continuum states with −1 < ωc < 1 pose a problem. For
any finite number of lattice sites the stationary state is, of
course, still of the form

Ac(ωc, q) = Cc(ωc)

ωc + cos q
. (35)

However, as the continuum states get denser with L → ∞,
this expression becomes singular as a function of q in the
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neighborhood of ωc + cos q 
 0, and a rule for handling the
singularity has to be defined.

Our assignment is basically the following: In principle
we only do discrete sums, and knowing the exact discrete
continuum eigenvalues ωc would always allow us to carry out
the sums without problems. Nevertheless, in practice we would
like to approximate the sums as integrals, as in (27). We are
therefore looking for a function of q, Ac(ωc, q), which would
give the same value from a continuum-limit integral (27) as
does a discrete sum involving the amplitudes (35). We will,
in fact, find such a function Ac(ωc, q) [Eq. (50)]. Moreover, it
comes with the appealing property that, unlike in applications
of Eq. (35), one does not have to know the energy ωc precisely.

Following Ref. [19], we try the following ansatz:

1

ωc + cos q
= P

1

ωc + cos q
+ �(ωc)δ(ωc + cos q), (36)

where P stands for principal-value integral and �(ωc) is a
function to be determined. To find �(ωc), we attempt to solve
the continuum version of the Schrödinger equation itself. By
rearranging Eq. (16) and using the dimensionless variables
(15), it is

(ωc + cos q)Ac(q, ωc) = K
2π

∫ π

−π

dq ′Ac(ωc, q
′). (37)

Substituting Eqs. (35) and (36) into (37) and taking into
account that for ωc ∈ (−1, 1) we have

(ωc + cos q)P
1

ωc + cos q
= 1, (38)

(ωc + cos q) δ(ωc + cos q) = 0, (39)

P
∫ π

−π

dq
1

ωc + cos q
= 0, (40)

we immediately find that

�(ωc) = π
√

1 − ω2
c

K (41)

leads to the eigenvalue ωc in Eq. (37).
Next we digress on the normalization of the continuum

wave functions. In the original discrete case two state vectors
corresponding to two different energies are orthonormal in the
sense of a Kronecker δ,

2
∑

q

Ac(ωc, q)Ac(ω′
c, q) = δωc,ω′

c
. (42)

Taking an “arbitrary” function F (ωc), we therefore have

∑
ω′

c

∑
q

Ac(ωc, q)Ac(ω′
c, q)F (ω′

c) = 1

2
F (ωc). (43)

As one more remnant of the state counting problems, there
are only half as many energies ωc as there are coefficients
Ac(ωc, q). The sum over ω′

c is to be understood accordingly.
On the other hand, we have

∑
ωc

F (ωc) 
 L

2π

∫ 1

−1

dωc√
1 − ω2

c

F (ωc). (44)

Using the continuum approximation for the sum over q in
Eq. (43) once more, we have(

L

2π

)2 ∫ 1

−1

dω′
cF (ω′

c)√
1 − ω′2

c

∫ π

−π

dqAc(ωc, q)Ac(ω′
c, q)

= 1

2
F (ωc) = 1

2

∫ 1

−1
dω′

cδ(ωc − ω′
c)F (ω′

c). (45)

The correct continuum approximation normalization of the
coefficients Ac(q, ωc) therefore reads∫ π

−π

dqAc(ωc, q)Ac(ω′
c, q)

= 1

2

√
1 − ω′2

c

(
2π

L

)2

δ(ωc − ω′
c). (46)

To implement this normalization, we start from Eqs. (35)
and (36), substitute x = − cos q, and find∫ π

−π

dqAc(ωc, q)Ac(ω′
c, q)

= 2Cc(ωc)Cc(ω′
c)

∫ 1

−1

dx√
1 − x2

×
[

P
1

ωc − x
+ �(ωc)δ(ωc − x)

]

×
[

P
1

ω′
c − x

+ �(ω′
c)δ(ω′

c − x)

]
. (47)

By virtue of the form of the function �(ωc) [Eq. (41)], the
integrals of the products involving a principal value and a
δ function cancel, and the integral of the product of two
δ functions is simple. The product of two principal-value
integrals can be handled with the identity [19]

P
1

ωc − x
P

1

ω′
c − x

= 1

ωc − ω′
c

(
P

1

ω′
c − x

− P
1

ωc − x

)
+π2δ(x − ωc)δ(x − ω′

c). (48)

The first two terms both give zero by virtue of Eq. (40), so that
we are left with∫ π

−π

dqAc(ωc, q)Ac(ω′
c, q)

= 2Cc(ωc)2 π2 + �(ωc)2√
1 − ω2

c

δ(ωc − ω′
c). (49)

Comparison with Eq. (46) gives the normalization coefficient
Cc(ωc), and hence the complete state vector for the continuum
state

Ac(ωc, q) = K
√

1 − ω2
c

L
√
K2 + 1 − ω2

c

×
[

P
1

ωc + cos q
+ π

√
1 − ω2

c

K δ(ωc + cos q)

]
.

(50)

The precise meaning of Eq. (50) should be borne in mind
very carefully. This is an approximation to the continuum
wave function to be used when one replaces the sum over
discrete quasimomenta with the continuum-limit integral as in
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Eq. (27) and is purportedly valid in the limit of a large number
of lattice sites, L → ∞. At this point one, in principle, needs to
know the continuum eigenvalue ωc. However, if the final result
of the calculation varies smoothly with ωc, one may equally
well think of ωc as a continuous energy with the density of
states (30).

IV. DIMER IN POSITION REPRESENTATION

For comparison and additional results, we next study the
lattice dimer in position representation, somewhat parallel
to Ref. [14]. The starting point is the time-independent
Schrödinger equation (12) in the case when both 1

2P and q are
legal quasimomenta. Some changes in the formulation would
result for half-integer quasimomenta, but we do not discuss
them.

As already noted in connection with the somewhat ill-
defined equations (25) and (26), we use

αk = 1√
L

∑
q

eiqkA(q) (51)

to represent the relative motion of the two atoms in position
representation, k being the distance in lattice units between the
atoms. From another viewpoint, the step from A(q) to αk in
Eq. (51) is a discrete Fourier transformation, a perfectly well-
defined mathematical operation. The transformation preserves
the inner product (20), so that the position-representation states
are normalized exactly as in momentum representation.

Transforming Eq. (12), we directly have an equation for the
amplitudes αk ,

ωαk + 1
2αk+1 + 1

2αk−1 = δk,0Kα0. (52)

Here we choose the values of the relative coordinate of the two
atoms from the interval k ∈ (−L/2, L/2], but more generally,
αk must be regarded as a periodic function of k with the
period L.

Now, Eq. (52) is a second-order finite-difference equation
that may be solved like the corresponding second-order
differential equation. The homogeneous equation

ωαk + 1
2αk+1 + 1

2αk−1 = 0 (53)

admits solutions of the form αk = xk , where we see from direct
substitution that the constant x may take on the values

x = −ω ±
√

ω2 − 1. (54)

The product of the two possible values of x is always unity.

A. Bound state

First consider the case |ω| > 1. In this case, ω = ωb and x

is a real number. Suppose ωb > 1, then the two values of x

smaller and larger than unity in absolute value are

x< = −ωb +
√

ω2
b − 1, x> = −ωb −

√
ω2

b − 1. (55)

By the boson symmetry, we may always require that αk = α−k .
Recalling that x> = x−1

< , the only possible solution to Eq. (52)
is then of the form

αk =
{

Axk
< + Bxk

>, k � 0,

Axk
> + Bxk

<, k � 0.
(56)

Substitution into Eq. (52) with k = 0 gives

(A − B)
√

ω2
b − 1 = (A + B)K. (57)

However, there is another equation to reckon with. Namely,
to satisfy the periodic boundary conditions, the solution must
be periodic, so that at k = L/2 the expression (56) must switch
between the k � 0 and k � 0 forms while remaining a solution
to (53). This leads to a second condition,

ωb(AxL/2
< + BxL/2

> ) + 1
2 (Ax−L/2+1

> + Bx−L/2+1
<

+AxL/2−1
< + BxL/2−1

> ) = 0, (58)

or

B = AxL
<. (59)

In the limit of an infinitely long lattice, L → ∞, we have
B/A = 0, so that Eq. (57) gives

ωb = sgn (K)
√

1 + K2. (60)

Here we have worked out the case K < 0 as well, which leads
to ωb < −1. The result, of course, is as before [Eq. (32)]. The
state vector for the bound state is [14]

αk(ωb) = Ax|k|
< =

√
2K
ωb

(K − ωb)|k|, (61)

where we have explicitly normalized, 2
∑

k |αk|2 = 1.
If the lattice is not infinitely long, the bound state also has a

component that grows exponentially away from the center site
k = 0 as |x>||k|. Moreover, the bound-state energy is shifted
from the infinite-lattice value. In fact, Eqs. (57) and (59) have
a solution for A and B if and only if√

ω2
b − 1 − K = xL

<

(√
ω2

b − 1 + K
)

=
√

ω2
b − 1 + K(√

ω2
b − 1 + ωb

)L
. (62)

If this equation for ωb has an analytic solution for a general
(even) L, we have not been able to find it. However, the
equation poses no particular problems numerically, and we
have verified that the solution agrees with what is found from
Eq. (18). The coefficients A and B can be determined explicitly
in terms of ωb so that the state (56) is properly normalized, but
the best we have been able to do analytically is cumbersome.
Generally speaking, if a finite lattice is the issue, we believe
that there is little to be gained from an attempt to press
analytical as opposed to numerical calculations.

B. Continuum states

Second, consider the case |ω| < 1, so that ω = ωc. Then
x< and x> are complex numbers of unit modulus, of the form
e±iq for some real q;

x< = −ωc +
√

ω2
c − 1 = eiq,

(63)
x> = −ωc −

√
ω2

c − 1 = e−iq .
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The solutions to Eq. (52) with the requisite boson symmetry
are

αk(ωc) =
{

A cos kq + B sin kq, k � 0;

A cos kq − B sin kq, k � 0.
(64)

From Eqs. (63), the corresponding energy is of the form

ωc = − cos q. (65)

Equation (52) with k = 0 then gives

B sin q = KA. (66)

Once more, the ansatz (64) must give a solution to Eq. (53)
also at k = L/2, where the solution switches between the two
forms, so that we have

ωc

{
A cos

[(
1
2L

)
q
] + B sin

[(
1
2L

)
q
]}

+ {
A cos

[(
1
2L − 1

)
q
] + B sin

[(
1
2L − 1

)
q
]} = 0, (67)

or

B = A tan
Lq

2
. (68)

The quantization condition for q now becomes

h(q, L) = sin q tan
qL

2
= K. (69)

We plot the function h(q, L) for L = 16 in Fig. 2; the
horizontal line depicts the value of the right-hand side of
Eq. (69) for K = 1

2 . The plot shows that the function h(q, L)
attains every real value > 0 precisely L times when q varies
in the interval (−π, π ), once in each interval of the form
(πQ/L, πQ/L + π/L) for an integer Q.

Let us again for definiteness take K > 0 and consider
nonnegative roots q ∈ [0, π ) to Eq. (69) (if q is a root, then so

−3 −2 −1 1 2 3
q

−3

−2

−1

1

2

3

h(q, L)

FIG. 2. (Color online) The function h(q, L) [Eq. (69)] for L =
16. The vertical dashed lines represent the asymptotes of h(q, L); the
horizontal line stands for K = 1

2 .

is −q). Such roots for K = 0 would be

pQ = 2πQ

L
, Q = 0, . . . , L/2 − 1. (70)

We characterize the roots qQ for K > 0 with the same “quan-
tum number” Q in such a way that qQ develops continuously
from pQ when K is continuously increased from zero. In the
limit L → ∞ the change in sin q is negligible for the change
of K from zero to its final value, so that the actual energy
value satisfies ωc(Q) = − cos qQ 
 − cos pQ, and therefore
sin qQ 
 √

1 − cos2 pQ. Noting this, one immediately sees
that to the leading nontrivial order in 1/L, the Qth root of
Eq. (69) is

qQ 
 pQ + 2

L
arctan

K√
1 − cos2 pQ

≡ pQ + �Q. (71)

The branch of the explicit arctan function is chosen so that
the value lies between − 1

2π and 1
2π , and the addition of pQ

corresponds to the choice of the proper branch of the arctan
function to solve Eq. (69).

After this organizational work, the roots of Eq. (69) and
the corresponding energies ωc(Q) = − cos qQ are easy to find
numerically. The results agree with those obtained by solving
Eq. (18) numerically. Again, if the finite number of lattice sites
is the issue, we recommend direct numerical computations.

The state vector in momentum representation is the inverse
of the discrete Fourier transformation (51), or

Ac(ωc, p) = 1√
L

L/2−1∑
k=−L/2

e−ipkαk(ωc), (72)

where the momenta p, in fact, run over the values called pQ

in Eq. (70), albeit with Q = −L/2 + 1, . . . , L/2. Inserting
Eq. (64), making use of Eqs. (68) and (69), and noting that
sin(pL/2) = 0, we have

Ac(ωc, p) = DK√
L

1

cos p − cos q
, (73)

where D is a so-far undetermined normalization constant.
Given that cos q = −ωc, this is in agreement with the previous
expression for the state vector (35).

The problem in an attempt to take the limit L → ∞ is the
terms with p 
 q, which make the expression (73) singular.
However, by virtue of Eq. (71), we are now in a position to take
the continuum limit differently than we did in the momentum
representation. Following an old [20,21] but maybe not so
generally known idea, let us consider Eq. (73) in the vicinity
of the singularity that occurs around a given q value labeled
qQ0 , with p > 0 and q > 0 for definiteness. We then have

Ac(ωc, pQ) 
 −DK√
L

1

sin pQ0 (pQ − pQ0 − �Q0 )
. (74)

In the limit L → ∞, an arbitrary fixed small symmetric
neighborhood �p of the momentum pQ0 contains a very large
number of momentum modes pQ. Taking a smooth function
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of momentum G(p), we estimate∑
pQ∈�p

Ac(ωc, pQ)G(pQ)


 −DK√
L

2π

L sin pQ0

G(pQ0 )
∞∑

Q=−∞

1

Q − Q0 − L�Q0/(2π )

= −DK√
L

2π

L sin pQ0

G(pQ0 )
∞∑

Q=−∞

{
L�Q0/(2π )

Q2 − [L�Q0/(2π )]2

}
,

(75)

from duplication of the original sum with the change of the
summation index Q → −Q. However, the sum [22]

∞∑
k=−∞

x

k2 − x2
= −π cot[πx] (76)

and the definition of �Q0 from Eq. (71) give∑
pQ∈�p

Ac(ωc, pQ)G(pQ)


 DK√
L

L

2π
G(pQ0 )

[
1

sin pQ0

π
√

1 − cos2 pQ0

K

]
. (77)

On the other hand, replacing the sum with momentum
points spaced at the intervals 2π/L by an integral, we find

2π

L

∑
pQ∈�p

Ac(ωc, pQ)G(pQ)



∫

p∈�p

dp Ac(ωc, p)G(p)


 DK√
L

[
1

sin pQ0

π
√

1 − cos2 pQ0

K

]
G(pQ0 ). (78)

Clearly, in the small range �p, the function Ac(ωc, p) behaves
as

Ac(ωc, p) 
 DK√
L

[
1

sin pQ0

π
√

1 − cos2 pQ0

K

]
δ(p − pQ0 )


 DK√
L

π
√

1 − ω2
c

K δ(cos p + ωc), (79)

where we have noted in the last step that ωc 
 − cos pQ0 .
Other than in the small and symmetric neighborhood �p,
Eq. (73) still applies. In the limit L → ∞, the momentum
representation state vector therefore behaves under integrals
over p as

Ac(ωc, p) = DK√
L

[
P

1

ωc + cos p
+ π

√
1 − ω2

c

K δ(ωc + cos p)

]
.

(80)

The result has the same functional form as before [Eq. (50)],
so all that remains is to verify the normalization constant. To
this end we first note that the condition for normalization of

the state (64) ∑
k

αk(ωc)2 = 1

2
(81)

is cast in the form

D =
√

1 − ω2
c

L
(
K2 + 1 − ω2

c

) − 2Kωc

(82)

by using Eqs. (68) and (69). In the limit L → ∞, Eq. (50)
immediately follows.

V. EXAMPLES OF DIMER DETECTION

A. Momentum distribution

In our first foray into the detection of the dimers we
assume that after a preparation of a possibly large number
of bound-state dimers, the lattice is removed and the atomic
cloud expands ballistically. The positions of the atoms are then
detected after some free-flight time. Ideally, this procedure
converts the momentum distribution of the atoms into a
position distribution so that a measurement of the position
distribution amounts to a measurement of the momentum
distribution. Our thought experiments closely mimic actual
laboratory experiments [8].

There is a complication arising from the periodicity of the
lattice that was also discussed in Ref. [8]. Namely, if the lattice
is switched off instantaneously, the momentum distribution
consists of periodic repetitions of the first Brillouin zone
modulated by the momentum distribution of an atom in one
individual lattice site, that is, the momentum distribution of the
one-atom states associated with the annihilation operators ak .
In the experiments [8] the lattice was turned off on a time scale
such that the structure of the physics on a length scale below
one lattice spacing was presumably removed adiabatically,
while the site-to-site physics did not have time to adjust. The
result is a momentum distribution confined to the first Brillouin
zone. We analyze such distributions as well.

Now take an eigenstate of the center-of-mass motion (9)
with the total momentum P . A straightforward exercise then
gives the momentum distribution,

M(p) = 〈ψ | c†pcp |ψ〉 = 4
∣∣Ab

(
ωb, p − 1

2P
) ∣∣2

, (83)

with the A function given in Eq. (34) for the bound state.
First consider a stationary center of mass, P = 0; then we

have

M(p) ∝ 1

(ωb + cos p)2
. (84)

For a repulsively bound state ωb > 1 holds true, so that the
momentum distribution is a maximum at the edges of the first
Brillouin zone, when cos p = −1 or p = ±π . For the bound
state with attractive interactions, the maximum is at the center,
p = 0, of the first Brillouin zone. These features were seen
experimentally [8].

At first it might seem that the variation of Eq. (83) with
the center-of-mass momentum P would simply be to slide
around the momentum distribution of the atoms cyclically in
the first Brillouin zone by 1

2P . This is not the case, since the
energy of the bound state ωb also depends implicitly on P . For
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FIG. 3. (Color online) Contour plot of the momentum distribution
in the bound state of the lattice dimer, f (p, P ) of Eq. (85), as a
function of the momenta of the individual atoms p and the center-of-
mass momentum P , for U/J = 16. Brighter shades represent larger
values.

convenience, we define a momentum distribution f (p, P ) =
LM(p)/4π normalized so that

∫ π

−π
f (p, P ) dp = 1 and have

the explicit expression

f (p, P ) = |K(P )|3
2π

√
1 + K(P )2

× 1{
cos

(
p − 1

2P
) + sgn[K(P )]

√
1 + K(P )2

}2 ,

(85)

with

K(P ) = K0

cos 1
2P

, K0 = U

2J
. (86)

We plot an example with K0 = 8 in Fig. 3. This is a contour
plot with p as the horizontal axis, P as the vertical axis, and
brighter shades standing for larger values. The 1

2P sliding of
the distribution of the atomic momenta p with the center-of-
mass momentum P is visible, but there is also a modulation so
that, if anywhere, the momentum distribution of the atoms is
always peaked near the edges of the Brillouin zone. The peaks
in the momentum distribution are narrowest for the center-of-
mass momenta P = −2π , 0, and P = 2π ; at P = ±π , the
momentum distribution is completely flat, f (p,±π ) = 1/2π .

A discussion of the momentum distribution as a function of
the center-of-mass momentum based on numerical solutions of
the lattice as a many-body system was also offered in Ref. [8].
It brings up similar qualitative elements as our discussion, but
it seems to us that the translation of the momentum distribution
with the center-of-mass momentum is quoted in Ref. [8] as P ,
whereas we obtain 1

2P .

B. Size of the bound state

Our next example on the detection of the dimer is a
thought experiment in which there are precisely two atoms
in the lattice, and the number of the atoms at each site is
measured. This experiment is carried out over and over again,
and the detection statistics is compiled. In our example we
assume an absorbing detector that removes an atom from
further consideration once it has been observed. Modeling
after the well-known photon detection theory [23,24], the joint
probability for finding an atom at sites k1 and k2 in the energy
eigenstate of the lattice dimer (23) with a fixed center-of-mass
momentum P is

J (k1, k2) = N 〈ω| a†
k1

a
†
k2

ak2ak1 |ω〉

= 4N

L

∣∣αk1−k2

∣∣2
, (87)

where N is a normalization constant. As befits translational
invariance, the probability only depends on the distance
between the lattice sites. The distribution of the distance is
governed by the internal state of the molecule in position
representation, αk of Sec. IV.

We will not analyze the implications for a finite size lattice,
but go directly to the limit of infinite lattice with L → ∞.
By virtue of Eq. (61) the variance of the distance between the
detected atoms in the bound state is

(�k)2 =
∑

k k2|αk|2∑
k |αk|2 = 1

2K2
. (88)

Any eigenstate (25) for a fixed center-of-mass momentum
P of the two bosons in the lattice is translation invariant. Taken
individually, the detected atoms must be evenly distributed
along the lattice, and there is no sign of the internal state of
the dimer. The internal state is manifested in the correlations
between the detected positions of the atoms; in the ground
state the atoms are observed in pairs with the root mean square
distance 1/(

√
2|K|) between them. Even if the interactions

between the atoms are repulsive, the stronger the interactions,
the more tightly the atoms are paired.

C. Dissociation rate of the bound state

In order to find the bound-state energy experimentally,
some form of spectroscopy has to be carried out. Here we
assume that the intensity of the lattice light is modulated
periodically. The dissociation rate of a repulsively bound pair
(U > 0) as a function of the modulation frequency was studied
experimentally in this way in Ref. [8].

Given that the tunneling amplitude is much more sensitive
to the depth of the optical lattice than the atom-atom interac-
tions, in our model only the hopping matrix element J becomes
time dependent:

J → J (1 + 
 cos νt), (89)

where 
J and ν are the amplitude and frequency of the mod-
ulation, respectively. The modulation adds a “perturbation”
to the Hamiltonian. In lattice momentum representation, we
write it as

H ′

h̄
= 
 cos νt

∑
q

ωqc
†
qcq . (90)
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The matrix element of this perturbation between any two
states i and j of the form (9) turns out to be nonzero only if
the states have the same center-of-mass momentum P ; then
we have

〈ψi |H
′

h̄
|ψj 〉 = −
�P Mij cos νt. (91)

It proves expedient to define dimensionless matrix elements,
scaled to the frequency �P , as

Mij = 2
∑

q

cos qA∗
i (q)Aj (q)


 L

π

∫ π

−π

dq cos qA∗
i (q)Aj (q). (92)

Some results in what follows have maybe unexpected com-
plications in the notation, which are needed to cover the
possibility that �P < 0.

The relevant L → ∞ energy eigenstates are specified by
Eqs. (34) and (50). The matrix elements are

Mbb 
 − 1

ωb

, (93)

Mbc = Mcb 

[

2K3
(
1 − ω2

c

)
L

(
ω2

b − ω2
c

)
ωb

] 1
2

, (94)

Mcc′ 
 −2πωc

√
1 − ω2

c

L
δ(ωc − ωc′)

+ 2K

L

√
(1 − ωc)(1 − ω′

c)

(K2 + 1 − ωc)(K2 + 1 − ω′
c)

.
(95)

The matrix elements Mcc′ may look severely singular, but they
are not. Namely, recognizing 2π

√
1 − ω2

c/L as the inverse of
the density of the states ωc, the finite-lattice version of the
delta function part is

−2πωc

√
1 − ω2

c

L
δ(ωc − ωc′ ) ∼ −ωc δωc,ωc′ . (96)

This is a perfectly well behaved diagonal matrix element for
the continuum states.

The form for the amplitudes A in Eq. (50) was supposed
to be good inside integrals only if the rest of the integrand
is well behaved, which is clearly not the case in Eq. (92)
when i and j both stand for continuum states. The matrix
elements (95), however, transcend their derivation; with the
understanding (96) they agree with the matrix elements
computed numerically in a large finite lattice.

Writing the state |ω〉 as |b〉 for the bound state and as |c〉
for the quasicontinuum state, the Hamiltonian written in the
eigenbasis of H0 is

H

h̄�P

= ωb|b〉〈b| +
∑

c

ωc|c〉〈c| − 
 cos νt

[
Mbb|b〉〈b|

+
∑

c

(Mbc|b〉〈c| + Mcb|c〉〈b|) +
∑
cc′

Mcc′ |c〉〈c′|
]
.

(97)

We employ perturbation theory in the dimensionless parameter
characterizing the modulation depth, 
, to study the dissoci-
ation rate of the bound state to the quasicontinuum states.

Here the problem of time-dependent perturbation theory is
unusual in that there are diagonal transition matrix elements.
We attempt to get past this obstacle with the assumption that
the system starts in the bound state. The matrix elements Mbc

and Mcb must then be involved. The corresponding terms in
the Hamiltonian are already in themselves first order in the
small parameter 
. We therefore apply the Hamiltonian in the
form

H

h̄�P

= ωb|b〉〈b| +
∑

c

ωc|c〉〈c|

−
 cos νt
∑

c

(Mbc|b〉〈c| + Mcb|c〉〈b|) (98)

in the hope that we get a correct description to leading
order in perturbation theory in the parameter 
. This should
be warranted if the coupling between the continuum states
mediated by the matrix elements Mcc′ does not cause the
exact solution of the time-dependent Schrödinger equation to
become a nonanalytic function of the parameter 
 at 
 = 0.
We assume so without further ado.

At this point the standard Golden Rule transition rate
applies and gives the dissociation rate of the bound state in
proper dimensional units as

� = π
2|�P ||Mbc|2
2

�(�). (99)

Here the energy-conserving continuum state with the label
ωc ≡ � depends on whether the bound state lies above (−) or
below (+) the continuum,

� = Eb

h̄�P

∓ ν

�P

. (100)

This is an analog of a parameter called detuning in laser
spectroscopy, and would be controlled in practice by varying
the modulation frequency ν. Using the density of states given
in Eq. (30), we have

� = 
2|�P ||K|3√1 − �2

2|ωb|
(
ω2

b − �2
) . (101)

The shape of the dissociation line, variation of the dis-
sociation rate with the modulation frequency, changes from
(1 − �2)−1/2 in the limit of weak interactions |K| � 1 to
(1 − �2)1/2 in the limit |K| � 1. In dimensional units the
width of the spectrum is 2|�P |. The total strength of the
transition is characterized by

∫ 1

−1
d�

�(�)

|�P |
2
= π |K|3

2(1 + K2)(|K| + √
1 + K2)

, (102)

which tends to π |K|3/2 as |K| � 1 and to π/4 as |K| � 1.
The experimental results [8] are mostly in the limit K � 1.

While there is no indication in Ref. [8] whether perturbation
theory in the modulation amplitude should apply or not, our
results qualitative explain the published line shape.
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VI. CONCLUDING REMARKS

We have demonstrated how various molecular physics,
condensed-matter physics, and many-body physics aspects
come together in a description of a dimer of two bosonic
atoms in an optical lattice. Aside from a surprising number
of mathematical complications that we have sorted out both
explicitly and behind the scenes, the main technical issue
here is the old [20,21] quasicontinuum problem: what to do
with a system that has a dense set of energy eigenstates?
We have described the stationary states of the dimer and
found analytical expressions for the stationary states in the
limit of an infinitely long lattice. Once the groundwork is
laid, applications are straightforward. As an example, we have
briefly discussed three ways to detect a bound dimer.

We have analyzed the one-dimensional Bose-Hubbard
model as a specific example. Nevertheless, we can think up,
and several authors [9,10,15,25] have thought up, a number of
similar problems. Ultimately, what we hope to have achieved
here is a template, a methodology, that applies to all sorts
of dimer problems in lattices and will possibly contribute to
future studies of aggregates of atoms in a lattice with more
than two atoms as well.
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APPENDIX: OPERATOR ALGEBRA EXAMPLE

The second-quantized notation automatically takes care of
the symmetries with respect to particle exchange, but we may

run into possibly long products of creation and annihilation
operators. In some subfields of physics the methods for
dealing with them are standard fare, but for completeness we
demonstrate a technique employed frequently in this article
by deriving Eq. (8). First, given Eq. (7), we have from the
left-hand side of Eq. (8)∑
q1,q2,q3,q4

δ[q1+q2,q3+q4]c
†
q1

c†q2
cq3cq4 |ψ〉

=
∑

q1,q2,q3,q4,p1,p2

A(p1, p2) δ[q1+q2,q3+q4]c
†
q1

c†q2
cq3cq4c

†
p1

c†p2
|0〉.

(A1)

The general idea is to put the products of the operators into
normal order, annihilation operators to the right of creation
operators, by using the commutators (or anticommutators) of
the operators. Here cpc

†
q = c

†
qcp + δ[p,q] holds for arbitrary p

and q. We therefore have the following chain of manipulations:

c†q1
c†q2

cq3cq4c
†
p1

c†p2
|0〉

= c†q1
c†q2

(cq3c
†
p1

cq4c
†
p2

+ δ[q4,p1]cq3c
†
p2

) |0〉

= c†q1
c†q2

(δ[q4,p2]cq3c
†
p1

+ δ[q4,p1]δ[q3,p2]) |0〉

= c†q1
c†q2

(δ[q4,p2]δ[q3,p1] + δ[q4,p1]δ[q3,p2]) |0〉 ; (A2)

once an annihilation operator has been moved to operate on the
vacuum |0〉, the corresponding term vanishes. Sorting out the
Kronecker δ’s and using the symmetry A(p1, p2) = A(p2, p1),
(A1) and (A2) immediately combine to give the right-hand side
of Eq. (8).
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