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Tunneling of a few strongly repulsive hard-sphere bosons in an optical lattice with tight external
harmonic confinement: A quantum Monte Carlo investigation in continuous space
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The effect of strongly repulsive interactions on the tunneling amplitude of hard-sphere (HS) bosons confined
in a simple cubic optical lattice plus tight external harmonic confinement in continuous space is investigated.
The quantum variational Monte Carlo (VMC) and the variational path integral (VPI) Monte Carlo techniques
are used at zero temperature. The effects of the lattice spacing on the tunneling amplitude are also considered.
The occupancies of the lattice sites as a function of the repulsion between the bosons are further revealed. Our
chief result is that for a small number of bosons (N = 8) the overlap of the wave functions in neighboring wells
practically does not change with an increase of the repulsive interactions and changes only minimally for a larger
number of particles (N = 40). The tunneling amplitude rises with a reduction in the lattice spacing. In addition,
the occupancy of the center of the trap decreases in favor of a rise in the occupancy of the lattice sites at the edges
of the trap with increasing HS repulsion. Further, it was found that the energy per particle at certain optical-lattice
barrier heights is insensitive to the number of particles and variations in the HS diameter of the bosons. In order
to support our results, we compare the VMC results with corresponding VPI results.
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I. INTRODUCTION

The tunneling of bosons [1–6] as well as that of fermions [7]
in optical lattices has drawn considerable interest in the past
few years. This is due to its connection to superfluidity (SF) [8]
and its analogy to Josephson tunneling in quantum devices [9].
Particularly the role of interparticle interactions in determining
the tunneling amplitude has only been given few investigations
[2,3,6,10] and to the best of our knowledge. Tunneling in
multiple wells has also been given consideration [11].

In simple elementary terms, the quantum tunneling of a
particle through a potential barrier, such as in an optical lattice,
can occur when its total energy E is less than the height of the
barrier V0. The particle is described by a wave packet which
can penetrate the barrier with a finite probability. As a result, an
overlap between two wave functions at both sides of the barrier
provides a measure for the tunneling amplitude of the particle.
Potential barriers of this sort have been realized in quantum
devices [9] that make use of Josephson tunneling [12] and in
the recently achieved optical traps [13].

When there is more than a single atom in the potential well,
the mechanism of quantum tunneling is very much determined
by the strength of the interatomic interactions. In the strongly
interacting regime, correlated tunneling occurs [3,10] where
atoms tunnel in pairs and which competes with single-particle
tunneling. One of the most important properties of single-
particle tunneling in optical lattices is that it is a signature of a
SF state [8] and, if absent, of a Mott-insulator (MI) state [6,14].
Pair superfluidity (PSF) has also been recently discussed
[15,16]. In an MI state, the particles are unable to superflow
but still able to hop from one well to the other. This is via the
correlated hopping mechanism which in this article might be
signalled by an overlap of the wave functions in neighboring
wells in the strongly interacting regime. In fact it was Fölling
et al. [3] who showed experimentally that strong interactions
suppress single-particle tunneling such that second-order cor-
related tunneling is then the dominant dynamical effect. An SF

state is quite the opposite, where considerable single-particle
tunneling and phase coherence are observed.

In this article, we chiefly investigate the effects of strongly
repulsive interactions on the tunneling amplitude of bosons
in an inhomogeneous system confined by a tight combined
harmonic optical lattice. The external harmonic trap is
spherically symmetric. It introduces an inhomogeneity in
the atomic density distributions and restricts the motion
of the bosons within the confining volume. Investigations
on bosons confined in an optical lattice plus external trap
have been conducted before as well [17–20]. We use two
different ways for measuring the tunneling amplitude. One
way is by evaluating the overlap integral of wave functions
in neighboring wells, obtained from the integrated optical
densities. The other is by evaluating an exchange integral [6] in
order to obtain the single-particle tunneling amplitude. We use
quantum variational Monte Carlo (VMC) and variational path
integral (VPI) Monte Carlo techniques in continuous space at
zero Kelvin. To the best of our knowledge, previous work did
not consider the effects of inhomogeneiety on the tunneling
amplitude of strongly repulsive lattice bosons, particularly by
using Monte Carlo techniques in continuous space.

To this end, the tunneling amplitude of bosons in optical
lattices has been investigated chiefly as a function of the
optical-lattice barrier height V0 [8,21] and number of particles
[6]. An investigation most relevant to our work is that of Shams
and Glyde [8]. They evaluated the BEC density and SF fraction
of hard-sphere (HS) bosons confined in an external periodic
potential using path-integral Monte Carlo (PIMC) methods in
order to shed further light on the connection between BEC
and SF. In part, they investigated the hopping parameter as a
function of V0 and showed that if V0 is increased sufficiently,
the condensate is localized into islands inside the potential
wells suppressing superflow substantially. Further, they found
that their external potential suppresses the SF fraction at all
temperatures.
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In our investigation, a key point is that in contrast to Shams
and Glyde, V0 is kept fixed while the repulsive interactions be-
tween the bosons are varied. Further, the effects of these inter-
actions on atom correlations, optical density (OD), occupancy
of lattice sites, onsite interaction energies, and the total ener-
gies are explored. In addition, the effects due to lattice spacing
and number of particles are further revealed. As outlined in the
method section, the bosons are represented by hard spheres
of diameter ac whose repulsive interactions can be modified
by changing ac, thereby mimicking the Feshbach resonance
technique [22]. In one part of our work, we further compare
between the roles of the optical-lattice barrier height V0 and the
HS repulsion (ac) in the reduction of the tunneling amplitude.

Our chief result is that, for a small number of bosons,
the overlap of wave functions in neighboring potential wells
practically does not change with increasing HS repulsion
and changes only minimally for N = 40. The localized wave
functions in the potential wells do not broaden with an increase
in ac, in contrast to the case of HS bosons in pure harmonic
traps [23,24]. In the latter, the width of the spacial many-body
wave function extends to several trap lengths, whereas in our
case, the wave function in each well extends only slightly
beyond two trap lengths even at large repulsion. We thus have
evidence to suggest that the optical lattice barriers prevent
the wave functions in each well from expanding to a compara-
ble extent as in pure harmonic traps. We further found that the
energy per particle is relatively insensitive to the number of
particles N and variations in ac as compared to HS bosons in
pure harmonic traps [23,24] and that the tunneling amplitude
increases with the reduction of the lattice spacing. It is further
found that increasing V0 while keeping ac fixed reduces the
tunneling amplitude substantially as compared to the opposite
case of changing ac and keeping V0 fixed, which hardly allows
a reduction in the tunneling amplitude. Using the Wannier form
[Eq. (4) below], we find that our wave function is sufficiently
delocalized that it would seem most likely to describe a SF
phase. In order to provide further support to our findings, we
compare our VMC results with the corresponding VPI results.

Previous theoretical work on optical lattices is abundant,
particularly the SF-to-MI transition [6,14,18,25–29], and
coherent matter waves [30,31] have been investigated
extensively. Other investigations included supersolidity
[32,33], multicomponent systems [34,35], vortices [36], soli-
tons [37,38], and p-h excitations in MIs [14].

Various techniques and methods have been used to in-
vestigate bosons, fermions, or mixtures of them in optical
lattices: the Bose-Hubbard model [6,17,18,28,39] as well as
the Fermi-Hubbard model [40,41] in conjunction with Monte
Carlo techniques [18,28,40], and particularly diagrammatic
Monte Carlo [41] and the worm algorithm [42,43] have
been applied extensively. Other important techniques such
as the Gross-Pitaevskii equation (GPE) [2,37], variational
approaches [6,27,37], density matrix renormalization group
[31], and path integral approaches [7] have also been used.
Most of the above methods use a discrete space approach,
whereas we evaluate the properties in continuous space.

The organization of the present article is as follows: In
Sec. II we outline the methods used to evaluate the properties of
the systems. Section III is devoted to the results of the present
work. In Sec. IV we discuss the effect of the optical-lattice

barrier height on the tunneling amplitude. Finally, in Sec. V
we discuss our results and present our conclusions.

II. METHOD

We thus consider N bosons on a combined harmonic optical
cubic lattice (CHOCL). It consists of a 3Dal simple cubic (sc)
lattice of NL = 3 × 3 × 3 sites embedded in a tight, external,
and spherically symmetric harmonic trap of frequency ωho and
trap length aho = √

h̄/mωho. Here m is the mass of the bosons
and h̄ is Planck’s constant. The lattice spacing is given by
d = π/k, where k is the wave vector of the laser light. The
bosons are modeled by hard spheres of diameter ac and their
interactions, Vint(r), are represented by a hard-core potential
of diameter ac given by

Vint(r) =
{∞ : r � ac

0 : r > ac

, (1)

where r is the distance between a pair of bosons. In the low-
energy limit, the scattering between the bosons is purely s wave
with scattering length as . In this limit, as equals ac [23,24] and
the repulsive interactions between the bosons are modified
by changing ac. Within this framework then, the tunneling
amplitude J and the rest of the properties are measured as
functions of ac.

To set the stage, then, we first define the Hamiltonian,
and the trial wave function. Second, and as mentioned in the
Introduction, the tunneling amplitude is measured in two ways:

1. By an overlap integral Ioverlap of two wave functions in
neighboring wells centered at positions Rn and Rn+1 and are
measured from the center of the trap, where n is an arbitrary
integer. Here n ≡ (pqr) are site indices with locations Rn =
(pî + q ĵ + rk̂) in units of the lattice spacing d. By evaluating
the overlap integral, the purpose is just to obtain a qualitative
measure for the tunneling amplitude.

2. By the single-particle tunneling amplitude which is an
exchange integral 〈n|H |n + 1〉 between two sites n and n + 1,
where H is the Hamiltonian.
(Alternatively, the overlap integral of the single-particle
densities at all lattice sites with the optical lattice potential
is presented as a third measure for the tunneling amplitude,
but here into the potential barriers.) Third, the average onsite
interaction energy 〈Un〉 and the average occupation number
per lattice site 〈Npqr〉 at position R[n≡(pqr)] are further defined.
These are evaluated using VMC and VPI. We do not explain
the VMC and VPI methods here as they can be found in the
abundant literature [23,44–46].

A. Hamiltonian

The Hamiltonian for our systems is given by

H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i=1

[Vho(ri) + Vopt(ri)] +
∑
i<j

Vint(rij ),

(2)

where Vho(ri) = 1
2mω2

hor
2
i is an external harmonic trap-

ping potential with ri ≡ (xi, yi, zi) representing a single
particle position, m the mass of the bosons, Vint(rij ) with
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rij = |ri − rj | the pair-interaction potential Eq. (1) above, and

Vopt(ri) = V0 [sin2(kxi) + sin2(kyi) + sin2(kzi)], (3)

is the optical lattice potential [1,6] with V0 the optical-lattice
barrier height. Essentially, Vopt(ri = Rn) = 0 at the lattice-site
positions Rn which are the locations of the potential-well min-
ima of Eq. (3). That is, Vopt(Rn) = V0[sin2(pπ ) + sin2(qπ ) +
sin2(rπ )] = 0, where k · Rn = (integer) × π . Thus the lattice-
site positions are implied in Vopt(ri) by its very construction.
Experimentally, the optical lattice potential is obtained from
a superposition of three pairs of mutually perpendicular,
counterpropagating laser beams of intensity proportional to
V0. For an sc lattice, V0 must be the same for each direction.
In this article, we write energy and length in units of the trap,
h̄ωho and aho = √

h̄/mωho, respectively.

B. Trial wave function

The many-body trial wave function is given by

�({r},{R}) =
N∏

i=1

exp
( − αr2

i

)
ψ(ri ,{R})

∏
i<j

f (|ri − rj |),

(4)

with ψ(ri ,{R}) a Wannier-like function defined as

ψ(ri ,{R}) =
NL∑
n=0

φ(ri ,Rn), (5)

where {r} ≡ {r1,r2, . . . ,rN } is a set of spatial vectors describ-
ing the positions of the bosons from the center of the trap,
{R} ≡ {R1,R2, . . . ,RNL

} is a set of vectors describing the
positions of the lattice potential minima on the 3 × 3 × 3
cubic lattice cage considered, and α is a variational parameter
signaling the strength of the external harmonic confinement.
Essentially, α is the inverse overall width of the total wave
function of the system in the CHOCL. Further, α controls the
volume of the external harmonic confinement and, therefore,
the number of lattice sites to be occupied away from the center
of the trap. Equation (5) is constructed in a manner similar to
that of Jin et al. [35] in that we sum over a number of localized
single-particle wave functions φ(ri ,Rn) centered in the optical
lattice wells, each at Rn. As for φ(ri ,Rn), it is constructed
similarly to the wave function used by Li et al. [6] and is given
by:

φ(ri ,Rn) = exp[−β(ri − Rn)2][1 + γ (xi − Xn)2

− σ (xi − Xn)4][1 + γ (yi − Yn)2 − σ (yi − Yn)4]

× [1 + γ (zi − Zn)2 − σ (zi − Zn)4], (6)

where β, γ , and σ are further variational parameters in
addition to α. The onsite repulsion is partly controlled by
the local density |φ(ri ,Rn)|2 via the variational parameter β in
Eq. (6), which confines the particles at each lattice site (n). The
interactions in the trial wave function are taken into account
by the usual HS Jastrow function [23,24]:

f (rij ) =
{

0 : rij � ac

1 − ac

rij
: rij > ac

, (7)

where rij is the distance between a pair of bosons. The Jastrow
function Eq. (7) is the zero-momentum limit of the solution
to the two-body Schrödinger equation in the low-energy and
long-wavelength limit:

lim
k→0

ψ
(+)
k (r) = lim

k→0

sin(kr + δ0)

kr
= 1 − as

r
,

since δ0 = −kas is the phase shift from standard scattering
theory [47] by using a contact potential V (r) = gδ(r), where
g = 4πh̄2as/m. This Jastrow function keeps the bosons away
from each other at a certain average distance and prevents
them from touching each other. One could also have used,
for example, f (r) = 1 − (a/r)ν , where ν is some adjustable
parameter. If ν > 1 then the Jastrow function runs “faster” to
1, i.e., f (r) becomes 1 at a shorter distance r than in Eq. (7).
As a result, the bosons would approach each other further.

The VMC wave function (4) is optimized by minimizing
the average energy with Powell’s technique [48] employed in
a previous publication [49]. The ground-state configuration is
achieved when all the particles are distributed symmetrically
in the spherical coordination shells around the center of the
trap, and the overall boson-boson repulsion is minimal. Once
the trial function Eq. (4) has been optimized, it is plugged into
the VPI code as a starting wave function. The same properties
are then evaluated as those using VMC.

C. Optical density definition

In this work, the optical column density is measured, and as
follows. First, for each MC configuration of particles, labeled
c, we define a 2D particle density n2D,c(x,y) given by

n2D,c(x,y) =
∫ +∞

−∞
|�c(x,y,z)|2dz. (8)

where |�c|2 is the total density of a configuration c. n2D,c(x,y)
is obtained by binning particles in square bins in the xy plane
on a grid over several Monte Carlo steps. The configurational
average of this density is then evaluated by summing (8) over
all configurations and dividing by the number of configurations
P :

〈n2D(x,y)〉 =
∑

c

n2D,c(x,y)/P. (9)

The 1D optical density (OD) is obtained by taking a slice
of 〈n2D(x,y)〉 along one of the axes, that is

n1D(x) = 〈n2D(x,y = 0)〉. (10)

D. Tunneling

The tunneling amplitude in this work is now measured in
the previously outlined two ways at the beginning of Sec. II.
We discuss both methods now.

1. Overlap of wave functions in neighboring wells

A qualitative measure for the overlap of the wave functions
is evaluated, for simplicity, from trial-density functions fitted
to slices of the integrated optical densities (OD) along one
axis. For this purpose, we choose the trial-density functions
similar to the one-dimensional (1D) version of Eq. (6) with an
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FIG. 1. (Color online) Fits using the forms (11) and (12) to
1D VMC and VPI integrated OD slices along the x axis [n1D(x),
Eq. (10)] for a system of N = 8, V0 = 10, ac = 0.10, and k = 1.2π

in a CHOCL of 3 × 3 × 3 lattice sites. VMC fit (dotted line), VMC
OD (solid circles), VPI fit (dashed line), and VPI OD (open triangles).
The sum of squares for both fits is χ 2 = 3.41 × 10−4 for VMC and
7.41 × 10−4 for VPI, respectively. All lengths and energies are in
units of the trap aho = √

h̄/mωho and h̄ωho, respectively. The x and
ac are in units of aho, k is in units of a−1

ho , and V0 is in units of h̄ωho.
The 1D OD is in units of a−1

ho .

additional amplitude factor An, that is

|φfit(x,Xn)|2 = An exp[−βn(x − Xn)2]

× |1 + γn(x − Xn)2 + σn(x − Xn)4|. (11)

The absolute value is considered to make sure we do not run
into negative densities. An example of such a fit is shown
in Fig. 1 above displaying the VMC fit (dotted line), VMC
OD (solid circles), VPI fit (dashed line), and VPI OD (open
triangles). Here, the fitting function is

F (x;X1,X2,X3) =
3∑

n=1

|φfit(x,Xn)|2, (12)

having peaks centered at three potential minima X1 (left), X2

(center), and X3 (right) and with three sets of fitting parameters
An, βn, γn, σn, and the latter Xn, where n runs from 1 to 3.
In fact, the central position X2 always turns out to be exactly
zero as required. The sum of squares

χ2 =
p∑

i=1

{
3∑

n=1

[|φfit(xi,Xn)|2 − |φMC(xi,Xn)|2]

}2

(13)

is minimized with respect to the above sets of fitting parame-
ters. Here χ2 is a sum over all p data points of the 1D integrated
MC OD [

∑3
n=1 |φMC(xi,Xn)|2]. By this minimization, we get

values of χ2 < 10−3, indicating a good fit. After optimization,
the overlap integral

Ioverlap =
∫ +∞

−∞
φfit(x,X1) φfit(x,X2) dx

+
∫ +∞

−∞
φfit(x,X2) φfit(x,X3) dx, (14)

is then evaluated using a simple elementary numerical
technique.

2. Single particle tunneling

One can describe the single-particle tunneling amplitude for
strongly interacting systems using the well-known exchange
integral [6]

Jn = 〈n|H |n + 1〉 =
∫

d3rφn(r)

[
− h̄2

2m
∇2+V (r)

]
φn+1(r),

(15)

where φn and φn+1 are single-particle wave functions at sites
n and n + 1, and V (r) a single-particle potential. In fact, it
is anticipated that the single-particle wave function narrows
as the HS repulsion rises, counteracting the effects of the
broadening due to the Jastrow factor [Eq. (7)] as the number
of particles is increased beyond a certain limit. Thus for one
boson tunneling between two neighboring potential wells of
indices n and n + 1 and positions Rn and Rn+1, respectively,
J for each boson is given by Eq. (15). In order to incorporate
the effects of the external trap into the tunneling amplitude, we
use a slightly modified version of their J , namely the average

〈
J[Rn→Rn+1]

〉 =
∫

〈MC〉
d3r e−αr2

φ(r,Rn)

[
− h̄2

2 m
∇2 + V (r)

]

× e−αr2
φ(r,Rn+1), (16)

where
∫
〈MC〉 stands for a MC configurational integral defined

in Sec. II I below. In Eq. (16) we have multiplied the wave
function in each well by the factor exp(−αr2) representing the
external harmonic trap. V (r) is usually the periodic optical
lattice potential, but in the present work, we superimpose
a tight external trap, Vho(r), on the optical lattice potential:
V (r) = Vopt(r) + Vho(r). Thus, a basic feature in our work is
to include the effects of a steeply varying external harmonic
trap into our calculations. We evaluate the average of 〈J 〉
for all N bosons between two chosen neighboring lattice
sites Rn = (000) and Rn+1 = (00 −1). We consider only (000)
and (00 −1) because (00 −1) alone is representative of the
first nearest-neighbor family and the tunneling amplitude is
symmetric around the trap center in the six directions.

E. Bosons-optical lattice overlap

A measure for the extent of the overlap between [φ(ri ,Rn)]2

and Vopt(ri) for all particles i = 1 to N and all lattice sites
n = 1 to NL is given by

〈Iboson−OL〉 =
NL∑
n=1

∫
〈MC〉

[e(−αr2)φ(r,Rn)]2 Vopt(r) d3r,

(17)

where OL stands for optical lattice. Further, 〈Iboson−OL〉 is an
indirect measure of the total tunneling amplitude of the system
into the optical lattice potential barriers. In this regard, we
follow Giamarchi and Schultz [50] in constructing an overlap
integral analogous to their Eq. (5.7).

F. Discrete onsite interaction energies

In order to further explore the single-particle response
to the change in the HS repulsions, we evaluate the onsite
interaction energies at individual lattice sites. Another goal
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is to provide the onsite interaction for measuring zJ/U . The
onsite interaction energy for a single particle at each lattice
site (n) is evaluated following [6,51] as

〈Un〉 = g

∫
〈MC〉

e−4αr2 |φ(r,Rn)|4 d3r, (18)

where

g = 4πh̄2ac/m, (19)

with as replaced by ac. Here the effects of the external trap are
included via the factor [exp(−αr2)]4. In our calculations, we
used g = 4πac which is in trap units.

G. Occupancy of lattice sites

Another single-particle response is the average atom-
number occupancy of each lattice site (n) evaluated via

〈Nn〉 = N

∫
〈MC〉

e−2αr2 |φ(r,Rn)|2d3r. (20)

An alternative way to determine the occupancy of each lattice
site is to divide the confining volume into equivalent cubic
bins whose corners are sets of four lattice sites Rn and count
the number of particles collected in each bin. We used this
counting method to evaluate the VPI 〈Nn〉, whereas (20) to
obtain the VMC 〈Nn〉.

H. Correlations between the bosons

The pair correlation function g(r) is evaluated using VPI
by binning pairs of particles in each r . The idea is to provide
a measure for the strength of the boson-boson correlations
and its dependency on the repulsive interactions in a tightly
confining environment.

I. Numerics

The integrals (16)–(18) and (20) are evaluated using
standard Monte Carlo integration [46]:∫

〈MC〉
O(r)dr = 1

N

N∑
i=1

1

P

P∑
c=1

O(rci)

e−2αr2
ci

∑NL

n=1 |φ(rci ,Rn)|2 ,

(21)

where c is a configurational index, i is a particle index, and P

is the total number of VMC or VPI configurations {rci}. We
further sum over all N particles and divide by N to get the
average for all particles. The denominator is a weight we used
for all MC integrals. The sum (21) is conducted over a large
number of configurations in order to get the MC cumulative
average and to reduce the statistical error.

In VPI, each configuration consists of N particle positions
along one chosen time slice. The integral (21) for each of
the previous observables (16)–(18) and (20) is evaluated at
the first and last time slices of the path, 1 and 2M . (We
use here the same notation as Ref. [44].) We then found it
convenient to take the average of the two time slices, e.g.,
〈Un〉 → (〈U (1)

n 〉 + 〈U (2M)
n 〉)/2, where 〈U (1)

n 〉 is the average
onsite interaction energy as evaluated by Eqs. (18) and (21)
at slice 1 and similarly 〈U (2M)

n 〉 at slice 2M . In that sense,
the expectation values above are evaluated using the “mixed

estimate” concept [44]. The optical densities Eqs. (9) and (10),
however, are evaluated at the central slice of the path.

J. Energy

The VPI energy is evaluated via the “mixed estimate” [44]
by taking the average of the energies at two time slices, 〈E〉 =
(〈E(1)〉 + 〈E(2M)〉)/2 where the first slice is 1 and the last 2M ,
and

〈E(1)〉 = 1

P

P∑
c=1

Ĥ�
({

r(1)
c

}
,{R})

�
({

r(1)
c

}
,{R}) (22)

〈E(2M)〉 = 1

P

P∑
c=1

Ĥ�
({

r(2M)
c

}
,{R})

�
({

r(2M)
c

}
,{R}) . (23)

Here �({r(1,2M)
c },{R}) is the same as Eq. (4), but with r =

r(1,2M)
c labeled as the configuration of particles at time slice

1 or 2M, respectively. According to Cuervo et al. [44], it is
possible to use the first as well as the last time slice for the
mixed estimate.

We must also draw the attention of the reader to the fact that
by using the trial wave function Eq. (4), we are not separating
the energies into relative and center of mass motion, but we are
measuring motions relative to the positions of the lattice sites
{R} and r is measured relative to the center of the HO trap. The
center of the HO trap coincides with the center of the cubic
lattice. Our trial wave function does not allow center-of-mass
motion.

K. Computational complexities

As much as VPI is an accurate method for the present de-
termination of the properties of lattice bosons, using a number
of particles exceeding N = 8, this method begins to constitute
a heavy-computational and CPU-time-consuming technique.
Particularly, for large optical potential barriers V0 � 10 h̄ωho,
the bosons take a very long CPU time to tunnel through the
barriers in order to achieve a symmetric OD distribution inside
the whole trap. We therefore limited the number of particles to
N = 8 when using VPI. On the other hand, the less accurate
VMC method allows the bosons to diffuse quickly through the
barriers providing a computationally cheap and fast technique
to investigate qualitatively the properties of bosons in optical
lattices. Our aim is, however, not to present methods but to
concentrate on the physics of quantum tunneling.

L. Alternative VMC trial function

In order to test the validity of using a Gaussian [exp(−αr2)]
in our trial wave function Eq. (4), we calculated the optical
densities for N = 8, V0 = 10, and k = π using a slightly
modified version of our trial wave function:

�({r},{R}) =
N∏

i=1

exp
(−α r2

i − ε r4
i

)
ψ(ri ,{R})

×
∏
i<j

f (|ri − rj |), (24)

with an additional parameter ε added to the previous set of
variational parameters. Figure 2 displays the 1D density slices
n1D(x) evaluated via Eq. (24) at the indicated values of ac. The
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FIG. 2. Integrated one-dimensional (1D) OD slices n1D(x)
[Eq. (10)] evaluated using the alternative Gaussian in Eq. (24)
(Alt. Gauss). The system is a HS Bose gas of N = 8, V0 = 10,
and k = π , in a CHOCL of 3 × 3 × 3 sites. Solid line: fitting
function f (x) = F (x;X1,X2,X3) [Eq. (12)], open circles: VMC data,
thick dashed line: left fit |φfit(x,X1)|2, thin dashed line: central fit
|φfit(x,X2 = 0)|2, dotted line: right fit |φfit(x,X3)|2. From top to
bottom, ac = 0.04, 0.16, and 0.30. The VMC 1D OD and k are
in units of a−1

ho , V0 is in units of h̄ωho, and x and ac are in units
of aho. The fits |φfit(x,X3)|2 (with i = 1,2, or 3) and f (x) are in
units of a−1

ho .

system is a HS Bose gas of N = 8, V0 = 10, and k = π , in a
CHOCL of 3 × 3 × 3 lattice sites. Solid line: fitting function
f (x) = F (x;X1,X2,X3) [Eq. (12)]; open circles: VMC data;
dashed line: left fit |φfit(x,X1)|2; thin dashed line: central fit
|φfit(x,X2 = 0|2; dotted line: right fit |φfit(x,X2)|2.

As one can see, the wave functions in each well do not
broaden with increasing ac, the central peak loses amplitude
with increasing ac, and the peaks at the edges gain amplitude.
The upcoming conclusions of the article are not qualitatively
changed by this new calculation. As we will see below, the
differences between Figs. 2 and a comparable Fig. 24 are
substantial. The overlap of the wave function in neighboring
wells is significantly reduced in Fig. 2 as compared to Fig. 24,
nevertheless, the qualitativeness of the results is the same in
both figures.

A further comment on the results in Fig. 2 is in order here.
VMC is very much dependent on the form of the trial wave

function used. VPI, however, is independent of the initial wave
function used. Whatever form for the trial wave function is
employed, VPI always reaches the same result. In VMC, it is
difficult to find the exact trial wave function that would lead us
to the optimal ground-state solution. Nevertheless, we show
that our trial wave function is of a good quality as it gives
results very close to the VPI results.

M. Units

We emphasize again that all lengths and energies are
measured in units of the trap, aho = √

h̄/mωho and h̄ωho,
respectively. That is, we write (x,y,z) → (x/aho,y/aho,z/aho)
and 〈E〉 → 〈E〉/h̄ωho. Similarly, 〈J[Rn→Rn+1]〉, 〈Iboson−OL〉,
and 〈Un〉 are rewritten in units of h̄ωho. The densities
〈n2D(x,y)〉 and n1D(x) are in units of a−2

ho and a−1
ho , respectively,

and the wave vector k is in units of a−1
ho . The overlap integral

Ioverlap is unitless since φfit(x,Xi) in Eq. (14) is in units of
a

−1/2
ho . From now on, these units are used consistently in all the

upcoming figures and interpretations of results.

III. RESULTS

In what follows, we present the results of our calculations.
We particularly focus on the effect of interactions on the
tunneling amplitude ∝ Ioverlap. We further explore the effect of
ac on the onsite interaction energies 〈Un〉, energy per particle
〈E〉/N , the occupancy of lattice sites 〈Nn〉, the overlap of the
bosons with the OL potential, the correlations g(r), and the
OD. As mentioned before, we compare our VMC results with
corresponding VPI results.

A. Tunneling

Ioverlap is now displayed as a function of ac. Figure 3
displays the VPI results for systems of N = 8 and V0 = 10 in
a CHOCL of 3 × 3 × 3 lattice sites with k = π (open circles),
k = 1.2π (open triangles) and k = 1.4π (open diamonds). The
VMC results are displayed similarly but with solid labels.

VMC k = 1.4π
VMC k = 1.2π
VMC k = 1.0π
VPI k = 1.4π
VPI k = 1.2π
VPI k = 1.0π V0 = 10N = 8

ac

I o
v
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p

0.350.30.250.20.150.10.050

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

FIG. 3. Tunneling amplitude ∝ Ioverlap [Eq. (14)] vs. the hard-
sphere (HS) diameter ac, obtained from fits to 1D VPI and VMC
optical density slices such as those in Fig. 2. The system is a HS
Bose gas of N = 8 and V0 = 10 in a CHOCL of 3 × 3 × 3 sites. VPI
results: k = π (open circles); k = 1.2π (open triangles); k = 1.4π

(open diamonds). The corresponding solid legends are for the VMC
results. Lengths are in units of the trap aho = √

h̄/mωho. The Ioverlap

is unitless, k is in units of a−1
ho , V0 is in units of h̄ωho, and ac is in units

of aho.
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FIG. 4. As in Fig. 3; but using VMC for N = 40, V0 = 20 and
the indicated values of k. The Ioverlap is unitless, k is in units of a−1

ho ,
V0 is in units of h̄ωho, and ac is in units of aho.

For these values of N and V0, Ioverlap shows a very weak
response to the effects of increasing ac, since it seems to
remain practically constant. As k is increased, Ioverlap rises
indicating a profound effect of the lattice spacing d = π/k

on the tunneling amplitude. Qualitatively, both VMC and VPI
reveal the same phenomenon, except that the VMC data lie
lower than the VPI data for the same k values. The reason
is due to the difference between the VMC and VPI OD as
observed in Fig. 1. If one inspects the latter figure closely, one
can see that the VMC peaks are slightly narrower than the VPI
peaks. The VMC peaks at the edges have a higher amplitude
than the VPI peaks, but the central peaks almost match each
other. In any case, we are using the overlap integral to provide a
qualitative measure only. One can see again the dependence of
the VMC method on the trial wave function used, as mentioned
in subsection II L above.

Figure 4 is as in Fig. 3; but it shows the VMC case for N =
40 and V0 = 20 for k values of π and 1.2π (solid circles and
triangles, respectively). For k = 1.2π , Ioverlap decreases overall
with increasing ac, whereas for k = 1.0π it rises somewhat up
to ac = 0.18 and then begins to drop. However, the response is
still weak and insignificant. Hence, a slightly stronger response
is obtained for the tunneling amplitude when using a larger N .
Further, the effect of changing d = π/k on Ioverlap is much
more pronounced than changing ac. Signals for a stronger
response of our systems to the rise of ac are found in the single-
particle properties such as the width of the single-particle wave
function and the onsite interaction energy.

In order to provide a measure for the single-particle
tunneling amplitude, we evaluate 〈J 〉 [Eq. (16)] between
two chosen lattice sites: the center (000) and a first nearest
neighbor (00 −1). Further, the onsite repulsive interaction
energy 〈U(000)〉 is obtained from Eq. (18) and used to calculate
the ratio J/U (where J ≡ 〈J(000)→(00−1)〉 and U ≡ 〈U(000)〉) to
determine whether the current systems are SF or MI. The
critical value for a SF-MI transition is zJ/U = 0.172 [1]
below which one enters the MI regime.

Figure 5 displays 〈J(000)→(00−1)〉 versus ac for the same
systems as in Fig. 3. 〈J(000)→(00−1)〉 decreases with ac for k >

1.0π and remains almost constant for k = 1.0π . Hence, single-
particle tunneling is gradually suppressed as the repulsion
between the bosons rises for k > 1.0π .

Figure 6 displays 〈J(000)→(00−1)〉/〈U(000)〉 versus ac for
essentially the same systems as in Fig. 3 and various k: VMC at
k = 1.2π (solid triangles), VPI at k = 1.2π (open triangles),

VPI k = 1.0π
VMC k = 1.0π
VPI k = 1.2π

VMC k = 1.2π
VPI k = 1.4π

VMC k = 1.4πN = 8, V0 = 10

ac

J
(0

00
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(0
0−

1)

0.30.250.20.150.10.050

0.30

0.25

0.20

0.15

0.10

0.05

0.00

FIG. 5. Single-particle tunneling amplitude J [Eq. (16)] versus
the HS diameter ac between two lattice sites (000) and (00 −1) for
the same systems of Fig. 3 at the indicated values of k: VMC and
VPI results at k = 1.4π (solid and open diamonds, respectively);
similarly at k = 1.2π (solid and open triangles); k = 1.0π (solid and
open circles). The dotted lines are a guide to the eye. The V0 and
〈J(000)→(00−1)〉 are in units of h̄ωho, k is in units of a−1

ho , and ac is in
units of aho.

VMC at k = 1.0π (solid circles), and VPI at k = 1.0π (open
circles). One can see that zJ/U lies way above the critical
value 0.172 which places our systems in the SF regime.

B. Width of the single-particle wave function
in each potential well

As already indicated under Sec. II, the width of the
single-particle wave function φ(r,Rn) [Eq. (6)] in each well is
expected to decrease with a rise of the HS repulsion in order
to counteract the effects of a broadening due to the Jastrow
function for a larger number of particles than N = 8. The
width, or, better, the inverse of it, is described by the VMC
parameter β in Eq. (6). In Fig. 7, the VMC parameter β of
φ(r,Rn), is displayed as a function of ac. The open triangles
display β for the HS Bose gas of Fig. 3 at k = 1.2π ; solid
circles: HS Bose gas of Fig. 4 at k = π . It is found that this
width (∝ 1/

√
β) decreases with the rise in the repulsion for

N = 40 and remains almost constant for N = 8.

VPI k = 1.0π
VMC k = 1.0π
VPI k = 1.2π

VMC k = 1.2π

N = 8 V0 = 10

ac

J
(0

00
)→

(0
0−

1)
/
U

(0
00

)

0.30.250.20.150.10.050

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

FIG. 6. Ratio of the tunneling amplitude and onsite repulsive
energy 〈J(000)→(00−1)〉/〈U(000)〉 as a function of the HS diameter ac

for the same systems of Fig. 3 at the indicated values of k: VMC
and VPI results at k = 1.2π (solid and open triangles); similarly for
k = 1.0π (solid and open circles). The V0, 〈J(000)→(00−1)〉 and 〈U(000)〉
are in units of h̄ωho, k is in units of a−1

ho , and ac is in units of aho.
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N = 8, V0 = 10, k = 1.2π
N = 40, V0 = 20, k = 1.0π (VMC)

ac

β

0.30.250.20.150.10.050

7.8

7.6
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7.2
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6.8
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FIG. 7. VMC parameter β of the trial wave function [Eq. (6)]
as a function of the hard-sphere diameter ac for two HS Bose gas
systems in a CHOCL of 3 × 3 × 3 sites. Open triangles: HS Bose gas
of Fig. 3 at k = 1.2π . Solid circles: HS Bose gas of Fig. 4 at k = π .
The dashed and dotted lines are a guide to the eye. The ac is in units
of aho, k is in units of a−1

ho , V0 is in units of h̄ωho, and β is in units of
a−2

ho .

C. Onsite interaction energies

The chief goal of this subsection is to show that the onsite
repulsive energy 〈Un〉 at the lattice sites n rises with increasing
HS diameter ac, although the corresponding occupancy of a
lattice site n may be dropping. Further, another goal is to reveal
a symmetric distribution of the total repulsive potential energy
around the trap center. This is a proof that VMC as well as
VPI describes the systems correctly.

Discrete distributions of 〈Un〉 over all 27 lattice sites, for
systems of N = 8, V0 = 10, k = π , and two cases ac = 0.02
and 0.10, are displayed in Figs. 8 and 9, respectively. The
abscissa display the site index n. All 〈Un〉 which have the
same magnitude within a small margin of error belong to
the same set of nearest neighbors from the central lattice
site. That is, moving vertically from the tip of the discrete
distribution down to the bottom, we move from the center
to the first, second, and third set of nearest neighbors,
respectively. The distribution is uniform around the trap center.
The effects of the external trap are manifested in the magnitude
of 〈Un〉 which is highest at the center and declines toward the
edges of the trap due to the factor exp(−4αr2) in Eq. (18).
Obviously, a large percentage of the particles is concentrated at
the central lattice site. It is anticipated, then, that if the strength

k = π

N = 8

V0 = 10 VMC

ac = 0.02

site index (n)

U
n

302520151050−5

1.2 × 10−2

1.0 × 10−2

8.0 × 10−3

6.0 × 10−3

4.0 × 10−3

2.0 × 10−3

0.0 × 100

FIG. 8. Average VMC onsite repulsive interaction energy 〈Un〉,
at each lattice site n, for the HS Bose gas of Fig. 3 at ac = 0.02 and
k = π . The 〈Un〉 and V0 are in units of h̄ωho; k is in units of a−1

ho .

k = π

N = 8

V0 = 10 VMC

ac = 0.10

site index (n)

U
n

302520151050−5

3.5 × 10−2

3.0 × 10−2

2.5 × 10−2

2.0 × 10−2

1.5 × 10−2

1.0 × 10−2

5.0 × 10−3

0.0 × 100

FIG. 9. As in Fig. 8; but for ac = 0.10. The 〈Un〉 and V0 are in
units of h̄ωho; k is in units of a−1

ho .

of the external harmonic trap is increased further, this causes a
drop in the density ∼ exp(−2αr2) |φ(r,Rn)|2 (and hence 〈Un〉)
at the lattice sites toward the edges of the trap and a certain rise
at the center of the trap. Continuing the rise of this strength
will force all the bosons to eventually occupy the central lattice
site, and only if their HS diameter is of a magnitude that allows
all of them to fit inside one lattice-site volume ∼4π (d/2)3/3.
Thus, a large amount of repulsive potential energy would be
stored in the trap center. The patterns of Figs. 8 and 9 show also
that the bosons minimize their potential energy arising from
the external harmonic trap by maximizing their occupancy of
the trap center and minimizing it toward the edges of the trap.
In the discussion section, we show later that the external HO
trap plays a chief role in preventing the wave functions from
largely broadening.

Next, the goal is to show that a linear increase in
the interaction parameter g overwhelms a decrease in the
occupancy 〈N(pqr)〉 with the net effect that 〈U(pqr)〉 rises.
First, 〈Un〉 is displayed as a function of ac in Figs. 10 and
11 for the systems of Fig. 3 at k = π and 1.2π , respectively,
and for four lattice sites: Rn ≡ (000) [VMC (solid) and VPI
(open circles)], (00 −1) (as before but with up triangles), (011)
(then diamonds), and (111) (finally with down triangles),
representative of the whole lattice. In general, 〈U(pqr)〉 rises
with ac signaling a rise in the repulsive energy of the particles

VPI U(111)
VMC U(111)
VPI U(011)
VMC U(011)
VPI U(00−1)
VMC U(00−1)
VPI U(000)
VMC U(000)

k = π
V0 = 10
N = 8

ac

U
(p
qr
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0.01

0.00

.

FIG. 10. Average onsite repulsive interaction energy 〈U(pqr)〉 vs.
the hard-sphere (HS) diameter ac at four lattice sites representative
of the whole lattice. The system is the HS Bose gas mentioned in
Fig. 3 at k = π . Solid and open circles: VMC and VPI results for
〈U(000)〉. Solid and open up triangles: likewise for (00 −1). Solid and
open diamonds: for (011). Solid and open down triangles: for (111).
The ac is in units of aho, k is in units of a−1

ho , and V0 is in units of h̄ωho.
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FIG. 11. As in Fig. 10; but for k = 1.2π . The 〈U(pqr)〉 and V0 are
in units of h̄ωho, ac is in units of aho, and k is in units of a−1

ho .

in each well. The rate of growth of 〈U(pqr)〉 is largest for the trap
center and declines toward the edges of the trap. Now Fig. 12
displays Ũ(pqr) = 〈U(pqr)〉/(4πac) for the same systems of
Fig. 10 with the same labels used. That is Ũ(pqr) is Eq. (18)
divided by g, leaving us with an integral essentially similar
to Eq. (20). One can see that Ũ(000) decreases with increasing
ac, thus indicating indirectly a decline in the occupancy of the
trap center. By closely inspecting the rest of the (pqr), Ũ(00−1)

remains almost constant with changing ac, and a slight initial
rise is observed for Ũ(011) and Ũ(111). Thus, for the trap center,
a rise in ac overwhelms a decline in Ũ(pqr) given by Eq. (18), in
other words, a drop in an indirect measure for the occupancy.
Further, one notes that 〈U(000)〉 at ac = 0.3, k = 1.2π is smaller
than at ac = 0.3, k = 1.0π , because there are fewer particles
at k = 1.2π than k = 1.0π . This can be seen in Fig. 16 below
for the same latter systems.

D. Boson-optical lattice overlap

In this subsection, we evaluate 〈Iboson−OL〉 [Eq. (17)] which
measures the overlap of all the single-particle densities in the
wells with the periodic optical lattice potential. In essence, it
measures also the total tunneling amplitude of the particles into
the optical lattice potential barriers. Figs. 13 and 14 display
〈Iboson−OL〉 vs. ac for the systems of Figs. 3 and 4, respectively
and using the same labels. One can see that 〈Iboson−OL〉 is
practically invariant for N = 8, but the system with N = 40
reveals a slightly stronger response to changes in ac. For
example for N = 8 and k = π , the change in 〈Iboson−OL〉

VPI Ũ(111)

VMC Ũ(111)

VPI Ũ(011)

VMC Ũ(011)

VPI Ũ(00−1)

VMC Ũ(00−1)

VPI Ũ(000)

VMC Ũ(000)

k = π

V0 = 10

N = 8

ac

U
(p
qr

)
/(

4π
a
c)

0.30.250.20.150.10.050

0.08

0.06

0.04

0.02

0

FIG. 12. As in Fig. 10; but for 〈U(pqr)〉/(4πac) versus ac. Here
Ũ(pqr) = 〈U(pqr)〉/(4πac). The 〈U(pqr)〉 and V0 are in units of h̄ωho,
and ac is in units of aho.

VMC k = 1.4π
VMC k = 1.2π
VMC k = π N = 8, V0 = 10
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FIG. 13. VMC Boson-OL overlap integral [Eq. (17)] vs the hard-
sphere diameter ac for the systems of Fig. 3. The ac is in units of aho,
k is in units of a−1

ho , and V0 and 〈Iboson−OL〉 are in units of h̄ωho.

from ac = 0.02 to 0.3 is only by −1.45%. The other changes
for N = 8 are of the same order of magnitude. This in turn
indicates, that the width of the wave functions in each well for
these systems is practically invariant with the rise in repulsion.
This may come as a surprise, since it is known [23,24] that at
very large HS diameters such as the ones used here, the wave
function ought to become very broad indeed. It seems that the
localization effect of the optical lattice potential overwhelms
the repulsive forces tending to broaden the wave function in
each well. One further observes that 〈Iboson−OL〉 increases with
k in agreement with the results of Figs. 3 and 4, where Ioverlap

rises with increasing k.
Further, we note that in Fig. 14, 〈Iboson−OL〉 rises notably

with ac indicating a rise in the total tunneling amplitude into
the optical potential barriers. We were unable to obtain values
of 〈Iboson−OL〉 for k = 1.2π beyond ac = 0.18 as we could
not find VMC energy minima for these systems. We must
emphasize that the overlap of the bosons with the optical
lattice potential is a different measure than Ioverlap, which
measures the overlap of two wave functions in neighboring
wells. Further, note that since in Fig. 4 Ioverlap decreases with
increasing ac for k = 1.2π , the rise of 〈Iboson−OL〉 indicates
that the tunneling amplitude between neighboring wells away
from the center of the trap may be rising with increasing
ac, because 〈Iboson−OL〉 is a sum over all the single-particle
densities overlapping with Vopt(r).

VMC k = 1.2π
VMC k = π N = 40, V0 = 20

ac

I b
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0.30.250.20.150.10.050

28

26

24
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18

16

FIG. 14. As in Fig. 13; but for the systems of Fig. 4. The ac is in
units of aho, k is in units of a−1

ho , and V0 and 〈Iboson−OL〉 are in units of
h̄ωho.
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FIG. 15. (Color online) Average occupancy 〈N(pqr)〉 vs. the hard-
sphere diameter ac at the four lattice sites (pqr) indicated, which
are representative of the whole optical lattice. The system is the HS
Bose gas of Fig. 3. Solid and open diamonds: VMC and VPI results
for k = 1.4π , respectively. Solid and open triangles: likewise but
for k = 1.2π . From top to bottom frame: R13 ≡ (000) is the center,
R12 ≡ (00 −1) the first, R17 ≡ (011) the second, and R26 ≡ (111) the
third nearest neighbor to the center, respectively. Site indices n are
according to Fig. 8. The ac is in units of aho, k is in units of a−1

ho , and
V0 is in units of h̄ωho.

E. Occupancy of lattice sites

Figure 15 displays the average occupancy of four lattice
sites 〈N(pqr)〉 for systems of Fig. 3: (pqr) ≡ (000), (00 −1),
(011), and (111). Each frame is labeled by the corresponding
lattice site. The solid and open diamonds display VMC and
VPI results for k = 1.4π , whereas the solid and open triangles
display them for k = 1.2π , respectively. The VMC results
have been obtained by Eq. (20), whereas the VPI results from

VPI k = 1.2π
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N
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00
)
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0.70
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FIG. 16. (Color online) As in Fig. 15 but for 〈N(000)〉 at k = 1.0π

compared with k = 1.2π . ac is in units of aho, k is in units of a−1
ho ,

and V0 is in units of h̄ωho.

simple counting of the bosons in cubic bins. In frames (000)
and (00 −1), the occupancy decreases with ac, whereas in
frames (011) and (111) it rises. The VMC and VPI results
almost match for (000) and (00 −1) and are close to each
other for (011) and (111). There is good agreement between
the occupancies calculated by Eq. (20) and those obtained by
counting. This indicates that the single-particle wave function
in Eq. (6) is suitable to describe the bosons at each lattice site.

Figure 16 displays 〈N(pqr)〉 as in Fig. 15 but for VPI
〈N(000)〉 at k = 1.0π compared with k = 1.2π . Again, 〈N(pqr)〉
decreases with increasing ac.

F. Correlations

The VPI pair correlation function g(r) for the systems of
N = 8, V0 = 10, k = π , and various ac in the range 0.02 �
ac � 0.30 are displayed in Fig. 17. It is observed that the
correlations are strongest for ac = 0.02 (crosses) and gradually
weaken as ac is increased up to 0.3 (triangles). The peak in
g(r) is largest for smallest ac as the particles are able to cluster
around each other in the deepest part of the well when ac is
small [52]. When ac rises, they are driven to larger r values.
This is because the Jastrow function, which determines the
smallest distance the bosons are allowed to approach each
other, starts from zero at a larger r as ac rises thus increasing
the closest distance of approach. Further, g(r) is like a “spring”
whose maximum compression is determined by ac.

0.30
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ac = 0.02
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V0 = 10N = 8,VPI

r

g
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)
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0.04
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FIG. 17. VPI pair correlation function g(r) for the indicated ac.
The system is the HS Bose gas of Fig. 3 at k = π . The r and ac are
in units of aho, k is in units of a−1

ho , and V0 is in units of h̄ωho. g(r) is
in units of a−3

ho .
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FIG. 18. Average energy per particle 〈E〉/N vs. ac for the HS
Bose gas systems of Fig. 3 at the indicated values of k. Solid and
open diamonds: VMC and VPI results for k = 1.4π . Solid and open
triangles: likewise, but for k = 1.2π , and solid and open circles:
k = π . The 〈E〉 and V0 are in units of h̄ωho, k is in units of a−1

ho , and
ac is in units of aho.

G. Energy

The average Monte Carlo (MC) energies per particle 〈E〉/N
as functions of ac for the systems of Figs. 3 and 4, are displayed
in Figs. 18 and 19, respectively. Additionally, the energies for
a system of N = 2 and V0 = 2 are displayed in Fig. 20 as
well. The same labels are used as in Fig. 5. [Solid (open)
diamonds: VMC (VPI) results for k = 1.4π ; triangles (as
before): k = 1.2π ; and circles: π , respectively.] We note that,
for most of the systems considered, 〈E〉/N changes almost
linearly within the given range of ac and at a much slower
rate than HS Bose gases in pure harmonic traps [23,24]. For
example, for N = 2 with k = π , the VPI 〈E〉/N rises only by
�EV PI /N ∼ +2.98% from ac = 0.02 to ac = 0.3, despite the
fact that there is a very large change in ac (by a factor of 14!).
Similarly for N = 8 and k = π , �EV PI /N is ∼ + 4.48%.
However, �EV PI /N for k = 1.4π is more pronounced, being
∼ + 6.26%. The corresponding VMC results are as follows:
for N = 2 with k = π , �EV MC/N ∼ +4.48%, for N = 8
with k = π , �EV MC/N ∼ +5.20%, and for N = 8 with
k = 1.4π , �EV MC/N ∼ +12.37%, respectively. For N = 40,
�E/N changes at a much faster rate than for a lower N .
Further, the energy 〈EV MC〉/N rises with increasing k.
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VMC k = π N = 40, V0 = 20

ac
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0.30.250.20.150.10.050
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32

30

28

26

24

22

FIG. 19. As in Fig. 18 but for the HS Bose gases of Fig. 4. The
〈E〉 and V0 are in units of h̄ωho, k is in units of a−1

ho , and ac is in units
of aho.
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FIG. 20. As in Fig. 18 but for N = 2, V0 = 2. ac is in units of aho.
The 〈E〉 and V0 are in units of h̄ωho.

H. Optical density

In this section, the integrated VPI OD 〈n2D(x,y)〉 for the
previous systems is displayed at different ac. The goal is to
explore the effects of variations in the interactions on the OD
profiles and on the tunneling amplitude. Particularly we show
visually that, for a small number of particles, the width of the
wave function in each well does not broaden with an increase
in ac, even up to order 0.1, and that practically the overlap
between the wave functions does not change either.

Figure 21 displays the integrated VPI OD for N = 2,
V0 = 2, and k = π . From the top to bottom frames, ac = 0.02,
0.14, and 0.30, respectively. As expected, the amplitude of the
density is maximal at the center of the trap and lowest for the
lattice sites near the edges of the trap. Further, the tunneling of
the system into the potential barrier of the external harmonic
trap is suppressed due to the steep rise of this barrier as one
goes away from the center of the trap. Since the optical-lattice
barrier height is very shallow, the wave function of the system
is spread over the whole lattice, indicating the dominance of
the tunneling process [1] over the localization effects of the
optical lattice potential wells.

Figure 22 displays 1D density slices of Fig. 21 along the
x axis and, additionally, three functions of the form (11)
fitted to this density profile as in Fig. 2 previously. The fits
reveal the extent of the overlap between the wave functions
in neighboring wells. It is observed that this overlap does not
change with a rise in ac. The left and right fits are much
broader than the central function and all three fitting functions
have almost the same amplitude. In fact, the overlap here is
between three wave functions as the left and right fits are able
to spread over several trap lengths.

Figure 23 is the same as Fig. 21 but for N = 8 and V0 = 10.
Here, the bosons are more localized at the lattice sites, and the
tunneling process is less dominant than the localization effects
of the optical lattice. Again, the effects of the external trap
are manifested: the density diminishes toward the edges of
the trap. Figure 24 displays again the 1D slices of Fig. 23
along the x axis as in Fig. 22. Here, the overlap is much
less pronounced than in Fig. 22, and the amplitude of the
central peak is larger than the peaks at the edges. The left
and right peaks do not overlap as in Fig. 22. It seems that
a slight increase in the number of particles has a profound
effect on the density profiles in that it changes the ratio of the
amplitude of the central density to that of the density at the
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FIG. 21. (Color online) Integrated VPI OD for the HS Bose gas
system of N = 2, V0 = 2, and k = π , at three values of ac in a
CHOCL of 3 × 3 × 3 lattice sites. From top to bottom frames: ac =
0.02, 0.14, and 0.30, respectively. The x,y, and ac are in units of aho

and V0 is in units of h̄ωho. 〈n2D(x,y)〉 is in units of a−2
ho .

trap edges. Further, the width of the densities at the edges of
the trap for N = 8 has dropped by almost 2 trap lengths as
compared to the case for N = 2. Nevertheless, there is still
overlap between the wave functions in the neighboring wells
even at high repulsion. For N = 8, the amplitude of the central
peak declines with increasing ac. The change in the height
of the central peak as one increases ac from 0.02 to 0.14 is
∼33.3%. Remarkably, even with strongly repulsive bosons,
the density of the system in each well largely peaks at the
potential minimum of each well instead of being broader and
more evenly distributed around each lattice site as in Fig. 21.

The latter situation does not change very much for a larger
number of particles. Figure 25 displays the integrated VMC
OD for the system of N = 40, V0 = 20, and k = 1.2π and
Fig. 26 its density slices, as in the latter figures for the OD.
Again, the peaks in each well do not broaden very much with
a rise in ac. The central peak loses amplitude in favor of a
rise in the amplitude of the peaks at the edges. On closely
inspecting the area of the overlap between neighboring peaks,
one can depict a small decline in the tunneling amplitude of
the system as ac is increased. In Figs. 24 and 26, the positions
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FIG. 22. Integrated one-dimensional (1D) OD slices n1D(x) of
Fig. 21 along the x axis. The same legends are used as in Fig. 2,
except for VPI data. The x and ac are in units of aho, k is in units of
a−1

ho , and V0 is in units of h̄ωho. The VPI 1D OD is in units of a−1
ho .

of the left and right peak maxima shift slightly to the left and
right, respectively, as ac is increased.

IV. EFFECT OF OPTICAL-LATTICE BARRIER HEIGHT
ON TUNNELING

Although our chief goal was to fix V0 and vary ac only,
we nevertheless divert a little and explore the evolution of
a HS Bose gas in a CHOCL by changing V0 and fixing
ac. The goal is to compare between the roles of V0 and
ac (previously) in determining the overlap between wave
functions in neighboring wells in the presence of an external
harmonic trap.

Figure 27 displays the evolution of the integrated OD with
changing V0 (map view) for a system of N = 8 particles, k =
π , and fixed HS diameter ac = 0.14. From top to bottom: V0 =
1, 2, 6, and 10, respectively. As V0 is increased, the overlap
of the wave functions in neighboring wells drops substantially
and the change is gradual. Figure 28 displays, similarly to
Figs. 22 and 24, again the density slices of Fig. 27 along the x

axis, where one can clearly see how the overlap, and therefore
the tunneling amplitude, drops. We anticipate then, that as V0

is increased further, the tunneling will drop substantially, and
may even lead to a MI state. Note, however, that the amplitude
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FIG. 23. (Color online) As in Fig. 21 but for N = 8 and V0 = 10.
The x,y, and ac are in units of aho and V0 is in units of h̄ωho. 〈n2D(x,y)〉
is in units of a−2

ho .

of the central peak rises with increasing V0. Compared to the
previous figures, then, V0 has a much more profound effect in
changing the tunneling amplitude than ac.

V. DISCUSSION AND CONCLUSION

In summary, we have investigated the effects of strongly
repulsive interactions on the tunneling amplitude of HS bosons
confined in a simple cubic optical lattice plus an external,
tight, spherical harmonic trap. The tunneling amplitude was
measured in two ways: (i) by the overlap integral of the wave
functions in neighboring wells and (ii) by an exchange integral
〈n|H |n + 1〉 between two neighboring wells n and n + 1.
The external harmonic trap was introduced in order to cause
an inhomogeneiety in the density distribution of the trapped
system.

It was found that for small N , the tunneling amplitude
practically shows no change with increasing the boson-boson
repulsion at fixed lattice spacing d = π/k. This is mainly
because the width of each localized wave function does not
broaden with a rise in the repulsive forces. The tunneling
amplitude, however, rises by reduction of d at fixed ac. Even
at very large repulsion, tunneling is still present in the system
and does not vanish completely. Further, the Wannier function
used in our setup is sufficiently delocalized that it would seem
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FIG. 24. As in Fig. 22 but for N = 8 and V0 = 10. The x and ac

are in units of aho, k is in units of a−1
ho and V0 in units of h̄ωho. The

VPI 1D OD is in units of a−1
ho .

most likely to describe a SF state. We prove this further in
subsection V D below.

The energies change only weakly with increasing ac for
N = 2, but a more pronounced change is observed for N = 8
and is much larger for N = 40. The occupancy of the central
and first nearest neighbor sites drops with increasing ac, and
rises at the second and third nearest-neighbor sites.

A. Occupancy and onsite interaction energies

Although the occupancy of particles in Fig. 15 at sites (000)
and (00 −1) drops with increasing ac causing a drop in the
density at the central lattice site, the corresponding 〈U(000)〉
and 〈U(00−1)〉 still rise. Thus the effect of increasing g via ac

on 〈U(pqr)〉 overwhelms that of the drop in the occupancy at
each lattice site. The net result is that 〈U(pqr)〉 increases with
increasing g. Further, the occupancy of the lattice sites plays a
crucial role in determining the relative magnitudes of 〈U(pqr)〉.
Since (000) for k = 1.2π has the highest occupancy at all ac,
in Fig. 11 it has also the highest onsite repulsion. A similar
conclusion can be made about Fig. 10 for k = π . Then with
decreasing occupancy, the onsite repulsion decreases in the
order U(000), U(00−1), U(011), and U(111) at all ac. In Fig. 15, one
can see also that for k = 1.2π (111) has the lowest occupancy.
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FIG. 25. (Color online) As in Fig. 21 but (using VMC) for N =
40, V0 = 20, and k = 1.2π . The x,y, and ac are in units of aho and
V0 is in units of h̄ωho. 〈n2D(x,y)〉 is in units of a−2

ho .

In equilibrium, one could assume that there are as many
particles tunneling into a lattice site as out which preserves the
occupancy at each lattice site in equilibrium [52]. When ac is
changed, the particles relocate themselves in order to reach a
new equilibrium configuration. If ac is increased, particles are
pushed out of the central site and occupy others until a new
equilibrium configuration is reached again. Due to the external
trap they are not able to tunnel further away from the edges of
the trap. Further, note it is possible that during the equilibration
process some particles, having tunneled from the center of the
trap to the first neighbors, continue tunneling to the second and
third. In fact, it would be interesting to know how the particles’
motion is channelled along the sites of a larger simple cubic
optical lattice, as the repulsion between the bosons is increased.
Figure 15 displays noninteger occupancies of the lattice sites.
We do not get integer occupancy because in MC one has only
a probability of finding particles, particularly in the Wannier
form of a single-particle wave function. Overall, then, the
particles are fragmented [38].

B. Optical density and tunneling

As we have seen in Fig. 2 and Figs. 21–26, as much as
the repulsion was increased, the overlap between neighboring
wells did not change significantly, even at large N . But the
change in the overlap is more pronounced if one increases
V0 while keeping ac fixed. This was the situation displayed
in Figs. 27 and 28. We conclude, then, that tunneling can
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FIG. 26. As in Fig. 22 but (using VMC) for N = 40, V0 = 20,
and k = 1.2π . The x and ac are in units of aho, k is in units of a−1
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and V0 in units of h̄ωho. The VMC 1D OD is in units of a−1
ho .

be reduced more effectively by increasing V0 than the HS
repulsion between the bosons, ac.

Similarly to our findings in subsection III H, Greiner et al.
[1] showed, by applying the Bose-Hubbard (BH) model to
a 3D optical lattice, that if the tunneling dominates the BH
Hamiltonian, the single-particle wave functions are spread
over the whole lattice, and phase coherence existing between
the lattice sites forms a SF. On the other hand, if the atom-
atom interactions dominate, the single-particle wave functions
become localized at their lattice sites. Even in the highly
repulsive regime, tunneling is still present.

In Fig. 27, if one keeps increasing V0, we anticipate that the
tunneling amplitude will drop much further.

C. The role of the lattice spacing d = π/k

In Figs. 3 and 4 the increase in k increases the tunneling
amplitude. Increasing k causes the first nearest-neighbor lattice
sites to approach the center of the trap due to a reduction in
the lattice spacing d = π/k. The total volume of the external
harmonic trap, however, does not change as the reader might
think since the trapping frequency is kept fixed. As a result,
the maximal heights of the potential barriers, resulting from
the superposition of the optical lattice potential on an external
harmonic potential, decline as the positions of the potential
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FIG. 27. (Color online) Map view of integrated VPI OD for
various optical-lattice barrier heights V0. The system is a HS Bose
gas of N = 8, fixed ac = 0.14, and k = 1.0π which is confined in a
CHOCL of 3 × 3 × 3 lattice sites. From top to bottom: V0 = 1, 2, 6,
and 10 in units of h̄ωho. The x,y, and ac are in units of aho and k is in
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maxima approach the trap center. Consider hence the following
argument in 1D. If r0 is the distance of a potential maximum
from the center of the trap, then its maximum height is

V (r0) = V0 sin2(kr0) + 1
2 r2

0 , (25)

where in this case sin(kr0) = 1. Hence, increasing k causes r0

to decrease and thus V (r0). The latter fact allows a rise in the
tunneling rate between two neighboring lattice sites. However,
note that this scenario is specific to this type of potential which
is a superposition including an external spherically symmetric
harmonic trap. One may not observe this phenomenon if the
external harmonic trap is absent.

right fit
central fit

left fit
VPI data

f(x)

k = 1.0π
ac = 0.14
V0 = 1
N = 8

1.0

0.8

0.6

0.4

0.2

V0 = 21.0

0.8

0.6

0.4

0.2

In
te

gr
at

ed
V

P
I

1D
O

D

V0 = 61.0

0..8

0.6

0.4

0.2

V0 = 10

x
1.510.50−0.5−1−1.5

1.0

0.8

0.6

0.4

0.2

FIG. 28. Density slices of Fig. 27 along the x axis. The legends
are as in Fig. 22. The x and ac are in units of aho, k is in units of a−1
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D. The effects of the external harmonic trap

In order to demonstrate that the external HO trap indeed
prevents the wave functions in each well from broadening
with increasing ac, we performed a numerical solution to
the time-dependent GPE in 1D using the NDSolve utility in
MATHEMATICA. The goal was to trace the evolution of the
width of the wave function in each well. The time-dependent
Gross-Pitaevskii equation (TDGPE) in units of the trap reads:

i
ωho

∂ψ

∂t
= −1

2

∂2

∂x2
ψ + [Vho(x) + Vopt(x)]ψ + g1D|ψ |2ψ,

(26)

where ψ ≡ ψ(x,t), Vho(x) = 1
2x2, and Vopt(x) =

V0[sin(kx)]2 are the HO and OL potentials in 1D, respectively,
and g1D = 2ac [51] is the 1D interaction parameter. Two
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FIG. 29. (Color online) Densities |ψ |2 of time-evolving 1D HS
Bose gases in an optical lattice plus external harmonic trap at ωhot =
10 for different HS diameters. Here V0 = 10 and k = π . Thick black
line: ac = 0.02; thin orange line: ac = 0.1; dashed gray line: ac =
0.3. The densities were obtained from a numerical solution of the
time-dependent Gross-Pitaevskii equation (26) using MATHEMATICA.
The x and ac are in units of the trap, whereas |ψ |2 is in units of a−1

ho .

cases are examined: the first is for different HS diameters ac;
the second is for two HO traps of different strength using the
same ac. Figure 29 displays the first case, where the density
|ψ(x,t)|2 at ωhot = 10 is shown for three ac, ranging from
the intermediate to the strongly interacting regime. The value
of ωhot was chosen arbitrarily larger than the time at which
the TDGPE has evolved to the ground-state solution, beyond
which it stopped changing with time. One can see that the
wave functions in each well do not broaden significantly in the
presence of an external HO trap. The two peaks, immediately
next to the central one near x ∼ ±1, shift somewhat away
from the center of the trap as ac is increased. In contrast to
the three-dimensional densities of the present work, some
more structure is revealed at the edges of the trap signified by
small additional peaks around x = ±2. The wave functions
obtained here from MATHEMATICA look remarkably similar to
the ones generated from our trial wave function using VMC
and VPI. A GPE, however, can only describe a BEC and
therefore we conclude that our systems are SF even in the
strongly interacting regime, basing on the similarities above.
This strengthens our previous argument that perhaps our wave
function most likely describes an SF. An MI state, on the
other hand, cannot be described by a GPE. For the second
case, Fig. 30 displays |ψ(x,t |2 as in Fig. 29 but for ac = 0.1
only and two traps: Vho(x) = (1/2)x2 (solid black line) and

3 2 1 0 1 2 3
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1

2

3

4

5

x

ψ
2

Vho x 1 20 x2

Vho x 1 2 x2

FIG. 30. (Color online) As in Fig. 29 but for ac = 0.1 only and
two different HO traps. Solid black line: Vho(x) = 1

2 x2; dashed blue
line: (weaker trap) Vho(x) = 1

20 x2. The Vho(x) is in units of h̄ωho and
x is in units of aho. |ψ |2 is in units of a−1

ho .

Vho(x) = (1/20)x2 (dashed blue line). For the latter trap, the
wave functions in each well are broader than for the former
stronger trap and the system begins to reach out to larger trap
lengths. Hence, it looks like an external HO trap does indeed
prevent our wave functions from broadening significantly in
each well. If no external confinement were used, the bosons
would be free to move everywhere within the optical lattice.

E. Energy

The rise of 〈E〉/N with k in Figs. 18, 19, and 20 could
be attributed to Heisenberg’s uncertainty principle. A decline
in the available volume the bosons can occupy in the optical
lattice wells reduces the uncertainty in their positions. Thus,
the uncertainty in their momenta increases and as a result their
kinetic energy (quantum pressure) rises. Further, it is expected
that the density of the bosons in each well rises as they get
squeezed together by a reduction in d. It can also be seen
that a change in k has a more profound effect on E than a
change in ac. Therefore, the lattice dimension seems to play
a profound role in determining the SF properties of bosons in
optical lattices in that it can substantially control the tunneling
amplitude between neighboring wells.

F. Other work

Similarly to Bach and Rzȧzewski [53], we used Gaussians
of the form exp[−α(x − xn)2] but weighted by a polynomial
as in Eq. (6). These authors determined that the mobility
of the atoms, as described by the hopping parameter t and
their interactions U , is controlled by the optical-lattice barrier
height. If this barrier is shallow, the atoms become delocalized
over the whole lattice as it almost occurs in Fig. 21.

Li et al. [6] investigated the SF to MI transitions in atomic
BECs confined in optical lattices by using the BH model. Using
an isotropic cubic lattice, they have chosen a variational trial
function of the form g(u) = (1 + αu2) exp(−βu2) (a Wannier
function); our single-particle wave function is the same as
theirs, except for an additional term ∝ u4 [Eq. (6)]. They
addressed the possibility of observing SF to MI transitions
for an average lattice-site occupancy larger than one. It was
noted that by increasing the repulsion between the lattice
bosons, their wave function in each well broadens, thus
enhancing J between neighboring lattice sites. In contrast, our
atomic clouds did not expand due to the presence of external
confinement. Li et al. evaluated the on-site interaction energy
by variationally minimizing the energy with respect to the
parameters α and β.

Paredes [11] studied the dynamics of an ultracold inter-
acting Bose gas confined in a 1D potential composed of a
finite number of wells. His goal was to investigate Josephson
tunneling and argued that only a finite number of wells is
needed for this purpose. In essence, we are following a similar
approach in that we use only 27 lattice sites but in 3D. Indeed,
the investigation of tunneling in a finite number of wells could
help us advance forward the design of Josephson tunneling
junctions.
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