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Cooling a quantum circuit via coupling to a multiqubit system
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The cooling effects of a quantum LC circuit coupled inductively with an ensemble of artificial qubits
are investigated. The particles may decay independently or collectively through their interaction with the
environmental vacuum electromagnetic field reservoir. For appropriate bath temperatures and the resonator’s
quality factors, we demonstrate an effective cooling well below the thermal background. In particular, we found
that for larger samples the cooling efficiency is better for independent qubits. However, the cooling process can
be faster for collectively interacting particles.
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I. INTRODUCTION

The ability to cool interacting quantum systems below the
values imposed by the thermal fluctuations of the environmen-
tal reservoir of each subsystem is actually of great interest [1].
For instance, a laser cooling technique for trapped particles ex-
ploiting quantum interference, or electromagnetically induced
transparency, in a three-level atom was presented in [2]. There,
by appropriately designing the absorption profile with a strong
coupling laser, the cooling transitions induced by a cooling
laser are enhanced while heating by resonant absorption
is strongly suppressed. The experimental demonstration of
ground-state laser cooling with electromagnetically induced
transparency was performed in [3]. Recently, this idea was
adopted to cool a nanomechanical resonator [4]. Further, the
collective-emission-induced cooling of atoms in an optical
cavity was also observed [5]. Mechanical effects of light in
optical resonators were studied in [6] while cavity-assisted
nondestructive laser cooling of atomic qubits was analyzed
in [7]. A laser cooling method that can be used at large detuning
and low saturation to cool particles inside an optical cavity was
proposed in Ref. [8]. A significant speed-up of the cooling
process was found in [9] while fast cooling of trapped ions
using the dynamical Stark shift was described in [10].

By engineering superconducting elements as artificial
atoms and coupling them to a photon field of a resonator
or to vibrational states of a nanomechanical resonator, one
can demonstrate interesting related phenomena, such as single
artificial atom lasing or cooling. In particular, schemes to
ground-state cooling of mechanical resonators were proposed
in [11]. A flux qubit was experimentally cooled [12] us-
ing techniques somewhat related to the well-known optical
sideband cooling methods (see, e.g., Ref. [1] and references
therein). Lasing effects of a Josephson-junction charge qubit,
embedded in a superconducting resonator, was experimentally
demonstrated in [13]. Single-qubit lasing and cooling at the
Rabi frequency was proposed in [14], while a mechanism of
simultaneously cooling of an artificial atom and its neighboring
quantum system was analyzed in [15]. Few-qubit lasing in
circuit QED was discussed in Ref. [16]. A LC oscillator
can be cooled via its nonlinear coupling to a Josephson flux
qubit [17]. The cooling of a nanomechanical resonator via a
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Cooper pair box qubit has been recently suggested in Ref. [18]
while cooling carbon nanotubes to the phononic ground state
with a constant electron current was achieved in [19]. Further
interesting works on cooling micro- and nanomechanical
resonators were presented in Refs. [20–29].

Here, we describe a cooling scheme via coupling
a pumped multiparticle ensemble (i.e., artificial atoms
or qubits) to a single mode of a quantum LC circuit
(see Fig. 1). Our motivation is to present an efficient method
allowing for a rapid cooling of the resonator mode. The
multiqubit system can be formed by an independent N -particle
sample or by collectively interacting N particles. By inde-
pendent, we mean that each particle spontaneously decays
individually and all of them are maximally coupled with
the oscillator mode and with the same phase. Collectively
interacting particles means that their interactions are mediated
by the environmental electromagnetic field reservoir such that
their decay is of a collective nature. In this case, the particles
are close to each other on a scale smaller than the emission
wavelength and coupled with the same strength to the quantum
oscillator mode. The advantages or disadvantages regarding
the interparticle interactions to the cooling phenomena of the
quantum oscillator degree of freedoms will be discussed in
detail. In particular, we found that the cooling phenomenon
is better for independently interacting qubits if the quantum
dynamics of the LC oscillator is slower than that of the qubits.
However, the cooling effects may occur faster for collectively
interacting qubits. Apart from a fundamental interest, these
systems have a great feature in various applications such as
novel quantum sources of light (single photon sources, for
instance), quantum processing of information, or entangle-
ment. However, at MHz frequency ranges thermal fluctuations
affect considerably the LC oscillators, that is, populate their
energy levels and induce additional decoherences. Therefore,
a suitable method of cooling these systems can be very useful.

The article is organized as follows. In Sec. II, we introduce
the system of interest. Section III describes the obtained
results. We finalize the article with conclusions presented in
Sec. IV.

II. APPROACH

We describe the cooling effects of a quantum oscillator
mode, that is, a quantum LC circuit coupled inductively
with a collection of two-level Josephson flux qubits (see
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FIG. 1. (Color online) An ensemble of N independent three-
junction flux qubits coupled to a LC quantum circuit by their mutual
inductances. An ac magnetic flux �(t) drives the qubits.

Fig. 1). The two-level particles are pumped with a mod-
erately intense magnetic flux and damped spontaneously
via their interactions with the environmental electromagnetic
field reservoir. The single-particle spontaneous decay rate
is γ . Both subsystems interact with thermostats at effective
temperatures T1 and T2. We shall consider that the particles
are independent or collectively interacting. The frequency of
the oscillator is much lower than the qubit’s tunnel splitting;
that is, ωc � �. Therefore, the qubit is driven with Rabi
frequencies near resonance with the oscillator frequency that
affects the oscillator, increasing its oscillation amplitude [30].
Near the symmetry point (i.e., the energy bias ε between
the flux states is small) and after transformation to the
qubit’s eigenbasis, the Hamiltonian describing the multiqubit
systems is

H =
N∑

i=1

{�Eσzi/2 + �0 sin 2θσxi cos (ωt)} + ωca
†a

− g

N∑

i=1

(cos 2θσzi − sin 2θσxi)(a + a†), (1)

where the first term describes the qubits, each with the
transition frequency �E = √

�2 + ε2, while the second one
considers their driving by an applied ac magnetic flux with
amplitude �̃0 = �0 sin 2θ and frequency ω. Here, cot 2θ =
ε/� with cos 2θ = ε/�E and sin 2θ = �/�E. The last two
terms describe the oscillator with frequency ωc = 1/

√
LC

as well as the qubit-oscillator interaction, respectively. Here,
g ≈ MIpIc0, where M is the mutual inductance, Ip the
magnitude of the persistent current in the qubit, and Ic0 =√

ωc/2L, the amplitude of the vacuum fluctuations of the
current in the LC oscillator. a† and a are the creation and
annihilation operators corresponding to the oscillator degrees
of freedom, while σα (α ∈ {x,y,z}) are the Pauli matrices
operating in the dressed flux basis of the qubit subsystem.
As � � ωc, the transverse coupling in the Hamiltonian (1)
is transformed into a second-order longitudinal coupling by
employing a Schrieffer-Wolf-type transformation [14,31]; that
is, US = exp (iS), with

S = (g/�E) sin 2θ (a + a†)
N∑

i=1

σyi .

By further using the rotating wave approximation with respect
to ω and diagonalizing the qubit term, as well as applying the

secular approximation, that is, omitting terms oscillating with
the generalized Rabi frequency, one arrives at the following
Hamiltonian describing the interaction between the multiqubit
system and the LC oscillator:

H = ωca
†a +

N∑

i=1

{�Rzi/2 + g̃(R(i)
+−a + a†R(i)

−+)

+ g0(aa† + a†a)Rzi/2}. (2)

Here, we have further assumed that the generalized Rabi
frequency is of the order of ωc; that is, � ≈ ωc. In Eq. (2),
g̃ = g cos 2θ sin 2ξ gives the qubit-oscillator coupling
strength, while g0 = 2g2 cos 2ξ sin2 2θ/�E accounts for a
small frequency shift of the qubit’s frequency. Further,

cot 2ξ = δω/�̃0, (3a)

cos2 ξ = [1 + δω/�]/2, (3b)

sin2 ξ = [1 − δω/�]/2, (3c)

where δω = �E − ω and where � =
√

(δω)2 + �̃2
0 stands

for the generalized Rabi frequency. The dressed-state qubit
operators R

(i)
αβ = |α〉i i〈β| describe the internal transition in the

ith particle between the dressed state |β〉 and |α〉 for α �= β

and population for α = β, {α,β ∈ +,−} and obey the standard
commutation relations of su(2) algebra; that is,

[
R

(j )
αβ ,R

(l)
α′β ′

] = δjl

[
δβα′R

(j )
αβ ′ − δβ ′αR

(j )
α′β

]
,

where α,β ∈ {+,−}. Rzi = R
(i)
++ − R

(i)
−− is the dressed-state

inversion operator for the ith particle.
In the mean-field, dipole, Born-Markov and secular ap-

proximations, the combined system is characterized by the
following master equation:

d

dt
ρ + i[H,ρ] = −�aρ − �cρ. (4)

The quantum dissipation due to spontaneous emission into the
surrounding electromagnetic field reservoir is described by the
�aρ term, which for N independent qubits can be represented
as follows:

�aρ =
N∑

i=1

{γ0[Rzi,Rziρ] + γ+[R(i)
+−,R

(i)
−+ρ]

+ γ−[R(i)
−+,R

(i)
+−ρ]} + H.c. (5)

For N nonindependent radiators, that is, for collectively
interacting particles, the corresponding damping is

�aρ =
N∑

i,j=1

{γ0[Rzi,Rzjρ] + γ+[R(i)
+−,R

(j )
−+ρ]

+ γ−[R(i)
−+,R

(j )
+−ρ]} + H.c. (6)

The damping rates are given by the following expressions:

γ+ = γ cos4 ξ, (7a)

γ− = γ sin4 ξ, (7b)

γ0 = γ sin2 2ξ/4. (7c)
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The last term in Eq. (4) characterizes the damping of the
quantum oscillator mode and is given as follows:

�cρ = κ[1 + n̄(ωc)][a†,aρ] + κn̄(ωc)[a,a†ρ] + H.c. (8)

Here, n̄(ωc) is the mean thermal photon number corresponding
to the resonator frequency ωc while κ is the resonator decay
rate. We have omitted the coherent part of the dipole-dipole
interaction in Eq. (4), which is justified if the Rabi frequency
dominates over the dipole-dipole induced energy shifts.

A general analytical solution of Eq. (4) is not evident.
However, one can obtain its solution for different regimes of
interest, namely in the bad or the good cavity limit. Therefore,
in the next section, we proceed by investigating the properties
of Eq. (4) when the qubit’s quantum dynamics is faster than
the one of the quantum oscillator, that is, in the good cavity
limit [32].

III. RESULTS AND DISCUSSIONS

We assume a moderately intense pumping field, that is,
� � {γ,g̃

√
N} and a high-quality resonator such that γ �

g̃
√

N � κ for N independent particles or � � {Nγ,g̃
√

N},
and Nγ � g̃

√
N � κ for N collectively interacting particles.

Therefore, in this case, the qubit subsystem achieves its steady-
state on a time scale faster than the resonator field and, thus, the
qubit variables can be eliminated to arrive at a master equation
for the resonator field mode alone:

ρ̇ = −�−{a†aρ − aρa†} − �+{aa†ρ − a†ρa} + H.c., (9)

where an overdot means differentiation with respect to time
and

�− = κ[1 + n̄(ωc)] + B, (10a)

�+ = κn̄(ωc) + A. (10b)

The physical meaning of the parameters in Eq. (9) is as follows:
�+(�−) describes the process of increasing (decreasing) of the
photon number in the resonator mode. The interplay between
�+ and �− leads to lasing or cooling of the quantum LC circuit.

For an independent N particle system, one has

A = g̃2N

�⊥
〈R++〉, and B = g̃2N

�⊥
〈R−−〉, (11)

where

�⊥ = 4γ0 + γ+ + γ−. (12)

We have considered here that 〈R(i)
αβ〉 are identical for all i ∈

{1,2, . . . ,N} and, thus, 〈R(i)
αβ〉 ≡ 〈Rαβ〉, where {α,β ∈ +,−}.

The expectation values for 〈Rαβ〉 are calculated in the absence
of the resonator mode. Therefore, from Eq. (5), we have

〈R++〉 = γ−
γ− + γ+

and 〈R−−〉 = γ+
γ− + γ+

. (13)

The expressions (11) are valid for any N satisfying the restric-
tions imposed in the beginning of the section, including N = 1.

For an ensemble of collectively interacting N particles, we
obtain the following relations for A and B:

A = g̃2

�̃⊥
〈R+−R−+〉, and B = g̃2

�̃⊥
〈R−+R+−〉, (14)

where the collective decay rate is given as

�̃⊥ = �⊥ + (γ− − γ+)〈Rz〉. (15)

One can observe here that the decay rate �̃⊥ has a contribution
arising from all particles, that is, the term proportional to
〈Rz〉. Here, in contrast to independent qubits, collective
operators were introduced, that is, Rαβ = ∑N

i=1 R
(i)
αβ . Note that

to obtain Eqs. (14), we decoupled the involved multiparticle
correlators—an approximation valid for larger N , that is,
N � 1. However, the corresponding expressions for N =
1 are identical to Eqs. (11) but with the single-particle
decay rate �⊥ instead of collective ones. The steady-state
expectation values for the collective correlators entering into
the preceding expressions [Eqs. (14)] can be estimated from
the steady-state solution of the master equation Eq. (6)
describing the strongly driven particles in the absence of the
resonator [33,34],

〈Rz〉 = N (1 − f 2+N ) + f (N + 2)(f N − 1)

(f − 1)(f N+1 − 1)
, (16a)

〈R+−R−+〉 = 1

1 − f
〈Rz〉, (16b)

〈R−+R+−〉 = f

1 − f
〈Rz〉, (16c)

where f = γ+/γ−. For N = 1 one obtains Eqs. (13).
The Eq. (9) has an exact steady-state solution. For instance,

the steady-state expectation values for the diagonal elements
of Eq. (9) can be obtained from the relation

ρ = Z−1 exp [−αa†a], (17)

where α = ln(η), with η = �−/�+ and Z is determined by
the requirement Tr{ρ} = 1. Evidently, the expectation values
of the operators needed for evaluating the properties of the
quantum oscillator are obtained from Eq. (17). In particular,
the oscillator mean photon number, that is, 〈n〉 ≡ 〈a†a〉 =
Tr{a†aρ}, and its second-order correlations can be determined
from the expressions

〈a†a〉 = 1

η − 1
, (18a)

〈a†2
a2〉 = 2

(η − 1)2
, (18b)

to such an extent that the photon second-order correlation
function, that is,

g(2)(0) = 〈a†2
a2〉

〈a†a〉2
,

is equal to 2, which means that the photon statistics is
always super-Poissonian. Note that the mean photon numbers
obtained with the help of Eq. (9) or Eq. (17) should be below the
photon saturation number n0, which for N interacting qubits
reads approximately as

n0 = �⊥(γ+ + γ−)/(g̃2N ). (19)

Figure 2 depicts the mean photon number in the oscillator
mode which is coupled with N independent qubits. We have
used typical parameters here (see, for instance, [30]). To
elucidate the role of many particles regarding the cooling
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FIG. 2. (Color online) The mean photon number 〈n〉 into the
quantum circuit as function of δω and different numbers of in-
dependent qubits. The solid line is for N = 1, the long-dashed
line stands for N = 10, and the short-dashed curve corresponds to
N = 30. The dotted curve shows the saturation photon number n0 for
N = 30 qubits. Here, n̄(ωc) = 4, �/2π = 3 × 109 Hz, ε = 0.01�,
g/2π = 106 Hz, ωc/2π = 107 Hz, γ /2π = 105 Hz, κ/2π = 103 Hz,
and �̃0 =

√
�2 − (δω)2.

issue, we fix the involved parameters and change the number
of qubits. Already for N = 10 particles, the cooling efficiency
is significantly improved in comparison to the single-qubit
case, that is, N = 1. Better cooling can be achieved, that
is, 〈n〉 � n̄(ωc), by increasing further the number of qubits
(see the short-dashed curve in Fig. 2). Evidently, the qubits
are in their lower dressed state when cooling occurs, that is,
〈R−−〉 > 〈R++〉. The diagram showing the energy levels of the
qubit and oscillator indicating the cooling cycle with photon
emission and absorption can be found in Refs. [25,26].

Further, we turn to cooling effects via collectively inter-
acting particles. Figure 3 shows the mean photon number in
the quantum oscillator mode as the function of δω. The mean
photon number 〈n〉 is well below the thermal mean photon
number n̄(ωc); however, the cooling is not so significant as for
independent qubits (compare the short-dashed curves in Figs. 2
and 3). The reason is that the decay rate �̃⊥ is dependent
on the number of qubits and, thus, 〈n〉 = �+/(�− − �+) is
smaller than the corresponding one for independent qubits
since �− − �+ = κ − g̃2〈Rz〉/�̃⊥, where 〈Rz〉 is given by
Eq. (16) (in other words, for collectively interacting particles,
we do not have a factor N in the denominator). However,
adjusting the involved parameters, one can improve the cooling
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FIG. 3. (Color online) The mean photon number 〈a†a〉 of the
quantum oscillator as the function of δω and different numbers of
collectively interacting qubits. The solid line is for N = 10, while
the long-dashed line stands for N = 15. The short-dashed curve
corresponds to N = 30, while the dotted one corresponds to N = 30,
but κ/2π = 102 Hz. Other parameters are the same as in Fig. 2.

efficiency in general (see the dotted line in Fig. 3). Note that
the coupling of qubits can be controlled [35].

Finally, we discuss the time scaling for the cooling
phenomenon. We observe that cooling rates depend on the
number of qubits and, therefore, the cooling may occur faster in
both schemes. However, the faster decay rate in our approach is
the qubit spontaneous emission. Thus, the cooling phenomena
cannot occur faster than γ −1 for independent qubits or (Nγ )−1

for collectively interacting particles, respectively. Therefore,
in general, the cooling processes are faster for collectively
interacting particles.

IV. SUMMARY

In summary, we described a scheme that is able to cool a
quantum LC circuit coupled inductively to externally pumped
artificial particles (Josephson flux qubits) and damped through
their interaction with the environmental electromagnetic field
reservoir. The qubits may interact collectively or they are
independent. If the qubit’s dynamics is faster than that of the
LC oscillator, the cooling of the oscillators degrees of freedom
occurs when controlling the qubit quantum dynamics. We
found that the cooling phenomenon is better for an ensemble of
independent qubits. However, in general, the cooling processes
are faster for collectively interacting particles.
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