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Control of dephasing in rotationally hot molecules
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We consider a rotationally hot diatomic molecule as an example of an open quantum system, where molecular
vibrational wave packets are subject to dephasing due to rovibrational coupling. We report analytical and
numerical results addressing whether the dephasing rate can be controlled by adjustment of the initial wave
packet phases. It appears that over long time scales, phase-only control is not possible, but for earlier time scales
the possibility of phase-only control of dephasing remains. In addition, we point out that the time dependence of
the dephasing process depends significantly upon the degeneracy of the rotational environment states.
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I. INTRODUCTION

An open quantum system consists of a system of interest
that is coupled to an environment. Nonunitary evolution of the
system can then occur, including decoherence (the reduction
of the purity of the system state) which destroys coherent
superpositions. Since all quantum systems in nature interact
with some environment, the understanding of open system
dynamics is an important topic.

In this article we consider a rotationally hot diatomic
molecule, defining the system as the vibrational degree of
freedom and the environment as the rotational degree of
freedom. This simple example of an open quantum system is
relatively straightforward to examine theoretically, convenient
to study experimentally, and has been actively studied [1–3]. At
temperatures around 400◦C (typical for production of alkali-
metal dimers from an oven source), ∼100 rotational states J

will be populated thermally. Note that the rotational state J

is (2J + 1)-fold degenerate. Since the vibrational frequency
is dependent on rotational quantum number J thanks to
centrifugal distortion, vibrational wave packets moving on
different (J -dependent) potential energy surfaces will dephase
over time. We investigate the possibility of controlling this
rotationally induced dephasing process by shaping the initial
vibrational wave packet. The article by Branderhorst et al. [3]
suggests that phase-only shaping of the initial wave packet
can have an effect on the dephasing rate. Our work addresses
the effectiveness of such phase-only shaping in this particular
system.

We report analytical and numerical results. Numerical
simulations show no readily apparent effect of phase-only
shaping, except by interaction between the quadratic chirp
of the vibrational phases and the anharmonicity. This is just
an example of the well-known wave packet focusing [4] in
an anharmonic potential and does not relate to the thermal
dephasing dynamics. In order to understand the numerical
results, analytical calculations were performed, including a
calculation for zero anharmonicity (the case discussed in [3]).
These calculations show that over long time scales, phase-
only shaping of the initial wave packet has no effect on
the dephasing. However, at intermediate time scales, the
possibility of controlling the dephasing rate remains.
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II. DEPHASING OF MOLECULAR VIBRATIONAL WAVE
PACKETS DUE TO ROTATIONAL TEMPERATURE

A. Characterization and measurement of
wave packet dephasing

Before discussing the details of wave packet dynamics
in a rotationally hot diatomic molecule, it is important to
stress the difference between rotationally induced dephasing
and decoherence associated with entanglement between a
system and its environment. This distinction is discussed, for
example, in Chapter 2 of [5] and Chapter 3 of [6]. In [5] it is
argued that a key distinction between classical noise or pure
dephasing and real decoherence is that, in the latter case, the
system perturbs the environment in addition to being perturbed
by it.

In the standard treatment of an open system [7], we call the
Hilbert space of the system HS and that of the environment
HB , so that the Hilbert space of the total system is HS ⊗ HB .
Then the total Hamiltonian is

H = HS ⊗ IB + IS ⊗ HB + HI . (1)

Here HS and HB are the free Hamiltonians of the system
and the environment, respectively, IS and IB are the identity
operators in the system and environment subspaces, and HI is
the interaction Hamiltonian.

We now focus on the rovibrational motion of a diatomic
molecule. Within the Born-Oppenheimer approximation, as-
suming the molecule is in a given electronic state |i〉, it is
possible [1] to rewrite the rovibrational Hamiltonian for the
total system in the following form:

H = p̂2

2µ
+ Ui(R̂) + Ĵ 2

2µR̂2

=
(

p̂2

2µ
+ Ui(R̂)

)
⊗ Ir + Iv ⊗ 1

2µR2
eq

Ĵ 2

+
(

1

2µR̂2
− 1

2µR2
eq

)
⊗ Ĵ 2 (2)

Here R̂ and p̂ are the internuclear coordinate and momen-
tum operators, respectively, R is the equilibrium internuclear
distance, µ is the reduced mass, Ui(R) is the molecular
potential energy surface, Ir and Iv are the identity operators
on the rotational and vibrational subspaces, respectively, and
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Ĵ 2 is the angular momentum operator (in units of h̄2). In the
aforementioned form, the rovibrational Hamiltonian resembles
the open system Hamiltonian (1), with HS = p̂2

2µ
+ Ui(R̂),

HB = 1
2µR2

eq
Ĵ 2, and HI = ( 1

2µR̂2 − 1
2µR2

eq
) ⊗ Ĵ 2.

Note that in this case [HI ,HB ] = 0, so the system-
environment interaction does not affect the environment
states, that is, the rotational J states. In this case, if the
total system starts in a state |�v(R)〉|J 〉, it evolves into
|�v,J (R,t)〉|J 〉, developing no entanglement. Thus, averaging
over the thermal distribution in a rotational ensemble results in
pure dephasing. This is to be expected, since the vibrational and
rotational parts of the rovibrational wave function are always
separable.

If the diatomic molecule is modeled as a Morse oscillator,
the standard approximation for the energy of the state with
vibrational quantum number v and rotational quantum number
J is

E(v,J ) = ωe

(
v + 1

2

) − ωexe

(
v + 1

2

)2

+ [
Be − αe

(
v + 1

2

)]
J (J +1) − DeJ

2(J +1)2.

(3)

Here ωe, ωexe, Be, and De are the usual spectroscopic
constants [8]. If the rotations are confined to a plane, we
instead have J 2 wherever J (J + 1) appears in (3). Since
〈J 〉 ≈ 100 � 1, this difference is negligible.

Equation (3) for E(v,J ) can be rewritten in the following
form by introducing the J -dependent vibrational frequency
ωJ = ωe − αeJ (J + 1):

E(v,J ) = ωJ

(
v + 1

2

) − ωexe

(
v + 1

2

)2 + BeJ (J + 1)

−DeJ
2(J + 1)2. (4)

If we have, for a molecule with a given J , a wave packet
|�J (t)〉 over the vibrational states |vJ 〉 (which are J dependent
thanks to the centrifugal distortion), its time evolution is

|�J (t)〉 = ∑
v avJ e−iE(v,J )t |vJ 〉. (5)

Here avJ are the wave packet amplitudes. The rovibrational
coupling term in ωJ = ωe − αeJ

2 will cause wave packets
for different J values to dephase with each other over
time [9]. This dephasing process is not irreversible; there
will be revivals of the phase coherence of the ensemble.
In general, however, these revivals will not coincide with
the revivals due to the anharmonicity ωexe, and from an
observational standpoint the process looks like an irreversible
dephasing.

Now we focus on the case of vibrational wave packets
created by one-photon excitation due to a laser pulse, as in
the theoretical and experimental work described in Refs. [1]
and [3]. We assume that the spectral amplitudes of the
pulse have their phases shaped at the experimenter’s wish,
but their magnitudes are unaffected by the pulse shaper. In
the experiment [3] the molecules under consideration are
potassium dimers at 400◦C. At this temperature all molecules
in the ensemble are in the electronic ground state. For
simplicity, we assume that only the ground vibrational state
is populated—in fact 〈v〉 ≈ 1 at this temperature, but the
standard deviation of the thermal distribution �vT ≈ 3—

so full accuracy would require consideration of the first
few vibrational levels. This assumption does not affect our
conclusions since the effect of thermal occupation of different
vibrational states is similar to that of rotational states. The
rotational states are incoherently populated at temperature
T ; that is, the rotational density matrix is diagonal with
populations P (J ) = Z−1(2J + 1) exp {−BeJ

2

kT
}, where Z is the

partition function. Here the 2J + 1 factor appears in the 3D
case and is absent in the 2D case. We perform calculations
both with and without this factor.

Our goal is to see whether a phase-only shaping of the wave
packet can produce substantial suppression of rovibrational
dephasing. To consider control of this dephasing, it is crucial
to define how the dephasing is measured. We follow [3] and
we consider the frequency-gated fluorescence signal from
the molecules. Note that this measurement is not resolved
in the basis of eigenstates of the rovibrational Hamiltonian
Hi—rather it is position resolved. We can think of the
contribution to the fluorescence signal from a given wave
packet |�J (t)〉 as the overlap between the wave packet and
a gate function |�G〉 = ∑

v gv,J |vJ 〉. The gate is a function
in space (i.e., in the internuclear coordinate R) here given in
the basis of the |vJ 〉 wave functions. Since the form (in space)
of the gate function should be exactly the same for all J , the
amplitudes gv,J will be somewhat different for different values
of J .

At this stage it is worth comparing the question posed here
with the standard case of coherent control, for example, control
of a chemical reaction. In the case where our measurement
is resolved in the basis of the energy eigenstates, we can
only achieve phase-only control via interference of multiple
indistinguishable optical pathways [7]. Otherwise, spectral
phases contribute only to phases in the various energy-
eigenstate amplitudes, which have no effect when we make
a measurement in this energy eigenstate-resolved basis (since
only the modulus squared of the amplitudes will affect the
measured yield in each eigenstate). This is the “emperor
without clothes” argument in a 1989 article by Brumer and
Shapiro [10]—an apparent avenue for control which cannot,
in fact, work.

Since we do not consider multiple interfering optical
pathways, it might appear that one-photon phase-only control
could not possibly work for our system. But since our
measurement of the dephasing is not resolved in the energy
eigenbasis, the aforementioned argument does not apply, and
phase-only control is in principle achievable.

The overlap between |�J (t)〉 and |�G〉 is

Q(J ,t) = 〈�G|�J (t)〉
=

∑
v

g∗
vJ avJ e−iE(v,J )t . (6)

The function Q(J ,t) characterizes the electromagnetic
field emitted by a molecule in a particular J state, and the
detected signal (the intensity of the emission) is proportional
to |Q(J ,t)|2:

|Q(J ,t)|2 =
∑

v

∑
v′

AvJ Av′J e−i{ωJ (v−v′)−ωexe[(v+ 1
2 )2−(v′+ 1

2 )2]}t ,

(7)
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where AvJ = g∗
vJ avJ are complex numbers and the solely J

dependent terms in E(v,J ) − E(v′,J ) have canceled. We now
assume the rovibrational coupling is weak and neglect the J

dependence of the AvJ factors. This is equivalent to neglecting
the rotational distortion of the vibrational wave functions for
the duration of the pump pulse. However, for the long-term
evolution, we preserve the rovibrational distortion within the
J -dependent phase, where the effect is accumulated over time.
In place of AvJ we have the purely v-dependent constants
Av = |Av|eiθv .

We assume that the intensity of the laser pulse which
creates our wave packet |�J (t)〉 on an excited electronic
surface is in the weak-field (perturbative) regime. This has two
consequences. Firstly we may neglect the molecular alignment
effect of the laser, since the aligning interaction energy will
be 
 kT . This leaves the rotational density matrix in the
form given previously. Second, in the perturbative regime
each eigenstate amplitude |Av|eiθv in the created wave packet
is proportional to the spectral amplitude of the laser field at
the relevant transition frequency. For this reason, phase-only
shaping of the laser pulse results solely in adjustment of the
initial phases θv .

Since the spontaneous emission of molecules in different
J states is not coherent, the total fluorescence signal from the
thermal ensemble of molecules is proportional to

S(t) =
∞∑

J=0

P (J )|Q(J ,t)|2 (8)

=
∞∑

J=0

∑
v

∑
v′

P (J )|Av||Av′ |

× e−i{θv′−θv+ωJ (v−v′)−ωexe[(v+ 1
2 )2−(v′+ 1

2 )2]}t . (9)

The qualitative behavior of these functions can be sum-
marized as follows. As the wave packet moves between
the inner and outer turning points, |Q(J ,t)|2 will oscillate
with the average vibrational period ωv̄ = ∂E

∂v
|v=v̄ . For nonzero

anharmonicity (ωexe > 0) the wave packet spreads over time.
|Q(J ,t)|2 undergoes the well-known decay and revivals,
including fractional revivals, as the E(v,J )t phase factors for
different v’s de- and rephase with one another. In principle
the J -dependent component of the phase evolution will
also display revivals [2], but these will not, in general,
coincide with the revivals due to anharmonicity. Thus the
combination of anharmonic and rotational dephasing will
typically result in a signal S(t) which oscillates at the
vibrational period, decaying over time without subsequent
revival.

B. Phase-only shaping of the initial wave packet: Analytical
estimates and numerical simulations

Consider the following term from Eq. (8):

E(v,J ) − E(v′,J ) = ωJ (v − v′) − ωexe

×
[(

v + 1
2

)2 − (
v′ + 1

2

)2
]
. (10)

Let us introduce k = v − v̄, where v̄ is the average v in the
wave packet. Then

E(v,J ) − E(v′,J ) = ω̃J (k − k′) − ωexe(k2 − k′2),
(11)

ω̃J = ωe − 2ωexe

(
v̄ + 1

2

) − αeJ
2 = ωv̄ − αeJ

2.

Here ωv̄ is the vibrational frequency at the average v.
To approximate the signal S(t) analytically, we note that

we are interested in the decay of the signal, not its oscillation
with vibrational frequency. We then examine the behavior of
|Q(J ,t)|2 at discrete time intervals tN = 2πN

ωv̄
. At times t = tN

we have

|Q(I ,tN )|2 =
k=∞∑

k=−∞

k′=∞∑
k′=−∞

A2
kA

2
k′ exp{i[θk − θk′

+ tNωexe(k2 − k′2) − tN�	(k − k′)I ]}. (12)

Here J̄ is the mean rotational state, I = J − J̄ ,
and �	 = −2αeJ̄ .

We now assume a Gaussian amplitude profile Ak = e−k2/2σ 2

and replace the sums over discrete states with an integral over
continuous variables k and k′. One effect of this approximation
is to remove the possibility of revivals, but this is acceptable
since we are interested in the dephasing dynamics rather than
the revivals. Now consider a Taylor expansion to second order
of the initial phases: θk � a + bk + ck2. The constant term
has no effect since only relative phases between levels affect
the signal. A linear chirp (bk) in the laser pulse spectrum is
equivalent to a translation of the pulse in the time domain.
Since we are interested in the behavior of the molecule after
the pulse, we must neglect this. As a result we assume that the
initial phases have only quadratic dependence in the frequency
domain (i.e., linear chirp in the time domain), such that
θk = ck2.

Completing the square in the exponent and performing the
necessary Gaussian integrals yields

|Q̃(I ,tN )|2 ∝ e−κ(tN )I 2 |γ (tN )|−1, (13)

γ (tN ) = σ−2 + i(ωexetN + c), (14)

κ(tN ) = 1
2 |γ (tN )|−2(�	)2σ−2t2

N. (15)

Figure 1 shows this approximation for the case of an
unchirped initial wave packet, showing its effectiveness in
representing the decay in signal due to anharmonicity.

The form of Q̃(I ,tN ) provides insight into the dephasing
mechanism, although the true behavior of the signal is not
revealed until we average over the J distribution. First note
that the parameter |γ (tN )|2 = σ−4 + (ωexetN + c)2 can be
viewed as a measure of wave packet broadness in space. The
σ−4 term captures the fact that a wave packet in which few
energy levels participate is broad in position space, while the
(ωexetN + c)2 term shows the anharmonic broadening and the
effect of the chirp. Notice that γ (0) is increased by either a
positive or negative chirp: chirping the phases broadens the
initial wave packet. We also so see that for a negative chirp,
the anharmonicity will first narrow the wave packet before
broadening it. The wave packet will be at its most narrow
when tN = c

ωexe
.

In Eq. (13) we see that the broadness parameter |γ (tN )|2
appears both in the outer factor and within the exponential.
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FIG. 1. (Color online) For the case of flat initial phases (θv = 0 ∀v), the J = 15 contribution to the signal |Q(15,t)|2
max[|Q(15,t)|2]

(solid blue line) is

compared to the analytic approximation for the peaks Q̃(J ,NT ) (dashed green line), where T is the vibrational period and N is an integer.
The decay and revival of the single-J contribution seen here is due to the anharmonicity. The figure shows that while the approximation fails
to capture the revival dynamics, it approximates the decay quite closely.

The outer factor ensures that at any given time, a broader
wave packet will give a lower signal than a narrower one,
since it will have a reduced overlap with the localized gate
function. The role of |γ (tN )|−2 in the exponent is to decrease
the instantaneous rate of decay of the signal for broader wave
packets. It may appear surprising that such decay occurs in
|Q̃(I ,tN )|2, because for a single rotational state I = J − J̄

there is no dephasing. Recall that the times tN are multiples
of the mean vibrational period. For nonzero I , this is not the
period that the wave packet will actually move with. The decay
in |Q̃(I ,tN )|2 is due to this disparity.

For a given value of I , the signal for a broader wave packet
will decay more slowly over time. This can be understood by
considering the extreme cases: a narrow δ-function-like peak
[call this wave packet �N (R,t)] and a broad wave packet that
is completely spread out along the classical trajectory [call this
�B(R,t)]. �B(R,t) does not move along the trajectory as time
increases, so its overlap with the gate function �G(R) is small
but constant. �N (R,t) on the other hand, gives a strong signal
when it is located on top of the gate function but if it is located
away from the gate function then its overlap will vanish. So
even a minor disparity between the wave packet’s period and
the mean vibrational period will cause the signal for �N (R,t)
to decay rapidly.

Now we turn to the averaging over the J distribution. Let
β = Be/kT . Substituting into Eq. (8) and again replacing the
sum with an integral, we have

S̃(tN ) ∝ |γ (tN )|−1
∫ ∞

0
dJe−βJ 2−κ(tN )(J−J̄ )2

. (16)

By completing the square in the exponent, we can rewrite
this as follows:

S̃(tN ) ∝ |γ (tN )|−1e−κ(tN )J̄ (J̄−J ′)
∫ ∞

0
dJe−[β+κ(tN )](J−J ′)2

,

(17)

J ′ = κ(tN )J̄

β + κ(tN )
. (18)

The solution to the integral is expressed in terms of the
complementary error function

erfc(x) ∝
∫ ∞

x

dye−y2

as

S̃(tN ) ∝ |γ (tN )|−1e−κ(tN )J̄ (J̄−J ′)[β+κ(tN )]−
1
2

× erfc{−[β + κ(tN )]
1
2 J ′}. (19)

Figure 2 shows this analytic approximation, compared
to the full S(t) calculated numerically. Figure 3 shows
the result when the initial phases have a quadratic chirp
c = −0.1.

The key result here is that in this model, contrary to the
claim of Branderhorst et al. [3], negatively chirping the initial
phases does not produce a wave packet that is inherently
resistant to the rovibrational dephasing. Instead we see that
this produces an initially broadened wave packet which is
narrowed due to the anharmonicity, so that the signal first
improves over time and subsequently decays. If there is no
anharmonicity, this effect is not present.

We can study this effect qualitatively if we take the lower
limit of the integral in Eq. (17) to −∞. This approximation is
justified since the factor e−κ(tN )J ′2

is small and goes quickly to
zero as tN increases. This yields

S̃−∞(tN ) = [(tN − t ′)A + B]−
1
2 , (20)

A = β(ωexe)2 + σ−2(�	)2, (21)

B = β(σ−4 + c2) − At ′2, (22)

t ′ = −βcωexe

A
. (23)
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FIG. 2. (Color online) For the case of flat initial phases (θv = 0 ∀v), the normalized signal function S(t)
max[S(t)] (solid blue line) is compared

to the analytic approximation for the peaks S̃(NT ) (dashed green line), where T is the vibrational period and N is an integer. The analytic
approximation shows good qualitative agreement with the numerical results, demonstrating that the analytic approximation captures the decay
of the signal due to rovibrational coupling.

Since t ′ ∝ −c, we can see the origin of the time translation
of the signal peak when a chirp is introduced. If we neglect the
σ−2(�	)2 term in A, t ′ = −c

ωexe
, which is the time at which

the signal for a single value of I (or equivalently J ) has
its maximum [see Eq. (13)]. While this approximation to the
signal is less accurate than Eq. (17), its behavior is easier to
understand. In this approximation the introduction of chirped
initial phases simply time shifts the entire signal. The behavior
of the numerically calculated S(t) and the approximations
S̃(tN ) and S̃−∞(tN ) are all qualitatively consistent. In this
model, there is no sign of quadratically chirped phases
providing any increase in inherent resistance to “decoherence,”
contrary to [3].

C. Phase shaping and amplitude shaping: Squeezed coherent
wave packet and two-state wave packet

Branderhorst et al. [3] argue that initially position-squeezed
wave packets are more resistant to dephasing, since position-

squeezed wave packets are approximate eigenstates of the
interaction Hamiltonian [1]. Although such a wave packet is
not position-squeezed at all times, it spends most of its time
near the classical turning points, where it is position-squeezed.
This section addresses whether this resistance to dephasing
is observed in our model. In order to test this, we set the
anharmonicity equal to zero and choose the initial vibrational
wave packet to be a squeezed coherent wave packet displaced
to the inner turning point. Creating such a wave packet would
require substantial amplitude modulation and substantial phase
modulation of the excitation pulse.

The complex amplitudes of each harmonic oscillator
eigenstate in a squeezed coherent wave packet |βc,ξ 〉, with
displacement parameter βc and squeezing parameter ξ =
|ξ |eiφξ , may be written in the form below [11], where
µ = cosh |ξ | and ν = eiφξ sinh |ξ |. When the displacement
βc = π and the squeezing factor ξ is real, we have the desired
radially squeezed wave packet at the inner turning point
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FIG. 3. (Color online) The same as Fig. 2, but with a negative quadratic chirp to the initial phases [θv = −0.1(v − v̄)2]. Again there is good
qualitative agreement—the analytic model shows a similar rise and fall.
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FIG. 4. (Color online) The normalized signals as a function of time for three different initial vibrational wave packets. The first has a Gaussian
amplitude profile |�g〉 = ∑

k e−k2/2σ 2 |k〉 (solid blue line), the second is a position-squeezed coherent wave packet at the inner turning point
|βc = π,ξ = 0.8〉 (dashed green line), and the third is the wave packet consisting of two adjacent vibrational states |�2〉 = 1√

2
(|v̄〉 + |v̄ + 1〉)

(dot-dashed red line). Here anharmonicity is zero, so the decay in the signal visibility is purely due to the rovibrational coupling.

(we take ξ = 0.8):

Ac
ne

iθc
n =

(
ν

2µ

) n
2 1√

µn!
exp

[
−1

2

(
|βc|2 − ν∗

µ
β2

c

)]

×Hn

(
βc√
2µν

)
. (24)

Here Hn(x) is the nth Hermite polynomial. We also consider
the wave packet |�2〉 = 1√

2
(|v̄〉 + |v̄ + 1〉) containing only two

adjacent vibrational levels, which will also show beating at
vibrational frequency. Figure 4 shows the signals calculated
for the wave packet with Gaussian amplitude profile and the
squeezed coherent wave packet. At a first glance, it appears
that there is substantial difference in the surrogate measure
of decoherence expressed by S(t), for the three initial wave
packets. However, this first impression is incorrect. In order
to assess their dephasing rate, the extrema of these curves are

extracted and used to calculate a visibility,

V = Speak − Svalley

Speak + Svalley
,

for each period. This visibility is plotted as a function of time
in Fig. 5. Surprisingly, the three curves are nearly identical,
showing no resistance to the dephasing process for the
squeezed wave packet |βc,ξ 〉 or the two-state wave packet |�2〉.

The analytic work in the following sections is motivated
by the need to explain why such drastic amplitude and phase
adjustments of the initial wave packet seem to have no effect
on the dephasing process, contrary to the conclusions of [1]
and [3].

D. Analytical investigation of the signal function S(t)

Since we are interested solely in the dephasing due to
thermal rotational population, for the following calculation
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FIG. 5. (Color online) The normalized peak visibility V/max[V ] as a function of time (extracted from Fig. 4) for the three initial wave
packets |�g〉 (blue circles), |βc = π,ξ = 0.8〉 (green triangles), and |�2〉 (red squares). This shows that for our model, these three different
wave packets show the same dephasing behavior over time.
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we will neglect the anharmonicity ωexe. In contrast to the
previous calculation, where we have looked at S(t) at specific
moments, here we will look at the complete time-dependence.
The main approximation is to replace the summation over J

with an integral. We perform the integral before the summation
over v and v′. To simplify the J integral, we shall assume that

the bath distribution is P (J ) ∝ 2Je
−BJ2

kT . We will also probe
the dependence of S(t) on the distribution of bath states by

comparing the result for P (J ) ∝ 2Je
−BJ2

kT with that for the 2D

distribution P2D(J ) ∝ e
−BJ2

kT . The true 3D thermal distribution,
then, is proportional to the sum of these two distributions.

Performing the J integral yields

S(t) ∝
∑

v

∑
v′

AvAv′e−iωe(v−v′)t 1 + iαeJ
2
0 (v − v′)t

1 + α2
e J

4
0 (v − v′)2t2

. (25)

Here J 2
0 = kT /Be. Now we define time-dependent phases

�vv′ = ωe(v − v′)t − (θv − θv′ ) (determined by the pure vi-
brational dynamics) and φα

vv′ = arctan [αeJ
2
0 (v − v′)t] (deter-

mined by the dynamics due to rovibrational coupling). Then
we may use the fact that S(t) is real to write Eq. (25) in the
following form:

S(t) ∝
∑

v

∑
v′

|Av||Av′ | 1√
1 + α2

e J
4
0 (v − v′)2t2

× cos
(
�vv′ − φα

vv′
)
. (26)

A first glance at Eq. (26) might suggest that the rovibrational
coupling has little effect. The coherences between the levels
with different v �= v′ decrease as 1

t
at long times and

quadratically at short times. However, it is important to look
closely at the effect of φα

vv′ = arctan [αeJ
2
0 (v − v′)t].

Let �v be the characteristic full width of the wave packet
in v. In addition, assume �v � 1. Then we can separate three
main time scales.

1. Short time scales: �vαeJ
2
0 t 
 1. In this case we have

φα
vv′ � αeJ

2
0 (v − v′)t . Then, αeJ

2
0 merely acts as a correction

to the vibrational frequency ωe, otherwise leaving the vibra-
tional dynamics undisturbed:

S(t) ∝
∑

v

∑
v′

|Av||Av′ | 1√
1 + α2

e J
4
0 (v − v′)2t2

× cos [ωJ0 (v − v′)t − (θv − θv′ )]. (27)

Here ωJ0 = ωe − αeJ
2
0 is the rotationally adjusted vibrational

frequency. Maxima in S(t) occur at times tn = 2πn
ωJ0

.

2. Long time scales: �vαeJ
2
0 t � 1. For this case, φα

vv′ �
π
2 sign(v − v′) becomes independent of v and the signal is
given by

S(t) ∝ S0 + 2
∑

v

∑
v′<v

|AvAv′ | 1

αeJ
2
0 |v − v′|t sin �vv′ . (28)

Here S0 = ∑
v |Av|2. Note that cos (�vv′ − φα

vv′ ) has been
replaced with sin �vv′ , meaning that the maxima have shifted
by π

2 compared to the very early times. The height of the
maxima (thus also the contrast) is decreasing with time as 1

t
.

Initial adjustments of θv can have no effect on the dephasing
in this long time limit, since the rovibrational coupling has

disappeared from the phases completely. It remains only in the
slowly decreasing envelope.

3. Intermediate time scales: �vαeJ
2
0 t ∼> 1. φα

vv′ depends
upon v − v′. Namely, for v − v′ = 1, 2, we have φα

vv′ ∼< 1 and
the maxima are at positions tn = 2πn

ωJ0
. But for distant parts of

the wave packet, where v − v′ is large, we have a different
situation, and φα

vv′ � π
2 . So for different parts of the wave

packet, their contributions to S(t) reach their maxima and
minima at different times, and this reduces the overall contrast
when we sum over v and v′. One can in principle compensate
for this spread of maxima and minima with the initial phases
θv . However, we will not be able to do so with a linear or
quadratic chirp, since φα

vv′ is a nonlinear function of v − v′.

E. Explanation for the numerical results of Sec. II C

At this stage we may reconsider the numerical results of
Sec. II C, in particular, Fig. 5. Although these analytic results
do not address the visibility directly, we can ask whether they
provide any qualitative explanation for the fact that the decay
of visibility is the same for the three wave packets (wave
packet with Gaussian amplitude profile |�g〉, the squeezed
coherent wave packet |βc,ξ 〉, and the wave packet containing
only two adjacent states |�2〉). It is clear from examining
Eq. (28) that the long-term behavior of the wave packet will
be unaffected by the initial phases and dominated by the terms
in the sum where v − v′ is small. So for both |�g〉 and |βc,ξ 〉
the dominant dynamics is the beating between the mean v̄

and adjacent states; the contribution from nearest-neighbor
pairs away from the mean is suppressed due to the decay of
the amplitudes Av away from their maximum Av̄ . At long
time scales the behavior of both of these wave packets will
be very similar to that of |�2〉. Note that for the parameter
values used in the numerical simulation, which reflect the
typical J 2

0 value in an experimental setup, the long time scale
limit �vαeJ

2
0 t � 1 is achieved after only a few vibrational

periods. This provides a qualitative explanation for the form
of Fig. 5. Equation (28) also shows that while these three
wave packets behave similarly, the dephasing is not completely
unaffected by amplitude modulation of the initial wave packet.
As an example we took another two-state wave packet, |χ2〉 =

1√
2
(|v̄〉 + |v̄ + 2〉), and compared its dephasing to |�2〉 in

Fig. 6. We see that this amplitude modulation has a substantial
effect on the dephasing rate.

F. Dependence on the bath distribution

One question that is worth considering when looking at
a model of environment-induced dephasing is the following:
how sensitively does the dephasing dynamics depend upon
the exact distribution of population among the environment
states? In order to address this question in our model, we
repeat the calculation of Sec. II D using the 2D rotational bath

distribution P2D(J ) ∝ e
−BJ2

kT . Substituting this into Eq. (8) and
approximating the sum as an integral as in Eq. (25) yields the
following result [cf. Eq. (26)]:

S(t) ∝
∑

v

∑
v′

|AvAv′ |(1 + α2
e J

4
0 (v − v′)2t2

)− 1
4

× cos (�vv′ − φ̃vv′ ), (29)

043405-7



DAVID BARTRAM AND MISHA IVANOV PHYSICAL REVIEW A 81, 043405 (2010)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

TIME (Vibrational Periods)

N
o

rm
al

is
ed

 B
ea

t 
V

is
ib

ili
ty 2−State Wavepacket, ∆v = 2

2−State Wavepacket, ∆v = 1

FIG. 6. (Color online) The normalized peak visibility V/max[V ] as a function of time for two initial wave packets, each containing only
two vibrational states separated by �v. Naturally, the case where �v = 2 (|χ2〉) (blue squares) beats with twice the frequency of �v = 1
(|�2〉) (green triangles). We see that the dephasing behavior over time is different for the two wave packets, with the �v = 2 wave packet
dephasing more rapidly than the wave packet with �v = 1. This demonstrates a case where amplitude modulation of the initial wave packet
has a significant effect on the dephasing dynamics.

where φ̃vv′ = − 1
2φα

vv′ and all other quantities are defined as in
Sec. II D. Therefore, changing the bath distribution alters the
rovibrational dephasing angle from φα

vv′ to φ̃vv′ and changes
the signal decay with time, so that at long times instead of
decay ∝ 1

t
we have ∝ 1√

t
. These changes—particularly the

latter—are substantial. This result shows that here we have a
very strong dependence of our outcome on the details of the
environment states, namely, the degeneracy of each J level.

III. CONCLUSIONS

In this article we have studied rotationally induced dephas-
ing of vibrational wave packets in hot diatomic molecules,
with a view to establishing whether phase-only adjustments
of the initial wave packet can affect the rate of dephasing.
An analytical investigation of the fluorescence signal S(t)
determined that there are three relevant time scales, determined
by the size of the parameter �vαeJ

2
0 t . At short time scales,

dephasing has not set in and there is no need to compensate
for it. At long time scales, which can be reached after as
little as a few vibrational periods in typical experiments, the
dephasing process can no longer be compensated at all by
initial wave packet phases. Between these limits, there is an
intermediate time scale where adjustments of the initial phases
can, in principle, affect the dephasing rate.

The form for the signal S(t) in Eq. (26) makes it clear
that phase-only control of the dephasing means compen-
sating for φα((k − k′), t) = arctan [αeJ

2
0 (k − k′)t] by select-

ing the values of the initial phases θk , where k = v − v̄.
At intermediate times we may no longer treat the arctan in φα

as linear. Expanding it to third order we get φα
kk′ � αeJ

2
0 (k −

k′)t − 1
3α3

e J
6
0 (k − k′)3t3, so we would need a cubic term in the

phases to compensate for this. In our numerical simulations we
have tried various values of cubic chirp in the initial phases,
but none have reduced the dephasing rate. To explain the
difficulties with phase-only control of the dephasing, let us
assume that the initial phases are θk = bk + ck2 + dk3. Then

the phase �(k,k′,t) = �kk′ − φα
kk′ in Eq. (26) can be written

as follows (letting n = k − k′ and m = k + k′):
�(n,m,t) = F0(n) + F1(n)m + F2(n)m2,

F0(n) = ωen − bn − φα(n, t) + 1
4dn3,

(30)
F1(n) = −cn,

F2(n) = − 3
4dn.

Now we assume that the constants Ak are Gaussian, that is,

|Ak| = e
− k2

k2
0 . Then equation (26) gives

S(t) ∝
∑

n

∑
m

e
− n2

2k2
0√

1 + α2
e J

4
0 t2n2

e
− m2

2k2
0

× cos [F0(n) + F1(n)m + F2(n)m2]. (31)

The first thing to note is that the initial phases, which
appear only inside the cosine, cannot affect the term (1 +
α2

e J
4
0 t2n2)−

1
2 . So there is some overall decay in the signal

which cannot be avoided by adjusting the initial phases.
Second, examination of F0 shows that the cubic chirp d can
compensate for the rotational phase φα . However, the cubic
chirp d also appears in F2; so when we perform the double
sum over n and m, this introduces a further phase scrambling
in addition to the thermal dephasing. It is clear from our
analysis that phase-only suppression of the dephasing process
is a challenging proposition, and even when it is achieved, it
can only operate over a limited time scale.

The question remains as to why our conclusions differ
substantially from those of Branderhorst et al. [3], who
reported control of the dephasing process by application of
quadratically chirped excitation pulses. The key assumption
in our model is neglecting the effect of rotational distortion of
the vibrational wave functions during the pump pulse, that is,
neglecting the J dependence of the AvJ factors in Eq. (7). It
is possible that phase-only control is more easily achieved if
these distortions are taken into account.
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