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The quantum regime of highly doubly excited states in two-electron atoms has, so far, been largely inaccessible
both to numerical methods as well as to experiments. Recent advances in semiclassical closed orbit theory in
combination with a quantum mapping approach have shown a new way into this region of high dynamical
complexity. In particular, new scaling laws near the double-ionization threshold as well as the dominant
semiclassical contributions to the total photoionization cross section can be identified. We will present this
new approach here in all its detail. It is based on representing the photoionization cross section in terms of
quantum maps. These quantum maps or quantum propagators are used as a starting point for developing an
efficient numerical method for calculating cross sections. Furthermore, by writing the quantum operators in
semiclassical approximations, it is possible to interpret the quantum results in terms of classical triple collision
orbits and to derive threshold laws near the three-particle breakup point. Semiclassical and numerical quantum
results show excellent agreement for a model system, namely collinear helium.
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I. INTRODUCTION

Three-body Coulomb systems, in general, and two-electron
atoms, in particular, serve as a test bed for our understanding of
many-particle quantum dynamics and form an integral part of
modern atomic physics. Enormous progress was made toward
giving a full quantum description of two-electron atoms over
the whole energy range. The bound-state spectrum and the
structure of low-lying doubly excited resonances is now well
understood, see, for example, Ref. [1] for an overview. Like-
wise, for energies above the three-particle breakup threshold,
very efficient numerical methods are now available such as
exterior complex scaling [2,3], (see also Ref. [4]), convergent
closed coupling methods [5,6], or advanced hyperspherical
R-matrix techniques using semiclassical outgoing waves [7,8].
This makes it possible to give detailed numerical predictions
for absolute cross sections from energies above the double-
ionization threshold ranging from near the threshold all the
way to the high-energy end of the double-ionization con-
tinuum. In particular, the strong electron-electron correlation
effects near the three-particle breakup threshold can now be
reproduced in detail. For example, Wannier’s threshold law [9]
has recently been confirmed numerically, both for the total
cross section [10] as well as for partial cross sections [11]
and experimental results near the threshold [12–14] are now
in good agreement with theory in all details. Given these
successes, the interest in the double-ionization regime has
shifted toward the description of two-photon double ionization,
see, for example, Ref. [15], as well as multiphoton double
ionization in intense and short laser pulses, see Ref. [16].

There is, however, still a considerable gap in our knowledge
of the quantum dynamics of two-electron atoms in the
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energy range of highly doubly excited resonances below the
double-ionization threshold. The regime of low-lying doubly
excited states is governed by approximate quantum numbers,
which can be understood in terms of group-theoretical or
semiclassical arguments, see Ref. [1]. These classification
schemes break down when approaching the double-ionization
threshold from below and one enters an energy region that has
remained largely unexplored until today.

Recent experimental progress in detector technology and
synchrotron sources has made it possible to get fully resolved
single-ionization spectra up to N ≈ 15 both for partial [17–20]
and total [21,22] photoionization cross sections. Here, the
quantum number N refers to the hydrogen-like state of
the remaining ion with energy IN = − Z2

2N2 and Z is the
charge of the nucleus. Numerical efforts for calculating the
photoionization cross section have advanced slowly [23]
reaching now up to N ≈ 20 [22,24] for total cross sections
using complex rotation techniques and N = 9 [19,25,26] for
partial cross sections based on R-matrix methods; progress is
hampered here by the fast increase in basis size necessary to
achieve convergence for increasing N values. The numerical
results in Refs. [22–24] clearly show a selective breakdown
of labeling individual resonances in terms of approximate
quantum numbers; many important questions remain open,
however, such as whether approximate symmetries persist
when approaching the double-ionization threshold from below.

The rich resonance spectrum for energies E < 0 is intri-
cately linked to the complexity of the underlying classical
dynamics of this three-body Coulomb problem. The classical
dynamics are mostly chaotic in this energy regime, which is
reflected in the statistical properties of the resonance spectrum
[21,27]. Any regular structure of the quantum spectrum, where
it exists, must have a counterpart in the corresponding classical
dynamics—but again, only little is known about the phase-
space structure of this many-body problem. The dynamics
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in various two-dimensional subspaces were studied in detail,
see Ref. [1]; a global description, which can, for example,
explain the existence of approximate quantum numbers from
a semiclassical point of view is, however, still in its infancy
[28,29]. The chaotic part of the classical dynamics, on the
other hand, is dominated by the complex folding patterns of
the stable and unstable manifolds of the triple collision, which
was analyzed in detail in Refs. [29–32].

A semiclassical description of photoionization cross sec-
tions for two-electron atoms taking into account the nature
of the triple collision was worked out in Ref. [33] for total
cross sections and in Ref. [20] for partial cross sections. In
particular, it can be demonstrated that the fluctuations in the
total and partial cross sections due to overlapping resonances
decays algebraically with an exponent determined by the
triple collision singularity different from Wannier’s exponent.
Furthermore, the fluctuations can be described in terms of
contributions from closed orbits starting and ending in the
triple collision—the so-called closed triple collision orbits
(CTCO).

The present article provides a detailed derivation of the
results given in Ref. [33]. The technique of quantum maps is
introduced starting from first principles and the semiclassical
treatment is presented in all detail including a derivation of the
modified exponent. In addition, we will introduce a numerical
technique developed by Mrugała and co-workers [34–36]
for calculating photoionization cross sections and present
improved numerical calculations of total cross section and
scattering wave solutions.

The article is organized as follows: In sec. II, we introduce
the half-space scattering problems for an inner and outer
region around the core and describe the corresponding Green
functions in terms of quantum maps. In sec. III, we present a
variant of the smooth variable discretization technique (SVD
L propagation) and demonstrate the connection to the quantum
mapping approach developed in sec. II. A semiclassical version
of the quantum map formalism is used in sec. IV to derive a
closed orbit formula for two-electron atoms taking into account
the singular behavior near the triple collision. It also forms the
basis for deriving the modified exponent. Numerical results for
a collinear version of the two-electron problem using the SVD
L-propagation methods are presented in sec. V and compared
with the semiclassical predictions.

II. PHOTOIONIZATION CROSS SECTION IN TERMS
OF QUANTUM MAPS

A. Introduction

We are interested in the photoionization signal for single-
electron ionization near the double-ionization threshold. This
part of the photoionization cross section is dominated by an
increasing number of Rydberg resonances series, which mix
more and more strongly as one approaches the threshold. Large
parts of the spectrum are still “terra incognito” both from a
numerical or analytical as well as from an experimental point
of view [1]. We will develop a theoretical framework here,
which allows us to give new insight into this energy regime
from a semiclassical point of view, as discussed in sec. IV and

also forms the building blocks for an efficient, new numerical
method as presented in sec. III.

The starting point is the photoionization cross section
written in the dipole approximation

σ (E) = 4π2

c
ω
∑
f

|〈�−
f (E)|D|φ0〉|2, (1)

where c is the speed of light, φ0 is the initial-state wave
function, D = π (r1 + r2) is the dipole operator with π , the
polarization of the incoming photon, and ri is the position
of electron i. The sum is over all open channels where
�−

f (E) denotes the corresponding final-state scattering wave
with incoming boundary conditions at energy E = E0 + ω

with ω the photon energy and E0 denotes the energy of the
initial state. Note that we work in the infinite nucleus mass
approximation, that is, the position of the nucleus is fixed
at the origin; furthermore, atomic units are used throughout
this article. Considerable effort was devoted to calculating the
final-state wave functions �f (both below and above the
three-particle breakup point [1,2,4,11,19,25,26]) in Eq. (1)
taking into account the full electron-electron correlation.
Below the double-ionization threshold, it is the large number
of open channels, the high density of resonance states near the
channel thresholds and strong interseries mixing (calling for
an increasingly finer energy resolution), which pose enormous
challenges for entering the threshold regime from below.

The cross section (1) can also be written in terms of
the retarded Green function G(E) of the full three-particle
problem, that is, [37,38]

σ (E) = −4π

c
ωIm〈Dφ0|G(E)|Dφ0〉. (2)

In the following, we will express the three-body Green function
in terms of local scattering matrices or quantum Poincaré maps,
which will form the basis of the semiclassical and numerical
calculations in Secs. III and IV. For three-body problems,
it is convenient to introduce the hyperradius R =

√
r2

1 + r2
2 ,

where ri denotes the distance of electron i from the origin; we
furthermore chose a surface of section � at a fixed hyperradius
R0. The main idea is to split the quantum problem into two
half-scattering problems and to match the quantum dynamics
at the dividing surface �. The quantum Hamiltonian of each
half-scattering problem has well-defined scattering channels
and associate scattering matrices. The Green function and the
cross section in Eq. (2) can then be written in terms of these
scattering matrices and the scattering solutions of the half-
space Hamiltonians. We present the treatment here for two-
electron atoms using hyperspherical coordinates, a general
description of the method can be found in Refs. [39,40]. The
surface � naturally leads to a partition of the configuration
space into physically distinct regions. In particular, quantum
contributions to Eq. (2) from the inner region R < R0 are
insensitive to the total energy. Contributions from the outer
region test the full scale of the classically allowed region of
size |E|−1 and will be responsible for the resonance structures
near the double-ionization threshold at E = 0.
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B. Hyperspherical coordinates

Writing the three-body Hamiltonian in hyperspherical
coordinates R,� = (α,r̂1,r̂2) with

R =
√

r2
1 + r2

2 , α = tan−1

(
r2

r1

)
, r̂i = ri

ri

, (3)

one obtains (
−1

2

∂2

∂R2
+ HR

)
	 = E	, (4)

with 	(R,�) = R5/2 sin(α) cos(α)�(r1,r2), where � denotes
a solution of the Schrödinger equation in Cartesian coordi-
nates. The adiabatic Hamiltonian HR with

HR = 1

2


2

R2
+ 1

R
V (�), (5)

depends parametrically on the hyperradius R with the “grand
angular momentum”—operator 
 defined as


2 =
(

− ∂2

∂α2
+ l21

cos2 α
+ l22

sin2 α

)
− 1

4
,

which is the angular momentum operator in six dimensions
[41,42]. Here, li denotes the three-dimensional (3D) angular
momentum operator for electron i and V (�)/R is the three-
body Coulomb potential written in hyperspherical coordinates
with

V (�) = − Z

cos α
− Z

sin α
+ 1√

1 − r̂1 · · · r̂2 sin 2α
. (6)

The adiabatic Hamiltonian (5) acts on the angle variables �

alone and has a discrete spectrum, that is,

HRψn(�;R) = Un(R)ψn(�;R), (7)

with eigenfunctions ψn and eigenvalues Un depending para-
metrically on R. This property is essential for the treatment
described in the following. Due to the reality of the potentials,
we can choose the ψn’s to be orthonormalized real functions
(which will be assumed from now on).

C. The half-space scattering problems

In the following, we will present a scattering formulation
of the Green function. This method was originally developed
in a semiclassical context by Bogomolny [43] and Doron and
Smilansky [44]; a formulation in terms of quantum operators or
quantum maps was given in Refs. [39,40]. We will present here
a derivation tailored to the calculation of the photoionization
cross section in two-electron atoms. A similar approach was
adopted in Refs. [33,45] differing, however, in the treatment
of closed channels.

First, we consider the half-scattering problem with Hamil-
tonian H0 defined as

H0 = −1

2

∂2

∂R2
+
{

HR for R < R0

HR0 for R > R0
, (8)

where the dividing surface � at hyperradius R = R0 is chosen
to be of the size of the initial-state wave function φ0. The
solutions of the corresponding Schrödinger equation at fixed
energy E can be written in the form of outgoing |	+

n 〉 and

incoming |	−
n 〉 scattering waves, which for R > R0 take on

the form

	+
n (R,�) = 1√

2π

[
1√
kn

ψn(�;R0)e−ikn(R−R0)

+
∑

l

sln

1√
kl

ψl(�;R0)eikl (R−R0)

]
, (9)

	−
n (R,�) = 1√

2π

[
1√
k∗
n

ψn(�;R0)eik∗
n(R−R0)

+
∑

l

s
†
ln

1√
k∗
l

ψl(�;R0)e−ik∗
l (R−R0)

]
. (10)

Here, kn = √
E − Un(R0) is the channel wave number and s

represents the scattering matrix for the half-scattering problem,
see Fig. 1. Note, that the sums in Eqs. (9) and (10) are
taken over both open [E � Un(R0)] and closed [E < Un(R0)]
channels, where the latter are characterized by an imaginary
wave number kn = iκn = i

√
Un(R0) − E. (The notion of an

“outgoing” or “incoming” closed channel is a bit obscure here
and is justified only by comparison with the corresponding
open channels). The wave functions correspond to energy-
normalized states. Note that we have

|�+〉 = |�−〉∗ = 〈�−|T , (11)

both for open and closed wave vector components |	n〉, which
follows from the symmetry of the Green function and the
scattering matrix for real potentials [39,40], that is,

GT
0 = G0, s = sT , (12)

where T denotes the transpose of an operator or matrix.
The retarded Green function G0 of the half-scattering

problem is defined as the solution of

(E − H0) G0 = δ(R − R′)δ(� − �′), (13)

with outgoing boundary conditions; that is, the Green function
can be written as a superposition of outgoing waves (with
respect to the coordinate R) for R → ∞. In particular, for
source points R′ < R0, one obtains for R > R0,

G0(R,�;R′,�′) = 1√
2π

∑
n

an

1√
kn

ψn(�;R0)eikn(R−R0),

(14)

G0 s r

Ψ

Ψ −

+

Ω

Σ

R R0

x

x′

q′

q

FIG. 1. (Color online) Schematic representation of the Green
function, Eq. (20) in terms of the local scattering operators s and
r and the local scattering solutions �±; note, q ≡ (r1,r2) here.
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with coefficients an = an(R′,�′) depending on the source
point (R′,�′). One can show, using Eq. (12) that the an’s are
given as

an(R′,�′) = −2πi	+
n (R′,�′), (15)

see Appendix A for details.
Defining an associate half-scattering problem with Hamil-

tonian H1

H1 = −1

2

∂2

∂R2
+
{

HR0 for R < R0

HR for R > R0
, (16)

one obtains scattering solutions equivalent to Eqs. (9) and
(10), which in turn define an outward scattering or reflection
matrix r. Its matrix elements rln express the fraction of a
wave solution passing through � from the region R < R0 with
channel number n and returning to � with channel number l

due to reflection in the outer interaction region R > R0.

D. The Green function

We can now formulate the full Green function (2) in terms of
the local scattering or reflection matrices s and r and the half-
scattering wave solutions |	±

n 〉 as defined in the last section.
The dividing surface � is chosen such that the initial wave
function φ0 entering the matrix element (2) is localized in the
region R < R0; we can thus focus on the behavior of the Green
function G(R,�;R′,�′) in the region R,R′ < R0. It has the
form

G(R,�;R′,�′) =
∑

n

c+
n 	+

n (R,�) + G0(R,�;R′,�′),

(17)

where G0 is the retarded Green function of the half-scattering
problem, Eq. (8), and the |	+

n 〉 are the scattering solutions
introduced in Eq. (9) continued into the region R < R0. The
coefficients c+

n depend on the source point (R′,�′) as well as
on the full, correlated three-particle dynamics for R > R0.

To determine the coefficients cn, we note that the outgoing
part of the wave solution (17) directly at the surface of section
� is given as

Gout(R0,�,R′,�′) = 1√
2π

∑
n

[
an

1√
kn

ψn(�;R0)

+
∑

l

1√
kl

ψl(�;R0)slnc
+
n

]
,

where the first term stems from the Green function G0 and the
second part is due to the outgoing part of the homogeneous
scattering solution 	+

n . Similarly, the incoming wave part at
� is given as

Gin(R0,�,R′,�′) = 1√
2π

∑
n

c+
n

1√
kn

ψn(�;R0).

To obtain a stationary solution, we must ensure that the part
of the outgoing wave solution Gout, which is reflected back to
the region R < R0 via the reflection matrix r coincides with
the incoming wave Gin. This leads to a consistency equation

for the coefficients of the form

c+ = rsc+ + ra,

or

c+ = (1 − rs)−1ra, (18)

where c+ and a denote the vectors of coefficients taken over all
channel numbers. Making use of Eq. (15), one finally obtains

G(R,�;R′,�′) = G0(R,�;R′,�′) − 2πi�+(R,�)

× [1 − rs]−1 r�+(R′,�′), (19)

or using the relation (11)

G(E) = G0(E) − 2πi|�+(E)〉 [1 − r(E)s(E)]−1

× r(E)〈�−(E)|. (20)

We may interpret the scattering matrices s, r as quantum
maps mapping wave functions from � back onto �, see
Fig. 1. Here, s takes care of wave solutions being reflected
in the interior region R < R0 whereas r describes waves
radiating out from � into the region R > R0 and returning
to �. Likewise, we may view 〈�−|, |�+〉 as quantum maps,
projecting wave functions from the interior onto the section
� as well as mapping boundary function from � into the
region R < R0, respectively. For a schematic view of the
transformations forming the Green function in Eq. (20), see
Fig. 1. The contributions from G0 may be considered as a
smooth background part.

E. The photoionization cross section

We make use of the general relation connecting the
imaginary part of the Green function to the open channel
scattering solutions, see Eqs. (1) and (2), that is,

ImG0 = −π
∑

n∈open

|	±
n 〉〈	±

n |,

where the summation is here only over all the open channels.
After setting

d = 〈�+|D|φ0〉 = 〈φ0|D|�−〉, (21)

where we use that both φ0 and D are real functions and
inserting Eq. (20) into Eq. (2), we obtain for the total
photoionization cross section

σ (E) = σ0 + σfl = 4π2

c
ω[d†

odo + 2Red†(1 − rs)−1rd∗].

(22)

Here, do denotes the components of d corresponding to open
channels. Note that Eq. (22) is an approximation in so far as
it neglects contributions from the initial wave function lying
outside R0. This contribution can be made arbitrarily small by
increasing R0.

One may identify the contribution d†
odo as a “smooth

background signal” σ0, whereas the information about res-
onances is (mostly) contained in σfl. This part gives rise to
a “fluctuating signal” in the regime of strongly overlapping
resonances, which will be discussed in sec. V C, see also Fig. 6.
Equation (22) is the main result of this section. We stress, that
both open and closed channels contribute to σfl; our formula
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(22) reproduces previously published results by Granger and
Greene [45] when neglecting the contributions from closed
channels, see Appendix B, but is more general otherwise.
The open channel formulation given explicitly for the first
time in Ref. [45] was used earlier in Refs. [46–49] to model
core scattering or quantum defect effects in a semiclassical
treatment. It was also the starting point of the semiclassical
analysis in Ref. [33], which uncovered the scaling laws in the
photoionization cross section of two-electron atoms discussed
in more detail in sec. IV.

III. NUMERICAL APPROACHES FOR HIGHLY EXCITED
STATES IN TWO-ELECTRON SYSTEMS

A. The generalized log-derivative propagator

The scattering matrices s and r in Eq. (22) can be obtained
by solving the Schrödinger equation (4) with Hamiltonians (8)
and (16), respectively. The wave function �(R,�) can be ex-
panded in the adiabatic basis consisting of the eigenfunctions
ψn(�;R) defined in Eq. (7), such as

	(R,�) =
∑

n

Fn(R)ψn(�;R); (23)

the sum over n is here again taken both over open and closed
channels. Substitution of this expansion into the Schrödinger
equation produces a set of coupled-channel equations [41](

d2

dR2
+ 2[E − Un(R)]

)
Fn(R)

+
∑
m

[
2Anm(R)

d

dR
+ Cnm(R)

]
Fm(R) = 0, (24)

where A and C are the nonadiabatic coupling matrices

Anm(R) = 〈ψn(�;R)| ∂

∂R
ψm(�;R)〉�, (25)

Cnm(R) = 〈ψn(�;R)| ∂2

∂R2
ψm(�;R)〉�, (26)

and 〈· · ·〉� denotes integration over �.
A typical problem in finding numerical solutions of

the coupled-channel equations is the instabilities introduced
through closed channels. As one propagates into the classically
forbidden regime, the radial functions F, where F(R) denotes
the column vector with components Fn(R), grow exponentially
for closed-channel components. These contributions soon
dominate the whole system of equations leading to numerical
instabilities. In the log-derivative method devised by Johnson
[50] the stability problem is eliminated by propagating a
log-derivative matrix directly rather than the wave function
and its derivative. However, the method is restricted to inelastic
scattering problems, that is, the calculation of reflection am-
plitudes. Introducing an invariant embedding type propagator,
Mrugała and Secrest [34] generalized the method making it
possible to also handle any reactive (transmission) amplitudes.
They defined a generalized log-derivative propagator, called L

propagator in what follows, in an interval [R′,R′′] in the form
of a 2M × 2M block matrix

L(R′,R′′) =
(
L(1)(R′,R′′) L(2)(R′,R′′)

L(3)(R′,R′′) L(4)(R′,R′′)

)
. (27)

It connects F, the solutions of Eq. (24), and its derivative F′ at
the start and end points of the propagation R′ and R′′, that is,(

F′(R′)

F′(R′′)

)
= L(R′,R′′)

(
F(R′)

F(R′′)

)
; (28)

here, M is the total number of channels included in the
calculation. Noting that

〈ψ(�;R)| ∂

∂R
	(R,�)〉� = F′(R) + A(R)F(R), (29)

it is more convenient to introduce [35]

L(R′,R′′) =
(

L(1)(R′,R′′) L(2)(R′,R′′)

L(3)(R′,R′′) L(4)(R′,R′′)

)
, (30)

where

L(1)(R′,R′′) = L(1)(R′,R′′) + A(R′), (31)

L(4)(R′,R′′) = L(4)(R′,R′′) + A(R′′). (32)

Equation (28) can now be rewritten as⎛
⎝ 〈ψ(�;R′)|∂	(R′,�)/∂R′〉�

〈ψ(�;R′′)|∂	(R′′,�)/∂R′′〉�

⎞
⎠ = L(R′,R′′)

(
F(R′)

F(R′′)

)
.

(33)

So far, we have not specified how to obtain L or L; we
will give details on the numerical procedure in Appendix C.
In the following, we will outline the connection between the
log-derivative matrix L and the scattering matrices r and s
entering the formula for the cross section, Eq. (22). The
boundary conditions for the the half-scattering problem related
to the Hamiltonian H1 in Eq. (16), which defines the local
scattering matrix r are

	n(R,�) = 1√
2π

[
1√
kn

ψn(�;R0)eikn(R−R0)

+
∑

l

1√
kl

ψl(�;R0)e−ikl (R−R0)rln

]
for R � R0,

(34)

with kn = √
E − Un(R0). In addition, we introduce a new

quantum operator t, which maps a solution from R = R0 to
R → ∞ with asymptotic form

	n(R,�) → 1√
2π

∑
l

1√
k∞
l

ψl(�;R)ei{k∞
l R+(Z−1) ln R/k∞

l }tln

as R → ∞, (35)

with k∞
n = √

E − Un(∞); the sum is here only over open
channels l at R → ∞. The procedure for evaluating the
local scattering matrix r consists of finding the propagator
L(R0,R∞) for sufficiently large R∞ for the outer Hamiltonian
system H1, Eq. (16). After substituting Eqs. (34) and (35) into
Eq. (33), we can obtain the matrices r and t such as
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(
r
t

)
=
(

L(1)(R0,R∞)g(R0) − g′(R0) L(2)(R0,R∞)fC(R∞)

L(3)(R0,R∞)g(R0) L(4)(R0,R∞)fC(R∞) − fC′
(R∞)

)−1 (
f′(R0) − L(1)(R0,R∞)f(R0)

−L(3)(R0,R∞)f(R0)

)
, (36)

where f, g, and fC are M × M diagonal matrices with diagonal
elements

fn(R) = 1√
kn

eikn(R−R0), gn(R) = 1√
kn

e−ikn(R−R0),

(37)
f C

n (R) = 1√
k∞
n

ei{k∞
n R+(Z−1) ln R/k∞

n }.

The solution relevant to the local scattering matrix s is �+,
which satisfies the boundary condition (9). By the definition
of the wave function 	 in Eq. (4), the regular solution �+

should satisfy an additional boundary condition, �+(0) = 0.
Thus we need only L(4)(0,R0) to obtain the wave function
and its derivative at R = R0. It is easily seen that the local
scattering matrix s can be obtained from L(4)(0,R0) such as

s = [f′(R0) − L(4)(0,R0)f(R0)]−1[L(4)(0,R0)g(R0) − g′(R0)].

(38)

This concludes our introductory remarks concerning log-
derivative propagators and their connection to local scattering
matrices of the half-scattering problems. Details on how to
calculate L will be given in Appendix C. In the remainder of
this section, we will discuss a transformation technique that
leads to an improved method for calculating the log-derivative
propagator having better stability properties.

B. The quasi adiabatic procedure

From a numerical point of view, it is easier to solve
the Schrödinger equation by using a diabatic basis set that
diagonalizes the kinetic energy operator rather than using
an adiabatic one which diagonalizes the potential energy. A
change from the adiabatic basis set ψ(�;R) to a diabatic
basis ψ R̄(�) ≡ ψ(�;R̄) can be performed by a transformation
T(R,R̄), which satisfies the differential equation [51][

I
d

dR
+ A(R)

]
T(R,R̄) = 0, (39)

with initial condition T(R̄,R̄) = I at an arbitrarily chosen point
R̄ such that

ψ R̄(�) = TT (R,R̄)ψ(�;R). (40)

Here I is the M × M identity matrix. Then the Schrödinger
equation for the transformed radial functions

FR̄(R) = TT (R,R̄)F(R), (41)

is written as

d2

dR2
FR̄(R) + wR̄(R)FR̄(R) = 0, (42)

where wR̄(R) is the coupling matrix

wR̄(R) = 2TT (R,R̄)[EI − U(R)]T(R,R̄), (43)

and U(R) is a diagonal matrix with entries given by the
eigenvalues Un(R) defined in Eq. (7). Using the L propagator
for these diabatically coupled equations(

F′
R̄

(R′)

F′
R̄

(R′′)

)
= LR̄(R′,R′′)

(
FR̄(R′)

FR̄(R′′)

)
, (44)

the propagator L(R′,R′′) in Eq. (33) can be expressed in the
form [35]

L(R′,R′′) =
(

T(R′,R̄) 0

0 T(R′′,R̄)

)
LR̄(R′,R′′)

×
(

TT (R′,R̄) 0

0 TT (R′′,R̄)

)
. (45)

An efficient algorithm for numerically calculating LR̄(R′,R′′)
was presented in Refs. [34,35] and will be explained in
Appendix C1. However, to obtain T, we still need to deal with
the differential equation (39), which contains the nonadiabatic
coupling matrix A.

C. The SVD generalized log-derivative method

The difficulties in explicitly calculating the nonadiabatic
coupling terms are well known [41,52,53]. They prevent the
coupled-channel equations (24) from being of practical use
beyond the adiabatic approximation, in which the nonadiabatic
couplings are neglected. The nonadiabatic couplings display
very sharp changes near narrowly avoided crossings. Accord-
ingly each radial function Fn(R) also changes rapidly follow-
ing the behavior of the nonadiabatic couplings. Tolstikhin and
co-workers [53] observed, however, that the wave function
	(R,�) varies slowly as a function of the adiabatic variable
R at those points. And this leads to the introduction of a novel
approach, the so-called smooth variable discretization (SVD).
The main assumption of the SVD is that for a given energy E

and a given, yet arbitrary radius R = R̄, there is a finite set of
adiabatic channel functions {ψn(�;R̄), n = 1, . . . , M}, which
can be regarded as a complete set not only at the radius R̄, but
also for a finite interval [R′,R′′] around R̄, that is,∑

l

〈ψn(�;R)|ψl(�;R̄)〉�〈ψl(�;R̄)|ψm(�;R)〉�

= δnmfor R ∈ [R′,R′′]. (46)

Combined with variational methods (such as the R-matrix
method and the discrete-variable representation) or direct
integration methods (such as the renormalized Numerov
method), the SVD approach was applied successfully to
several few-body problems, proving its efficiency and accuracy
and validating the underlying assumptions [53,54].
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In the SVD approximation (46), it can be easily seen that
the overlap matrix

Onm(R,R̄) = 〈ψn(�;R)|ψm(�;R̄)
〉
�

, (47)

is actually the solution of the differential equation (39). Thus
we can rewrite the relation (45) in the form

L(R′,R′′) =
(

O(R′,R̄) 0

0 O(R′′,R̄)

)
LR̄(R′,R′′)

×
(

OT (R′,R̄) 0

0 OT (R′′,R̄)

)
. (48)

Comparing Eq. (48) with Eq. (45), one observes that the
overlap matrix O replaces the transformation matrix T and
thus removes the first-derivative coupling matrix A from the
coupled equation (24). Difficulties in treating the differential
equation involving the nonadiabatic coupling matrix A(R) are
thus circumvented in the SVD approximation.

The size of the interval around a fixed R = R̄ in which
the SVD approximation is valid is generally much smaller
than the range over which the coupled-channel equations are
integrated. Thus the SVD L-propagation method (48) involves
two steps: (i) dividing the range of integration into small
sectors and carrying out the numerical computation of the
propagator for each sector and (ii) propagating the solution
from sector to sector thus accumulating the propagator for the
entire integration range [R′,R′′].

In using the relation (45) the entire range of integration
is also divided into small sectors and the diabatic basis set
for each sector is chosen at the midpoint of the sector.
Thus the above-mentioned two steps are carried out in
the L-propagation method as in the SVD L-propagation
method. This means that algorithms for computation of the L

propagator L(R′,R′′) based on the relation (48) can be easily
constructed by using the well-established algorithms [35,36]
based on the relation (45) with Eq. (39): One only needs to
replace the T’s with O’s throughout.

Details of the SVD-type algorithm for evaluating the
propagator L(R′,R′′) are given in Appendix C 1. Furthermore,
algorithms for the computation of the local scattering wave
function �+ and the initial bound state are given in the rest
of Appendix C; these are needed to evaluate the atomic dipole
vector d in Eq. (21).

Before giving the numerical results obtained using the log-
derivative method in Sec. V, we will discuss a semiclassical
treatment of the total photoionization cross section for two-
electron atoms in the next section.

IV. CLOSED ORBIT THEORY NEAR THE TRIPLE
COLLISION—A SEMICLASSICAL TREATMENT

A. Background

A semiclassical description of the photoionization cross
section, Eq. (1), for atomic systems with an underlying
chaotic classical dynamics was first developed in Refs. [37,38].
Starting from Eq. (2) and expressing the Green function
semiclassically in terms of classical trajectories, resonance-
induced fluctuations in the cross section of hydrogen-like
atoms in external fields were analyzed. In the semiclassical

limit, the support of the wave function φ0 shrinks to zero
relative to the size of the system reducing the integration in
Eq. (2) to an evaluation of the Green function at the origin. The
relevant contributions to the Green function are then given by
classical trajectories starting and ending at the origin giving
rise to the name closed orbit theory (COT).

The semiclassical theory is valid only for interaction
potentials sufficiently smooth at the origin such as hydrogen-
like atoms. (The Coulomb singularity can be regularized here
and does not pose difficulties). To circumvent the singular
behavior due to many-body collisions in few-electron atoms,
single-electron excitation in such systems is often treated in
quantum defect approximation. These core effects can be
modeled semiclassically by introducing diffractive scattering
at the central singularity [46,47] or by employing smoothed
model potentials near the origin [55].

Such a treatment is not possible when calculating doubly
excited states in, for example, two-electron atoms. Both
electrons need to be treated on an equal footing here, and
the full three-body dynamics near the origin needs to be taken
into account semiclassically. The classical dynamics near the
origin is dominated by the nonregularizable triple collision
singularity. Reducing the integration over the initial state in
Eq. (2) to a summation over closed orbits in a semiclassical
treatment—the standard approach in COT—cannot be adopted
here. The semiclassical contributions to the Green function
element in Eq. (2) are given by trajectories with initial and
final conditions closer and closer to the triple collision. This
leads to diverging stability properties of these orbits becoming
infinitely unstable as one approaches the singularity. In the
following we will describe our modified COT treatment, which
accounts for the instability of the triple collision dynamics.

We note that COT was applied previously to He analyzing
experimental photoabsorption spectra with and without exter-
nal fields [46,56,57]. The part of the spectrum considered in
these articles belong to highly asymmetric states where one
electron is much more excited than the other. This makes it
possible to treat the system in a single-electron approximation
and the triple collision dynamics do not play a prominent role.
This is different when considering the resonance spectrum
as a whole including highly doubly excited states. In the
semiclassical limit (which corresponds to E → 0 here), the
dominant semiclassical contributions are indeed given by triple
collision orbits, as will be shown later in this section.

Before developing the semiclassical theory, we will briefly
review some of the properties of the classical dynamics of
two-electron atoms.

B. The classical three-body Coulomb dynamics and closed
triple collision orbits

1. Overview and the collinear eZe space

To carry out a semiclassical analysis of the photoionization
cross section for two-electron atoms, it is essential to have a
good understanding of the underlying classical dynamics. The
classical dynamics of two electrons in the field of a nucleus
constitutes a three-body systems, which is nonintegrable with
effectively four degrees of freedom. The overall dynamics are
largely chaotic, most parts of the full phase space are still
unexplored, however. An overview over the dynamics in some
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important lower-dimensional invariant subspaces is given in
Refs. [1,58]; more recent results on the dynamics near the
triple collision can be found in Refs. [29,30], new insights
into the global structure of the phase space were presented in
Refs. [31,32,59].

The classical Hamiltonian for two-electron atoms with an
infinitely heavy nucleus of charge Z reads

H = p2
1 + p2

2

2
− Z

r1
− Z

r2
+ 1

r12
= E, (49)

with r12 the electron-electron distance and E the total energy.
The double-ionization threshold corresponds to E = 0, here
and we consider E < 0 in what follows. Making use of the
scaling properties of the classical dynamics, we introduce the
transformation

ri = r̃i/|E|, pi =
√

|E|p̃i , S = S̃/
√

|E|,
L = L̃/

√
|E|, (50)

where r̃i and p̃i correspond to coordinates and momenta
at fixed energy E = −1, S = ∫ pdq is the classical action
integrated along a trajectory and L is the total angular
momentum. Expressing L in scaled coordinates, we have
L̃ → 0 as E → 0 when L remains constant. We can thus
restrict the analysis to the three degrees of freedom subspace
L̃ = 0 if we work at fixed L and in the limit E → 0 [30,60].

Following standard semiclassical arguments, the Green
function G(R,�,R′,�′;E) can be approximated by contribu-
tions from classical trajectories at energy E with initial and
final coordinates given by (R′,�′) and (R,�), respectively
[61]. Likewise, the quantum scattering maps s, r featuring
in Eq. (20) can asymptotically be written as sums over
trajectories starting and ending on the dividing surface �,
that is, at R = R′ = R0 [43,44]. The dominant semiclassical
contributions to the photoionization cross section are thus due
to trajectories starting and ending in the phase-space region
R � R0.

In scaled coordinates, this region shrinks to zero according
to R̃0 = |E|R0 → 0 as one approaches the double-ionization
threshold at E = 0. The part of the dynamics contributing to
the cross section is thus formed by trajectories starting and
ending closer and closer to the origin. For regular potentials,
Eqs. (2) or (22) can be written in terms of closed orbits
immediately and contributions due to the finite radius become
negligible in the semiclassical limit; this leads to standard
COT. The situation is different here, as the nonregularizable
triple collision singularity is at the origin R = 0 and stability
properties of orbits starting and ending closer and closer to
the origin in the limit |E| ∝ R̃0 → 0 diverge. Asymptotically,
these trajectories converge to a set of triple collision orbits
starting and ending exactly in the singularity—we will refer to
these orbits as closed triple collision orbits (CTCO’s). Triple
collision orbits can only occur in the so-called eZe space [30],
a collinear subspace of the full three-body dynamics where
the two electrons are on opposite sides of the nucleus [58]. As
R̃0 → 0, only orbits coming close to the eZe space can start
and return to �̃ and they will do so in the vicinity of a CTCO.
This implies that the photoionization signal is asymptotically
determined by the dynamics in the eZe space alone—a fact that

was recently confirmed by experimental results and numerical
calculations presented in Refs. [22,24].

The dynamics in the eZe space are relatively simple; it
is conjectured to be fully chaotic with a complete binary
symbolic dynamics generated by the stable and unstable
manifolds of the triple-collision singularity [31,32,58]. In
particular, for every finite binary symbols string there is a
CTCO, the shortest being the so-called Wannier orbit (WO)
of symmetric collinear electron dynamics. Some examples of
short CTCO’s together with an explanation of the symbol code
are shown in Fig. 2. Note, that there exist infinitely many
CTCO’s and their number increases exponentially with both
symbol length and period; see Table I for a list of CTCO’s up
to binary symbol length 5.

2. Stability properties of CTCO’s

For a semiclassical analysis, the dynamics in the vicinity
of contributing trajectories are of importance. They are taken
into account by calculating the linearized flow along a given
trajectory; all the necessary information can then be extracted
from the stability matrix of the classical orbit. For triple
collision orbits (TCO), entries in the stability matrix diverge
as the trajectories move directly into or out of the singularity;
the orbits are infinitely unstable [62]. The rate of divergence
has a direct influence on the quantum photoionization cross
section as will be argued in Sec. IV C.

The stability matrix M of a trajectory in the eZe space is
best calculated in a local coordinate system on the manifold of
constant energy and angular momentum and perpendicular to
the trajectory. When considering the eZe space embedded in
the full 3D space, the relevant part of M in local coordinates
has the form [58]

M =

⎛
⎜⎝

m⊥ 0 0

0 m⊥ 0

0 0 m‖

⎞
⎟⎠ . (51)

Here, m⊥ and m‖ are 2 × 2 matrices describing the linearized
dynamics perpendicular to and in the eZe space, respectively.
The former is degenerate due to the two linearly indepen-
dent and equivalent directions, in which perturbations can
be considered perpendicular to the eZe configuration, see
Appendix E.

TCO’s escape from or approach the triple collision at R = 0
symmetrically along the r1 = r2 axis in the eZe space, that is,
along the WO [31,63], see also Fig. 2. The rate of divergence of
stability matrix elements is thus to leading order the same for
all CTCO’s and coincides with that of the WO. The stability
matrix elements of the latter can be calculated explicitly; the
derivation is given in Appendix E. One obtains, in particular,
for the matrix elements m̃

‖
12, m̃

⊥
12 of a specific CTCO γ starting

and ending at R̃0 (for fixed E = −1),

m̃
‖
12 ∼ A‖

γ R̃
3/2−2µeZe

0 ; m̃⊥
12 ∼ A⊥

γ R̃
3/2−2µWR
0 , (52)

to leading order as R̃0 → 0. Here, A⊥,‖
γ correspond to CTCO

specific weights which are asymptotically independent of R̃0.
Furthermore

µeZe = 1

4

√
100Z − 9

4Z − 1
, µWR = 1

4

√
4Z − 9

4Z − 1
; (53)
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FIG. 2. (Color online) Some short CTCO’s together with their symbol code at energy E = −1; the coordinates r1, r2 correspond to the
distance of electron 1 or 2 from the origin in the collinear eZe space. The code represents c: triple collision; +: binary collisions of electron
1 (r2 = 0); −: binary collisions of electron 2 (r1 = 0).

see Appendix E for details. Note that m̃⊥
12 contributes only for

Z > 9/4, that is, for real µWR. (The subscript WR refers to the
Wannier ridge space; see the discussion in Appendix E.)

When approximating the Green function semiclassically,
we are interested in matrix elements m

‖
12,m

⊥
12 for constant R0

and in the limit E → 0. The matrix elements m12 relate initial

TABLE I. The classical action Sγ and the stability matrix element m12,γ of CTCO along the eZe degree of freedom, up to symbol length 5.
The a‖

γ and bγ are fit parameters for Eq. (57), and nγ and aw denote the multiplicity of the orbit and the weight for the WO (γ = cc), respectively.

Symbol Sγ (action) a‖
γ bγ nγ a‖

γ nγ a‖
γ /a‖

w nγ

cc 3.500 00 0.067 238 6 1.111 788 9 0.067 239 1.000 000 1
c + c 5.246 81 0.050 670 0 1.111 788 9 0.101 340 1.507 169 2

c + +c 6.898 33 0.041 215 0 1.111 788 9 0.082 430 1.225 934 2
c + −c 7.129 12 0.030 024 8 1.111 788 9 0.060 050 0.893 084 2

c + + + c 8.502 83 0.035 028 8 1.111 788 9 0.070 058 1.041 926 2
c + + − c 8.845 32 0.017 729 6 1.111 788 9 0.070 919 1.054 731 4
c + − + c 8.934 25 0.025 876 7 1.111 788 9 0.051 753 0.769 698 2

c + + + +c 10.078 37 0.030 625 0 1.111 788 9 0.061 250 0.910 936 2
c + + + −c 10.486 33 0.012 191 7 1.111 788 9 0.048 767 0.725 279 4
c + + − +c 10.626 65 0.018 617 1 1.111 788 9 0.074 468 1.107 524 4
c + + − −c 10.573 94 0.009 569 3 1.111 788 9 0.019 139 0.284 637 2
c + − + −c 10.777 52 0.016 517 4 1.111 788 9 0.033 035 0.491 308 2
c + − − +c 10.745 76 0.011 770 0 1.111 788 9 0.023 540 0.350 098 2

c + + + + + c 11.630 46 0.027 309 3 1.111 788 9 0.054 619 0.812 312 2
c + + + + − c 12.085 49 0.009 277 1 1.111 788 9 0.037 109 0.551 894 4
c + + + − + c 12.258 63 0.013 556 0 1.111 788 9 0.054 224 0.806 444 4
c + + + − − c 12.219 02 0.006 573 9 1.111 788 9 0.026 296 0.391 082 4
c + + − + + c 12.301 06 0.015 653 7 1.111 788 9 0.031 307 0.465 617 2
c + + − + − c 12.485 13 0.009 881 6 1.111 788 9 0.039 526 0.587 851 4
c + + − − + c 12.466 88 0.006 820 1 1.111 788 9 0.027 281 0.405 728 4
c + − + + − c 12.542 71 0.010 161 1 1.111 788 9 0.040 644 0.604 481 4
c + − + − + c 12.598 71 0.013 450 4 1.111 788 9 0.026 901 0.400 079 2
c + − − − + c 12.441 09 0.005 749 9 1.111 788 9 0.011 500 0.171 031 2
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changes in momentum p′
� to final changes in position �. One

therefore obtains in scaled coordinates for trajectories starting
and ending on the surface of section �

m12(R0) = |E|−3/2m̃12(R̃0) = |E|−3/2m̃12(|E|R0),

both for the ⊥ and ‖ degrees of freedom. Together with Eq. (52)
and fixed initial condition R0

m
‖
12 ∼ A‖

γ |E|−2µeZe ; m⊥
12 ∼ A⊥

γ |E|−2µWR , (54)

as |E| → 0 with A‖
γ and A⊥

γ now in leading order independent
of energy. This universal scaling behavior of the stability
matrix elements of CTCO’s with respect to energy will form
an integral part of the quantum scaling laws discussed in
Sec. IV D.

3. The stability matrix of CTCO’s and the exponent µ:
numerical results

For comparing semiclassical results with numerically exact
quantum calculations, we determined the trajectories of all
CTCO’s up to symbol length 6 in collinear He. The symbol
code is defined in the caption of Fig. 2, the CTCO data relevant
for a semiclassical description are listed in Table I, (here for
orbits up to symbol length 5). In particular, Sγ is the classical
action, nγ denotes the multiplicity, and A‖

γ is the prefactor
defined in Eqs. (52) and (54) of a CTCO γ . The multiplicity is
given by the number of different (but equivalent) orbits, which
can be obtained through the symmetry transformations r1 ↔
r2 and time-reversal symmetry; (nγ can take on the values
nγ = 1, 2, or 4). Calculating the action Sγ is straightforward.
More care needs to be taken when calculating the prefactors
A‖

γ , A⊥
γ . For this, we need to calculate the elements of the

stability matrix (51) and to extrapolate Aγ from the limit R̃0 →
0. Standard methods as described in Ref. [64] become unstable
due to singularities in the equations of motion for the stability
matrix elements.

We therefore calculate the stability matrix in
Kustaanheimo-Stiefel (KS) coordinates, thereby regularizing
the binary collision singularities [58]. There is a slight
complication as time in KS coordinates depends explicitly
on the coordinates r1 and r2; deviations in the time direction
differ for the stability matrix MKS in KS space and M in
real space along the CTCO. The part of the stability matrix
perpendicular to the trajectory and on the energy manifold,
that is, m⊥,‖ is, however, unaffected (up to a local linear
coordinate transformation).

We can thus obtain the stability matrix elements using the
relation

m‖(t) = (BA)−1(t) m‖
KS(t) (BA)(0), (55)

and we will restrict our attention to m̃
‖
ij for eZe He in the

following. Here, B(t) is the linearized transformation matrix
from eZe coordinates z = (r1,r2,pr1 ,pr2 ) to KS coordinates
Z, that is,

Bij (t) = dZi(t)/dzj (t), (56)

and A(t) is the projection matrix onto the coordinate space
perpendicular to the trajectory defined in Ref. [64]. Since the
m12 elements of the stability matrices diverge for CTCO’s as
R → 0, we calculated m12 for a finite R = R0. The stability
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FIG. 3. (Color online) The stability matrix element m
‖
12 for some

CTCO’s on a log-log scale together with least-squares fits.

matrix of a CTCO is determined numerically as a function of
the hyperradius R0 in the range [10−7, 10−2], see Fig. 3. To
improve the numerical accuracy, all calculations were done
with 4 × 8-byte floating numbers instead of the usual 8-byte
double precision. Numerically accuracy was checked against
the condition det(m‖) = 1.0, which is a basic property of the
symplectic matrix. Using

m12,γ (R0) = A‖
γ R

−bγ

0 , (57)

with A‖
γ , bγ as fit parameters, one obtains bγ = 1.111 789 1.

Note that btheo = −(3/2 − 2µeZe) with µeZe given in Eq. (53)
and we obtain for He (Z = 2) btheo = 1.111 786 4 in very good
agreement with the numerical results. We can thus extract
numerical values for the weights A‖

γ along the eZe degree of
freedom. The results are listed in Table I where we set a‖ =
(A‖)−1/2; here, aw denotes the weight for the WO (γ = cc).

C. Semiclassical approximation of the quantum
scattering map r

The starting point for a semiclassical analysis of the
photoionization cross section is Eq. (22). Our main goal is
to obtain general information about the energy dependence of
the cross section near the double-ionization threshold. In a first
approximation, we will thus neglect contributions from closed
channels; these can be taken into account by considering not
only real, but also complex solutions of the classical equations
of motion. The corresponding contributions are, however,
exponentially suppressed in the semiclassical limit E → 0. We
may thus start from the formula for open channels, Eq. (B5),
and write

σ (E) = σ0(E) + σfl(E)

= 4π2

c
ωRe

[
d†

(
1 + 2

∞∑
n=1

(rs)n
)

d

]
. (58)

(For the remainder of Sec. IV, only open channels are
considered and we omit the subscripts for soo, roo, and do). We
identify the term d†d with a background contribution σ0(E)
varying smoothly as a function of energy across the threshold
E = 0. The information about resonances is contained in the

043419-10



PHOTOIONIZATION OF TWO-ELECTRON ATOMS VIA . . . PHYSICAL REVIEW A 81, 043419 (2010)

sum over n, which is identified with σfl(E) here. It gives
rise to a wildly fluctuating signal in the regime of strongly
overlapping resonances when approaching the threshold; see
Fig. 8. The terms (rs)n contain semiclassical contributions of
orbits returning n times to the surface of section �.

The dividing surface � and thus R0 are essentially deter-
mined by the initial state φ0 and are thus energy independent.
From the definition of the inner scattering matrix s and the
scattering solutions �± given in Eqs. (9) and (10), it is obvious
that these operators are also not affected by the threshold. The
half-scattering Hamiltonian H0 defined in Eq. (8) contains
no information about the threshold, which is specified by the
behavior of the full potential in the limit R → ∞. Both s, �±

and thus d can therefore be regarded as constant for energies
sufficiently close to the threshold. The main information about
the increasing number of overlapping resonances near the
threshold is contained in the reflection matrix r alone.

A semiclassical approach is expected to give good results
in regions sufficiently far from the origin; the semiclassical
approximation will fail close—on the scale of a typical wave
length—to the triple collision singularity due to the diverging
slope of the potential in this region. (Note, that binary collisions
do not pose difficulties here, as they can be regularized both
from a quantum and classical point of view). After making
R0 sufficiently large, semiclassical approximations can be
employed for the reflection operator r, whereas the same
does not necessarily hold for the operators s and �±. Their
contributions need to be treated fully quantum mechanically
and thus numerically. They give rise to slowly varying terms
across the threshold E = 0, see Sec. V.

The operator r can be written in semiclassical approxima-
tion [39,40,43,44] as

r(�,�′,E) ≈ (2πi)−
f −1

2

∑
j

| det M12|−1/2
j eiSj −iπνj /2, (59)

where the sum is taken over all classical paths j with fixed
energy E starting at points �′ on the surface of section �

(with momentum pointing outward) and ending at � again
on � without crossing the surface of section in between.
Sj (�,�′;E) is the action of that path, νj is the Maslov index
and f denotes the number of degrees of freedom (with f = 4
for two-electron atoms in three dimensions and fixed angular
momentum). Furthermore,

det M12 = det

(
∂2S

∂�∂�′

)−1

= det

(
∂�

∂p′
�

)
, (60)

where p� are the momentum variables conjugated to �.
The (f − 1) × (f − 1) matrix M12 forms a submatrix of the
2(f − 1) dimensional stability matrix describing the linearized
Poincaré map on � for fixed energy and angular momentum.

D. CTCO’s and scaling laws

Returning to the cross section (58), we will focus on
the fluctuating part σfl(E) containing information about the
resonance spectrum. The smooth contribution σ0(E) was
calculated numerically in Sec. V, see Fig. 6.

In the limit E → 0, which is equivalent to the limit
R̃0 → 0 for fixed energy, swarms of trajectories starting from
and returning to � will do so close to the eZe subspace.

Trajectories which emerge from the vicinity of the triple
collision and enter into a region of chaotic two-electron
dynamics before returning to the triple collision can do this
only by staying in the neighborhood of a CTCO [30]. In the
limit R̃0 → 0, all returning orbits on � converge to one of
the CTCO’s with actions and stabilities approaching those of
the CTCO trajectory. The actions and Maslov indices become
independent of �′,� asymptotically.

The reflection operator r(�,�′,E) can thus be written as a
sum over all CTCO’s starting and ending at �. The amplitudes
in Eq. (59) corresponding to trajectories staying in the vicinity
of a CTCO γ with initial and final positions �′,� on � take
on the form

|det M12(�,�′; E)|−1/2
γ = |(m⊥

12)2m
‖
12|−1/2

≈ aγ (�,�′)|E|µ, (61)

with

µ = µeZe + 2µWR = 1

4

[√
100Z − 9

4Z − 1
+ 2

√
4Z − 9

4Z − 1

]
, (62)

and µeZe, µWR given in Eq. (53) and derived in Appendix E.
Equation (61) follows from the block diagonal structure of
the stability matrix, see Eq. (51), and from the energy scaling
given in Eq. (54). Note, that the overall amplitude in r and thus
the amplitude of the fluctuating contribution σfl vanishes at the
threshold. σ0, on the other hand, continues smoothly across
the threshold becoming the resonance-free single-ionization
signal above the double-ionization threshold.

Including the contribution from the initial wave function
φ0, we can write

d†rsd = d†rd∗ ≈ (2πi)−
f −1

2 |E|µ
∑

CTCOγ

aγ eizS̃γ −iπνγ /2,

with z = 1/
√|E| and S̃γ is the action of the CTCO γ for

E = −1. The amplitude is formally obtained by integrating
over �, that is,

aγ =
∑

n,n′∈open

∫
�

d�d�′d∗
nψ∗

n (�;R0)aγ (�,�′)ψn′ (�′; R0)d∗
n′ ,

where ψn denotes the channel functions introduced in Eq. (7).
Note that aγ depends on the ratio of the linear instability of a
specific CTCO γ to that of the WO as well as on the initial state
φ0 and the scattering processes in the region R < R0; they are
to leading order independent of the energy and can be treated
as constants across the threshold. Due to the universal behavior
of the dynamics near the triple collision, the orbit-dependent
terms aγ are up to an overall factor well described by the
semiclassical weight alone. That is,

aγ ≈ |E|−µ|(m⊥
12)2m

‖
12|−1/2

γ ≈ |(A⊥
γ )2A‖

γ |−1/2, (63)

where the rescaled matrix elements of the stability matrix are
calculated directly along a CTCO γ . The numerical amplitudes
Aγ are defined in Eq. (54), the numerical values for the
semiclassical weights aγ are listed in Table I.

The energy scaling (61) leads to a strong suppression of
contributions from (rs)n, n > 1 in Eq. (58). Semiclassically,
they contain contributions from trajectory passing n times
through the section �. One expects an energy scaling of
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these terms of the form (rs)n ∼ |E|nµ. We may thus neglect
contributions with n > 1 in the limit E → 0 and write σfl in
terms of the first return map r alone; that is,

σfl(E) ≈ 8π2ω

c
Re d†rd∗ ≈ 8π2ω

c
|E|µ Re

×
⎡
⎣(2πi)−

f −1
2

∑
CTCOγ

aγ eizS̃γ −iπνγ /2

⎤
⎦ . (64)

The relation (64) is the main result of this section. It predicts
that the overall amplitude of the fluctuations decays with an
exponent µ given by Eq. (62) derived from the triple collision
dynamics. Note that this exponent is different from Wannier’s
exponent µw with [9]

µw = 1

4

√
100Z − 9

4Z − 1
− 1

4
, (65)

which describes the energy scaling of the double-ionization
yield above threshold. One obtains, for example for He,
µ = 1.305 89 . . . compared to µw = 1.055 89 . . .; the WR
contributes to the decay for Z > 9/4 when µWR is real.

Equation (64) relates the oscillatory part of the single-
ionization cross section to a “Fourier-type” expansion in terms
of CTCO’s with frequencies given by the actions of these
orbits. The next section is devoted to testing these semiclassical
results using the numerical tools developed in Sec. III.

V. NUMERICAL RESULTS

A numerical study of the full three-body quantum problem
is still out of reach for energies E > IN with N ∼ 20 [21–23];
we therefore chose a model system, namely the eZe collinear
He, which was first studied quantum mechanically in Ref. [65]
and later treated semiclassically in Refs. [66,67].

A. Adiabatic potentials and channel functions

For the collinear eZe, the adiabatic Hamiltonian (5) is
reduced to

HR = 1

R2

[
−1

2

∂2

∂α2
− 1

8
+ RV (α)

]
, (66)

where

V (α) = − Z

cos α
− Z

sin α
+ 1

cos α + sin α
. (67)

We compute the adiabatic potentials Un(R) and channel
functions ψn(α;R) by using B-spline basis functions. Because
of the singularities at α = 0 and α = π/2, we take ψn(0;R) =
ψn(π/2;R) = 0 as boundary conditions. The adiabatic Hamil-
tonian HR is invariant under the exchange of the two electrons,
that is, α → (π/2 − α). Thus the range of α can be effectively
reduced to [0,π/4] by imposing the boundary conditions
ψn(0;R) = ψn(π/4;R) = 0 for channel functions with odd
parity and ψn(0;R) = ψ ′

n(π/4;R) = 0 for those with even
parity. These boundary conditions can be easily treated in the
B-spline method following the prescription given in Ref. [68].
B-splines are taken up to order k = 9 and the breakpoints for
α are chosen such that they concentrate near α = 0 according
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FIG. 4. (Color online) Adiabatic potentials for even (red line) and
odd (blue dotted line) parities.

to the exponential sequence

αi = π

4

eζ (i−1)/(Nb−1) − 1

eζ − 1
for i = 1, . . . , Nb. (68)

The region where the lowest eigenfunctions ψn(α;R) have
significant magnitudes shrinks around α = 0 as R increases
and thus ζ is chosen to increase accordingly. For example, ζ ∼
2 is used for small R < 1000, while we choose ζ ∼ 8 for R =
30 000 such that the density of breakpoints is highly localized
near α = 0. The number of points Nb is varied as energy
increases. For the range I10 to I15, we take Nb = 600, but
increase to Nb = 1100 for I45 to I50. By varying the parameters
ζ and Nb, we can easily obtain the adiabatic potentials and
channel wave functions at each R with a nine-digit accuracy
in convergence of the potentials. The computational results
for adiabatic potentials with odd and even parities in the range
R = [0,40] are shown in Fig. 4.

B. The smooth part of the photoionization cross section σ0

To obtain the smooth background part of total photoion-
ization cross section σ0(E), according to Eq. (22), we need to
calculate the initial wave function φ0(R,α) and the scattering
wave function �+(R,α) in Eq. (9).

1. The initial-state wave function

The lowest odd-parity state is taken as the initial bound
state φ0. For this eigenvalue problem, we use the matching
method introduced in Ref. [69]. The boundary conditions
for F(R) are written as F(0) = F(R0) = 0 since φ0(R,α) is
assumed nonzero only for 0 < R < R0. Choosing a matching
radius Rm < R0, L(0,Rm) is calculated by using the algorithm
presented in Appendix C1, while the backward propagation
method described in Appendix C2 is used for L(Rm,R0). The
matching condition is written as

[L(4)(0,Rm) − L(1)(Rm,R0)]F(Rm) = 0. (69)

The bound-state energy is obtained by searching for an energy
at which

det[L(4)(0,Rm) − L(1)(Rm,R0)] = 0. (70)
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For this purpose one can use the secant method or the bisection
method as a searching algorithm. The solution of Eq. (70) is
dependent on the parameters such as the radius R0, the step size
h (see Appendix C 1), and the number of coupled channels M

defined in Sec. III. A converged energy of the lowest odd-parity
state E0 = −2.225 450 395 8 is obtained with h = 0.05, M =
30, and R0 = 20.0. With the bound-state energy E0, F(Rm) is
obtained by solving Eq. (69). Then the function F(R) over all
ranges may be obtained from the relation

F(Rk) = [L(2)(0,Rk)]−1L(2)(0,Rm)F(Rm),

for Rk ∈ [0,Rm] and

F(Rk) = [L(3)(Rk,R0)]−1L(3)(Rm,R0)F(Rm),

for Rk ∈ [Rm,R0]. But one can easily find that this algorithm
for F(R) is highly unstable since the quantities F′(0) =
L(2)(0,Rm)F(Rm) and F′(R0) = L(3)(Rm,R0)F(Rm) have very
small magnitudes for bound states. Thus, we adapt an
alternative algorithm [70], which was originally developed
for stable calculations of the radial function in the generalized
log-derivative method [71]. In the SVD L-propagation method,
the recursion relations for the radial function F(R) are written
as

F(Rk−2) = z−1
k−2O(Rk−2,Rk−1)z−1

k−1O(Rk−1,Rk)F(Rk), (71)

for R ∈ [0,Rm] with zk = hL(4)(0,Rk) + [I − hS(Rk)] and

F(Rk) = z−1
k OT (Rk−1,Rk)z−1

k−1OT (Rk−2,Rk−1)F(Rk−2), (72)

for R ∈ [Rm,R0] with zk = I − hS(Rk) − hL(1)(Rk,R0) (see
Appendix C 3 for more details). It is noted that these recursion
relations enable one to obtain F only at the points Rk with
even k’s. To increase the accuracy in the numerical estimate
of integrals containing wave functions such as the atomic
dipole vector, we developed a method to obtain F additionally
at midpoints of sectors, that is, at Rk’s with odd k’s (see
Appendix C 4). In Fig. 5 the wave function of the lowest
odd-parity state is plotted with M = 10, h = 0.1, and R0 = 20.

FIG. 5. (Color online) A contour plot of the wave function of the
lowest odd-parity state.

2. The scattering wave function for the inner-space Hamiltonian

The L propagator L(0,R0) is obtained by using the method
in Appendix C 1 and the local scattering matrix s is evaluated
by using Eq. (38). Then, F(R0) is determined according
to Eq. (9) for each 	+

n . To represent the set of {	+
n , n =

1, . . . ,M}, that is, �+, the meaning of the notation F is
extended from a vector to an M × M matrix of which the
nth column corresponds to the radial function vector of 	+

n .
Starting from the initial values F(R0), one can obtain F(R)
for R < R0 by using the recursion relation (C34). However,
noting that the L propagators are real valued, it is more
convenient to deal with a real-valued radial function matrix
FK (R) rather than with the complex valued F(R) [72]. The
boundary condition for FK (R) is written as

FK (R) = 1√
2π

[fK (R) + gK (R)K] for R � R0, (73)

where fK and gK are diagonal matrices with the following
components

f K
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin(ki(R − R0))√
ki

for open channels

e+κi (R−R0)

√
2κi

for closed channels,

(74)

and

gK
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(ki(R − R0))√
ki

for open channels

e−κi (R−R0)

√
2κi

for closed channels.

(75)

The K matrix K is then obtained as

K = −[L(4)(0,R0)gK (R0) − g′K (R0)]−1

× [L(4)(0,R0)fK (R0) − f′K (R0)]. (76)

Once the K matrix is determined, then FK (R) for R < R0 can
be obtained by backward propagation. Then for all ranges of
0 < R � R0, we can obtain F(R) by just multiplying a matrix
TK as F(R) = FK (R)TK , where TK can be obtained from the
relation between Eqs. (9) and (73) such as

TK =
[

1

2

(
Koo + i Koc

0
√

2eiπ/4

)]−1

. (77)

As can be seen in Eq. (78), by exploiting the fact that TK is
independent of R, we do not need to multiply TK at every R

when performing a numerical integral containing F(R). This
enhances the advantage of employing FK (R).

3. Dipole transition amplitudes

In the collinear eZe He atom the dipole interaction term is
written as D = π (r1 + r2) = r1 − r2 = R(cos α − sin α). The
dipole transition amplitude from the lowest odd-parity state φ0

to a scattering state 	+
i with even parity is written as

di = 〈	+
i |D|φ0〉

=
M∑
j,n

M0∑
n′

T K
ji

∫ R0

0
dRFK

nj (R)Dnn′(R)F 0
n′(R)R, (78)
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FIG. 6. (Color online) Total photoionization cross section σ (E) of
the lowest negative-parity state of the collinear He atom as a function
of N ≡ √

2/|E| for the energy region of [I1,I10]. The parameters used
are h = 0.05, M = 20, Nb = 600, R0 = 20, and R∞ = 30, 000. In
the uppermost figure, the smooth part σ0(E) is displayed, the middle
figure shows the fluctuating part σfl(E), and the bottom panel is the
total cross section σ (E) = σ0(E) + σfl(E).

with

Dnn′(R) = 2
∫ π/4

0
dαψe

n(α;R)(cos α − sin α)ψo
n′ (α;R).

(79)

Here, M and M0 are the number of coupled channels for the
scattering states and the initial-bound state, respectively, and
ψe and ψo are the channel function vectors for even and odd
parity. Furthermore, F0 is the radial function vector for the
initial state, FK and TK are the real-valued radial function
matrix and the transformation matrix to the complex-valued
matrix for the scattering states �+, respectively. The integral
over the hyperangle α in Eq. (79) is performed by Gaussian
quadrature rule, and the Simpson integral method is used for
the radial integral in Eq. (78).

The smooth part of the photoionization cross section σ0 =
(4π2ω/c)d†

odo is plotted as a function of N ≡ √
2/|E| in Fig. 6

for the energy region of I1 to I10. The parameter values used
for the plot are h = 0.05, M = 20, R0 = 20, and Nb = 600.
There are some peaks in σ0 for low energies N < 3. They are
due to the resonant states localized in the region of R < R0.
However, as the energy increases, the support of resonant wave
functions expands far beyond the boundary R = R0 and thus
their contribution to σ0 becomes negligible. Actually, it can
clearly be seen that σ0 is smooth in the energy region beyond
N > 5 and converges to a constant value as N increases. If
we choose a larger R0, the resonant area extends to a larger
energy. But there always exists a finite N beyond which σ0 is
smooth.

C. Fluctuating part of the photoionization cross section

1. Calculating the reflection matrix

We already calculated s and d, so we only need to
determine the reflection matrix r containing the information
of the long-range Coulomb field. A direct calculation of the
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FIG. 7. (Color online) Comparison of (a) pure L matrix and (b)
L and S matrices propagation. Using pure L-matrix propagation one
finds erroneous peaks, which disappear when switching to the mixed
L- and S-matrices propagation. The parameters used are M = 20,
R∞ = 2000, h = 0.05, and Nb = 600. For comparison, the resonance
poles obtained by using the complex rotation method are marked as
solid circles in (b).

L matrix L(R0,R∞) to the region [R0,R∞] is not possible
computationally for large R∞ due to the lack of computer
memory and computing time. But exploiting the L-matrix
addition rule [34] enables us to calculate the L matrix using
parallel computing. We divide the full region [R0,R∞] into
subintervals with nearly the same sizes. The number of the
subintervals is equal to the number of CPU’s of our parallel
computer.

After propagating the L matrices on each CPU to get
L(R0,R∞), we combine these contributions using the L-matrix
addition rule. The matrix r can then be obtained using Eq. (36).
The total photoionization cross section (TPICS) for I6 to I7

is plotted in Fig. 7 for the parameters M = 20, R∞ = 2000,
h = 0.05, and Nb = 600.

In a first attempt using the method described previously, we
came across a number of peaks which were not stable under
the change of parameters. An example of such a calculation is
shown in Fig. 7(a). We therefore developed a new algorithm,
called S-matrix propagation based on Ref. [73]. We first
propagate the L matrix for 20 steps and then we calculate
the S matrix for that interval using the boundary condition
in Eqs. (74) and (75). Then using the S-matrix addition rule
(see Appendix D), we can get the local scattering matrix r. In
Fig. 7, we compare the TPICS obtained using pure L-matrix
propagation and using a mixed L- and S-matrix propagation.
The mixed propagation method manages to eliminate the
unstable peaks in the in TPICS. We confirmed these results by
comparing with the positions of the resonance poles obtained
by using complex rotation method, which were calculated in
connection with Ref. [33]. We used the mixing of L-matrix
and S-matrix propagations in calculating the TPICS in other
energy ranges as described previously.

In Fig. 8, the TPICS and its fluctuating part are plotted from
I10 to I50. A smooth part of the TPICS is subtracted by fitting
the signal in Fig. 8(a) with a linear function of the energy E
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FIG. 8. (Color online) (a)Total photoionization cross section for
range N = [10, 50] and (b) its fluctuating part. The smooth part is
subtracted by fitting a linear function in E to the signal in (a).

and subtracting it to obtain σfl in Fig. 8(b). The parameters
used in the calculation of the TPICS are shown in Table II.

2. Action spectroscopy

Having calculated the TPICS for collinear He up to the N =
50th ionization threshold, we return now to the semiclassical
predictions, notably Eq. (64). It states that (i) the overall
amplitude of the fluctuating part of the cross section as seen
in Fig. 8(b) decays algebraically with an exponent given in
Eq. (62) and (ii) that the signal can be decomposed in terms
of contributions from CTCO’s. The latter should give rise to
distinct peaks at the position of the actions of CTCO’s in the
Fourier spectrum of σfl. This can now be checked using our
numerical quantum results. Note that for the collinear eZe

case µWR = 0.
We consider first point (ii), that is, the Fourier transform of

the cross section. We define the following quantity

F (z) = 1

4πα(E − Eg)|E|µ σfl(z), (80)

where z = 1/
√|E| and Eg is the energy of the initial state

(such as shown in Fig. 5). The factor |E|−µ compensates for
the decrease in amplitude. Fourier transformation (FT) of F (z)
with respect to z yields the spectrum shown in Fig. 9 where
the solid line is the FT result of the quantum cross section.
The position of the circles represents the classical action of a
specific CTCO and the amplitudes as obtained from Eq. (63).
More specifically, the height of the circles represents nγ aγ of

TABLE II. The parameters used in the calculation of the TPICS.

N M R∞ h Nb

10–15 30 30 000 0.05 600
15–20 40 30 000 0.05 600
20–25 50 30 000 0.05 700
25–30 60 50 000 0.05 800
30–35 70 60 000 0.05 900
35–40 80 80 000 0.05 1000
40–45 90 70 000 0.05 1000
45–50 100 80 000 0.05 1100
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FIG. 9. (Color online) The Fourier spectrum of the fluctuating
part of the eZe cross section rescaled according to Eq. (80); the
circles denote the position S̃j and (relative) size of |M12|−1/2

j for
CTCO’s with S̃/2π < 15. The corresponding CTCO trajectories in
configuration space are shown for some of the peaks in the insets.

a CTCO γ , where aγ is the semiclassical weight and nγ is the
multiplicity of the CTCO, as given by the third through fifth
columns of Table I. One clearly finds close agreement with the
FT peak positions especially along the “action” axis, but also
with the predicted amplitude.

3. Estimating the exponent µ from the numerical data

The semiclassical analysis in Sec. IV D predicts further-
more that the single photoionization cross section decays
algebraically as E → 0− with an exponent given in Eq. (62).
Extracting a decay exponent from a strongly fluctuating signal
such as shown in Fig. 8(b) is a somewhat delicate task. We use
two different methods based on (a) fitting the signal σfl directly
after suitable smoothing and (b) using the Fourier-transformed
spectrum.

a. Direct fitting method. The cross-section data were deter-
mined numerically with a step size δN = 0.001 from N = 10
to N = 50 with N = √

2z = √
2/|E|. In the following, we

average the absolute value of σfl(N ) over fixed intervals of
size �N . When fitting an algebraic decay law to the smoothed
data, it is advantageous to convolute the signal directly on a
log-log scale, that is, we consider

〈log10 |σfl(N )|〉�N= 1

�

∫ log10(N+�N/2)

log10(N−�N/2)
log10 |σfl(N )|d log10 N,

where � = log10(N + �N/2) − log10(N − �N/2). In this
way, we avoid artifacts due to the variation in curvature
in the original curve |σfl(N )| when using large averaging
intervals. The results are shown in Fig. 10; the smoothed data
show a linear behavior (on the log-log scale) in line with
expectations.

We now extract the slope of the curve in Fig. 10 using a
linear regression model with least-squares fitting, that is, we
assume

〈log10 |σfl(log10 N )|〉�N ≈ a − 2b log10 N,

with fit parameters a and b.
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FIG. 10. (Color online) The modulus of σfl smoothed over an
interval �N = 0.1 (red line) and �N = 5.0) (green line) on a log-
log scale; inset: extracted b values from two different set of data
(N = [10,30]: red line: N = [30,50]: green line) and the expected
value for collinear He, µ = 1.3059 . . ..

A detailed analysis revealed, however, another difficulty.
The data were produced numerically by adjusting certain
parameters as N increases, see Table II. While care was taken
to ensure a smooth transition at the points where parameters
were altered, there are still minute discontinuities, in particular
in σ0, of the order of 0.0001%. When subtracting σ0 numer-
ically by fitting a linear curve to the data in Fig. 8(a), these
discontinuities become noticeable after performing averages.

We identified two regions where these discontinuities were
small, namely N = 10 − 30 and N = 30 − 50 and determined
σ0 separately for both data sets. We then determined the slope
of the averaged |σfl| again for both regions separately; the
results for the fit parameter b for each of these intervals are
shown in the inset of Fig. 10 for different averaging intervals
�N . The data coincide with the expected value within ±3%,
that is, we obtain an exponent of the order µ = 1.3 ± 0.04.

b. Fourier transform method. To avoid the problem of
discontinuities in the raw data, we devised a complementary
technique based on the Fourier spectrum. The idea is to treat
µ in Eq. (80) as a free parameter, b say, and to find the
value of b, which is consistent across the whole range of
the cross-section data available. To this end, we divided the
total range N = 10 − 50 into two parts, N = 10 − 30 and
N = 30 − 50, respectively; we then obtain the action spectrum
for a given value of b for both sets of data separately, that is,
we determine the Fourier transform

G(S;z1,z2) = 1

z2 − z1

∫ z2

z1

F (z)e−iSzdz, (81)

in the interval z1, z2 with z = N/
√

2. We now chose b

such that G(S) becomes independent of the range of inte-
gration for the two intervals. This is, in practice, difficult
to verify directly, so we actually determine the difference
|G(S;z1,z2)| − |G(S;z2,z3)| integrated over an S-interval with
S ∈ [Smin, Smax]. The optimal b is chosen such that this
difference is minimized for a given value of Smax. In Fig. 11,
the optimal b is plotted for a range of Smax values from 6
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FIG. 11. (Color online) The exponents b obtained from optimiz-
ing the FT data.

to 26 with a step size 0.2. The values obtained are of the
order µ = 1.3 ± 0.03 in good agreement with the theoretical
prediction Eq. (62), µ = 1.3059 . . .. The error margins are
similar to those obtained for fitting the cross-section data
directly.

VI. CONCLUSION

We present a theoretical framework together with numerical
and semiclassical tools to gain access to the region of highly
doubly excited states of the quantum spectra of two-electron
atoms all the way to the double-ionization threshold. In
particular, we introduce a quantum map approach which
describes the total photoionization cross section in terms
of quantum propagators acting on a dividing surface �

of constant hyperradius R0. These quantum maps can be
implemented effectively in a numerical scheme based on a
variant of the log-derivative method. We give the details
of the techniques for the special case of calculating the
photoionization cross sections in the region of doubly excited
states for two-electron atoms. The method was implemented
numerically for collinear He making it possible to calculate
the full cross section up to the 50th ionization threshold for
the first time.

We furthermore present a semiclassical closed triple col-
lision orbit theory including the derivation of the exponent
µ; these details were omitted in the original publication
[33] where the threshold law was first presented. Using the
numerically exact quantum data, the importance of the CTCO
contributions can be confirmed quantitatively by considering
the Fourier transformation of the fluctuating part of the cross
section. A careful analysis of the quantum data also revealed an
algebraic decay law for the amplitude of the cross section with
an exponent consistent with the theoretical prediction with an
error margin of ±3%.

The semiclassical analysis can be performed for one, two,
or three spatial dimensions. While contributions by CTCO’s
were observed both in experimental data [20,74] and in 3D
quantum calculations [75], a verification of the threshold law
and the exponent µ is so far beyond the reach of existing 3D
quantum results. Recent numerical calculations by Madroñero
and co-workers on two-dimensional (2D) He [24] and 2D Li+
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[76] are pushing toward higher N values and are getting into
a regime where the full semiclassical theory can be tested. It
will, in particular, be interesting to see how the dynamics along
the Wannier ridge degree of freedom influences the details of
the threshold law as predicted by Eq. (62).
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APPENDIX A: THE GREEN FUNCTION G0 ON �

In this Appendix, we derive the relation (15) for the
coefficients of the half-scattering Green function G0(R,R′)
for R > R0; R′ < R0 as given in Eq. (14). The retarded Green
function G0 fulfils Eq. (13) with respect to the Hamiltonian
H0 given in Eq. (8). It consists by definition only of outgoing
waves in the region R > R0 leading to the expansion (14).

Consider first the free Green function in a potential V (�),
Eq. (6), and free motion along the R axis with source point at
R′, that is,

Gfree = −
∑

n

i

kn

eikn|R−R′|ψn(�;R0)ψn(�′;R0);

the sum is here again both over open and closed channels.
Returning to the half-scattering problem Eq. (8), we can write
for R,R′ > R0,

G0(R,�,R′,�′)

= Gfree − i
∑

n

√
2π

kn

eikn(R′−R0)ψn(�′;R0)	+
n (R,�).

That is, the wave function can be decomposed into a direct
contribution from the source point R′ (contained in Gfree)
and a part reflected from the inner region around the origin
(contained in the scattering solution 	+

n ). Likewise, we can
consider the half-scattering Green function for R < R0 (which
has no direct component from Gfree), that is,

G0(R,�,R0,�
′)

= −i
∑

n

√
2π

kn

eikn(R′−R0)ψn(�′;R0)	+
n (R,�) R′ > R0.

Using the symmetry of G0, Eq. (12), which amounts
to G0(R,�,R′,�′) = G0(R′,�′,R,�) and comparing with
Eq. (14) yields Eq. (15), that is

an = −2πi	+
n .

APPENDIX B: THE CONNECTION BETWEEN �+ AND �−

Expressions for the total cross section such as those
presented in Sec. II E were considered before by Granger and

Greene [45] and also adopted in Refs. [33,48]. We will show
here that our Eq. (22) contains the result in Ref. [45] in the
limit when closed channels are neglected.

To simplify the notation, we write Eqs. (9) and (10) in the
form

|�+〉 = |ψin
−〉 + sT |ψout

+〉 (B1)

|�−〉 = |ψin
+〉 + s∗|ψout

−〉, (B2)

with

〈R,�|ψin
+〉n = 1√

2πk∗
n

ψn(�;R0)eik∗
n(R−R0) for R � R0,

〈R,�|ψout
+〉n = 1√

2πkn

ψn(�;R0)eikn(R−R0) for R � R0,

and |ψin
−〉n = |ψin

+〉∗n, |ψout
−〉n = |ψout

+〉∗n. We write, as
usual, channel eigenfunctions ψn as real functions. Setting
up the s matrix in the form

s =
(

soo soc

sco scc

)
,

where {o, c} denotes open and closed components, and using
general properties of scattering matrices following from flux
conservation and the time-reversal symmetry [39,40], one
obtains

soos∗
oo = 1,

soos∗
oc = −isoc scos∗

oo = is∗
co, (B3)

scos∗
oc = i(s∗

cc − scc),

together with

s = sT . (B4)

Using the definition of the scattering solutions where we
write |�+〉 = (|�+

o 〉, |�+
c 〉)T and together with the relations,

Eqs. (B3) and (B4), one obtains

|�−〉 =
(

s∗
oo 0

s∗
co i1

)
|�+〉.

Note, that we use the convention, such that i|ψin
−〉c = |ψin

+〉c
and i|ψout

+〉c = |ψout
−〉c.

These relations can be used to express Eqs. (19) and (20)
in terms of |�+〉, 〈�+| only. The result by Granger and
Greene [45] follows, if one neglects contributions from closed
channels and uses 〈�−

o | = soo〈�+
o |. That is, one writes the

total cross section, Eq. (22), in the form

σ (E) ≈ 4π2

c
ω [d†

odo + 2Re d†
o(1 − roosoo)−1rood∗

o]

= 4π2

c
ω Re d†

o[1 + 2(1 − roosoo)−1roosoo]do

= 4π2

c
ω Re d†

o

[
1 + roosoo

1 − roosoo

]
do, (B5)

with do = 〈	+
o |D|φ0〉 = sT

oo〈	−
o |D|φ0〉.
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APPENDIX C: SVD-TYPE ALGORITHM FOR THE
EVALUATION OF THE L PROPAGATOR

AND WAVE FUNCTIONS

1. L propagator by forward propagation

To evaluate the propagator L(R′,R′′), as mentioned in
Sec. III C, we divide the interval [R′,R′′] into N sectors of
length 2h,

Rk = R0 + kh,R0 = R′, R2N = R′′ for

k = 1, 2, . . . , 2N. (C1)

The matrices L(Rj ,Rk) and O(Rk,Rk+1) will be hereafter
denoted by Lj,k and Ok,k+1. For a given half-sector [Rk,Rk+1],
by using Eq. (48) and the explicit expression for LR̄(Rk,Rk+1)
in Ref. [34], it can be shown that [36]

Lk,k+1 =
(

− 1
h

(I − hSk) 1
h

Ok,k+1

−OT
k,k+1

1
h

1
h

(I − hSk+1)

)
, (C2)

where

hSk =
{

h2

3 wk for even k

4I − 1
2

(
1
8 + 1

48h2wk

)−1
for odd k,

(C3)

with wk = 2[EI − U(Rk)]. Using Eq. (C2), the recursion
relations resulting from the “addition” of L propagators over
subsequent intervals [34] can be written as

L(1)
0,k+1 = L(1)

0,k − L(2)
0,k�

−1
k L(3)

0,k, (C4)

L(2)
0,k+1 = L(2)

0,k�
−1
k Ok,k+1, (C5)

L(3)
0,k+1 = OT

k,k+1�
−1
k L(3)

0,k, (C6)

L(4)
0,k+1 = 1

h
(I − hSk+1) − 1

h2
OT

k,k+1�
−1
k Ok,k+1, (C7)

where

h�k = hL(4)
0,k + (I − hSk). (C8)

Introducing the quantities

rk = L(1)
0,k, pk = L(3)

0,k = −[L(2)
0,k

]T
, zk = h�k, (C9)

the forward recursion relations are written in terms of r, p, and
z as

rk = rk−1 + hpT
k−1z−1

k−1pk−1, (C10)

pk = OT
k−1,kz−1

k−1pk−1, (C11)

zk = −OT
k−1,kz−1

k−1Ok−1,k + 2(I − hSk), (C12)

where the initial values for r1, p1, and z0 are given as

r1 = h

3
w0 − 1

h
I, (C13)

p1 = − 1

h
OT

0,1, (C14)

z−1
0 = 0. (C15)

In a final step, by converting the matrices z2N , r2N , and p2N to
the blocks of the propagator L0,2N , we obtain

L(1)
0,2N = r2N, (C16)

L(2)
0,2N = −pT

2N, (C17)

L(3)
0,2N = p2N, (C18)

L(4)
0,2N = 1

h

(
z2N + h2

3
w2N − I

)
. (C19)

2. L propagator by backward propagation

Using the same procedure employed for the forward
recursion relations (C4) through (C7), we can obtain the
backward recursion relations in the form

L(1)
k−1,2N = − 1

h
(I − hSk−1) + Ok−1,k�

−1
k OT

k−1,k,

L(2)
k−1,2N = 1

h
Ok−1,k�

−1
k L(2)

k,2N,

L(3)
k−1,2N = 1

h
L(3)

k,2N�k
−1OT

k−1,k,

L(4)
k−1,2N = L(4)

k,2N + L(3)
k,2N�k

−1L(2)
k,2N,

where

h�k = I − hSk − hL(1)
k,2N .

Introducing the working quantities

rk = L(4)
k,2N, pk = L(2)

k,2N, zk = h�k, tk = hL(3)
k,2N,

(C20)

the backward recursion relations are written as

rk−1 = rk − hpT
k z−1

k pk, (C21)

pk−1 = Ok−1,kz−1
k pk, (C22)

zk−1 = 2(I − hSk−1) − Ok−1,kz−1
k OT

k−1,k, (C23)

tk−1 = tkz−1
k OT

k−1,k, (C24)

for k = 2N − 1, 2N − 2, . . . , 1. By noting that

L2N,2N =
(

−c c

−c c

)
,

with the limit c → ∞ [34], we can show that the initial
conditions are given by

r2N−1 = L(4)
2N−1,2N = 1

h
(I − hS2N ), (C25)

p2N−1 = L(2)
2N−1,2N = 1

h
O2N−1,2N, (C26)

z2N−1 = hL(4)
2N−2,2N−1 − hL(1)

2N−1,2N = 2(I − hS2N−1),

(C27)

t2N−1 = hL(3)
2N−1,2N = −OT

2N−1,2N . (C28)

And, in a final step, we obtain the propagator L0,2N from the
matrices r0, p0, and z0 in the form

L(1)
0,2N = 1

h

[
−z0 +

(
I − h2w0

3

)]
, (C29)

L(2)
0,2N = p0, (C30)

L(3)
0,2N = −pT

0 , (C31)

L(4)
0,2N = r0. (C32)
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3. Recursion relations for F(Rk)

First, let us consider the SVD L propagation from R = 0
to R = Rm where Rm is a matching point. From Eqs. (C9) and
(C11), it can be shown that[

L(2)
0,k−2

]−1
L(2)

0,k = z−1
k−2Ok−2,k−1z−1

k−1Ok−1,k, (C33)

and thus

Fk−2 = z−1
k−2Ok−2,k−1z−1

k−1Ok−1,kFk, (C34)

where we formally used the relation [L(2)
0,k−2]−1L(2)

0,kFk = Fk−2.
Given Fm, Eq. (C34) enables one to obtain Fk for k = 0 to
k = m − 2 by using Eq. (C34).

Now let us consider the radial function for the remaining
interval R = [Rm,R2N ]. Applying the backward recursion
relation (C21) repeatedly and remembering that tk = hL(3)

k,2N ,
we obtain

L(3)
k−2,2N = L(3)

k,2N z−1
k OT

k−1,kz−1
k−1OT

k−2,k−1. (C35)

Then, using the relation(
L(3)

k,2N

)−1
L(3)

k−2,2N Fk−2 = Fk,

we find the recursion relation

Fk = (z−1
k OT

k−1,kz−1
k−1OT

k−2,k−1

)
Fk−2. (C36)

This makes it possible after starting from a given FM to obtain
Fk for k = m + 2 to k = 2N . It is remarkable that we only need
to calculate zk in both forward and backward propagations as
can be seen in Eqs. (C34) and (C36). This effectively reduces
the CPU time.

4. Radial functions at midpoints of sectors

As mentioned in Sec. V B1, it is desirable to evaluate
radial functions at midpoints of sectors. Let us assume that,
for a given sector [R̄ − h,R̄ + h], there exist two M × M

matrices u±
R̄

(R) which are solutions of Eq. (42) with boundary
conditions u+

R̄
(R̄ − h) = u−

R̄
(R̄ + h) = I and u+

R̄
(R̄ + h) =

u−
R̄

(R̄ − h) = 0. Then, for R ∈ [R̄ − h,R̄ + h], any solution
FR̄(R) of Eq. (42) can be expressed as a linear combination of
u±

R̄
(R), that is,

FR̄(R) = u+
R̄

(R)FR̄(R̄ − h) + u−
R̄

(R)FR̄(R̄ + h). (C37)

Following Ref. [34], it can be shown that

u±
R̄

(R̄) = 1

2

[
I − 1

2
h2wR̄(R̄)

]−1

, (C38)

with the same accuracy as for the L propagator. Thus, using
FR̄(R) = OT (R,R̄)F(R) and wR̄(R̄) = 2[EI − U(R̄)], one can
easily obtain F(R̄) from F(R̄ − h) and F(R̄ + h) with the help
of

F(R̄) = 1
2 {I − h2[EI − U(R̄)]}−1[OT (R̄ − h,R̄)F(R̄ − h)

+ O(R̄,R̄ + h)F(R̄ + h)]. (C39)

Note that U(R̄) is a diagonal matrix and thus the inversion in
Eq. (C39) is not CPU time consuming.

APPENDIX D: S PROPAGATOR

Let us assume that the local scattering matrices for the
regions (�1, �2) and (�2, �3) are given by(

R1 T̃1

T1 R̃1

)
,

(
R2 T̃2

T2 R̃2

)
, (D1)

where R, T is the reflection and transmission S matrices,
respectively. The full S matrix for the region (�1,�3) can then
be written as

R = R1 + T̃1(1 − R2R̃1)−1R2T1, (D2)

T = T2(1 − R̃1R2)−1T1, (D3)

T̃ = T̃1(1 − R2R̃1)−1T̃2, (D4)

R̃ = R̃2 + T2(1 − R̃1R2)−1R̃1T̃2, (D5)

(see Ref. [73] for details). By applying the above relation
successively to �1, �2, . . . , �N , we can obtain the S matrix
for (�1, �N ).

APPENDIX E: STABILITY OF CTCO—ASYMPTOTIC
RESULTS

Triple collision orbits (TCO) going straight into or coming
out of the triple collision will do so along the Wannier orbit
(WO). To evaluate the stability properties of TCO’s as they
approach the triple collision, we will derive first the stability
of the WO near the triple collision. In the next section, we
will then consider the stability of closed TCO’s in general. All
calculations in this Appendix will be done for fixed energy
E = −1; the general energy dependence is obtained using the
scaling relations (50). We will omit the tilde notation used in
Eq. (50) in what follows.

1. Stability of the Wannier orbit near the triple collision

Introducing

u = (r1 − r2)/
√

2; U = (r1 + r2)/
√

2, (E1)

the two-electron Hamiltonian (49) can be written in the form

H = 1

2
(p2 + P2) −

√
2Z

|u − U| −
√

2Z

|u + U| + 1√
2u

= −1, (E2)

where p and P are the conjugate momenta of u and U,
respectively. We align the collinear eZe space along the z

axis, that is, the collinear dynamics are characterized by

u1 = p1 = U1 = P1 = u2 = p2 = U2 = P2 = 0. (E3)

The WO corresponds to symmetric electronic motion embeded
in the eZe space with U3 = P3 = 0.

The equation of motion obtained from Eq. (E2) can be
solved explicitly for u3(t) along the WO, one obtains

u3 = A sin2 ξ

2
= A

2
(1 − cos ξ ), (E4)

t = A√
2

(
ξ

2
− sin

ξ

2
cos

ξ

2

)
= A

2
√

2
(ξ − sin ξ ), (E5)

with A = (4Z − 1)/
√

2 and E = −1.
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The full stability matrix describing the linearized dynamics
in the vicinity of an arbitrary trajectory β is given by the
differential equation

d

dt
M(β) = JW(β)M(β), (E6)

with

W(β) =
(

∂2H

∂X∂X

)
β

; J = I4 ⊗
(

0 −1

1 0

)
, (E7)

X = (u1,p1,U1,P1, . . . , u3,p3,U3,P3) and I4, the 4 × 4 iden-
tity matrix. The Hessian matrix W is block diagonal for
collinear orbits and becomes diagonal on the WO having the
form

WWO
1 = WWO

2 =

⎛
⎜⎜⎜⎜⎝

A

u3
3

0 0 0

0 1 0 0

0 0 2
√

2Z
u3 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

(E8)

WWO
3 =

⎛
⎜⎜⎜⎜⎝

− 2A
u3 0 0 0

0 1 0 0

0 0 − 4
√

2Z
u3 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Small changes in ui,pi,i = 1, 2 are related to changes in
the total angular momentum and thus correspond to marginally
stable degrees of freedom. Likewise, small deviations from the
WO in the u3 degree of freedom are related to changes along
the WO and perpendicular to the energy manifold and give rise
to shifts along the trajectory or in energy. The relevant degrees
of freedom leading to nontrivial stability exponents can be
found along the Ui,Pi,i = 1, 2, 3 coordinates. Small devia-
tions from zero in Ui,Pi,i = 1, 2 amount to a bending-type
motion which is embedded in the angular momentum L = 0
subspace. [In fact, these perturbations are embedded in another
invariant subspace, the Wannier ridge space of symmetric
electronic motion with constant hyperangle α = π/4, see
Eq. (3)]. These coordinates lie in a space perpendicular to the
eZe space, whereas U3,P3 represent deviations from the WO
within the eZe space. For the WO, the stability submatrices
m⊥, m‖ in Eq. (51) are thus determined by the following
differential equations

d

dt
m⊥ =

⎛
⎝ 0 1

− 2
√

2Z

u3
3

0

⎞
⎠m⊥;

d

dt
m‖ =

(
0 1

4
√

2Z

u3
3

0

)
m‖.

(E9)

For fixed energy E = −1 and using the scaled time ξ defined
implicitly through Eq. (E5) with

d

dt
= 4

(4Z − 1)(1 − cos ξ )

d

dξ
, (E10)

one obtains the second-order ordinary differential equations
(ODE’s) for the stability matrix elements

(1 − cos ξ )
d2m⊥

1j

dξ 2
− sin ξ

dm⊥
1j

dξ
+ 4Z

4Z − 1
m⊥

1j = 0, (E11)

(1 − cos ξ )
d2m

‖
1j

dξ 2
− sin ξ

dm
‖
1j

dξ
− 8Z

4Z − 1
m

‖
1j = 0, (E12)

with j = 1, 2. Here, we used dm1j /dt = m2j as well as the
WO solution for u3 in the form (E4).

We are interested in the dynamics near the triple colli-
sion, that is, in segments of the WO with u3 ∼ A

4 ξ 2 � 1.
Linearizing Eqs. (E11) and (E12) for small ξ and setting
s = log10 ξ leads to linear ODE’s with constant coefficients
and independent solutions of the form

m⊥
1j = ξλ⊥

± ; m
‖
1j = ξλ

‖
± ,

with

λ⊥
± = 3

2
± 1

2

√
4Z − 9

4Z − 1
, (E13)

λ
‖
± = 3

2
± 1

2

√
100Z − 9

4Z − 1
. (E14)

These exponents are stability exponents of the triple colli-
sion dynamics first studied by Siegel [77] for gravitational
problems and Wannier [9] for two-electron atoms, see also
Refs. [30,31,33]. Note that λ⊥

± is imaginary for 1/4 < Z < 9/4
giving rise to stable motion in the bending degrees of freedom
in this parameter regime.

We are interested in the stability properties of the WO in
the vicinity of the triple collision, that is, along segments of
the WO with ξ � 1 for all ξ ∈ (ξ0, ξ1) between initial points
ξ0 and final point ξ1 of the trajectory. The stability matrix
m(ξ0, ξ1) is calculated with initial conditions set to m(ξ0, ξ0) =
I2 valid both for m⊥ and m‖. We obtain for the matrix elements
integrated along the WO between ξ0 and ξ1

m11 = 1

λ+ − λ−
(λ−rλ+ − λ+rλ−),

m12 = 4Z − 1

8

1

λ+ − λ−
ξ 3

0 (rλ+ − rλ−),

(E15)
m21 = − 8

4Z − 1

λ+λ−
λ+ − λ−

ξ−3
1 (rλ+ − rλ−),

m22 = 1

λ+ − λ−
r−3(λ+rλ+ − λ−rλ−),

with r = ξ1/ξ0. Equation (E15) is again valid both for m⊥ and
m‖ after inserting the appropriate λ± coefficients.

2. Stability of CTCO’s

Consider the segment of a CTCO γ starting in outward
direction from � and finishing on �. We are interested in the
stability matrix elements along these segments for fixed energy
E = −1 and in the limit R0 → 0. Fixing a second surface of
section at R1, we write the full stability matrix along the CTCO,
Mγ , in the form

M(γ )(R0,R0) = M(γ )(R0,R1)M(γ )(R1,R1)M(γ )(R1,R0).

(E16)

Assuming R0 < R1 � 1, we can approximate the stability
matrix of the CTCO segments close to the triple collision
by the linearized dynamics along the WO, that is,

M(γ )(R0,R1) ≈ MWO(R0,R1),
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with R = u3 ∼ ξ 2 along the WO. CTCO’s are embedded in the
eZe space leading to a block-diagonal form of M(γ ) according
to Eq. (E7); choosing local coordinates along the CTCO, the
stability matrix can be further reduced to blocks of (2 × 2)
matrices m⊥,‖

γ as demonstrated for the WO in the previous
section [58]. Multiplying out the matrix equation (E16) for
the submatrices, one obtains (here done for the m12 matrix
element, which is of importance in the semiclassical equations
in Sec. IV),

m
(γ )
12 ≈ m

↓
11m

γ

11m
↑
12 + m

↓
11m

γ

12m
↑
22

+m
↓
12m

γ

21m
↑
12 + m

↓
12m

γ

22m
↑
22, (E17)

with m
↑
ij = mwo(R1,R0), m

↓
ij = mwo(R0,R1), and m

γ

ij =
m

(γ )
ij (R1,R1). Evaluating the matrix elements term by term

using the asymptotics of the expressions in Eq. (E15) in the
limit R0 → 0 with R0 ∼ ξ 2, one obtains

m
(γ ),⊥
12 ∼ R

3
2 −2µWR

0 (E18)

m
(γ ),‖
12 ∼ R

3
2 −2µeZe

0 , (E19)

with

µeZe = 1

4
(λ‖

+ − λ
‖
−) = 1

4

√
100Z − 9

4Z − 1
, (E20)

µWR = 1

4
(λ⊥

+ − λ⊥
−) = 1

4

√
4Z − 9

4Z − 1
. (E21)

The subscript eZe and WR indicate that the instability
originates from perturbations within the eZe space or along
the Wannier ridge. This concludes the derivation of Eqs. (52)
and (53) in Sec. IV B2 at fixed energy E = −1. We note
that the analysis for m⊥ is valid only for Z > 9/4, that is,
for µWR being real. Also, λ⊥

+ > λ⊥
− > 0 are both positive for

Z > 9/4, the difference between competing terms is thus less
pronounced for the m⊥ contributions compared to the m‖
contributions.
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