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The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential
cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression
(RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q → 0), valid
even at relativistic incident photon energies ω1 > m provided that the average initial momentum of the ejected
electron 〈pi〉 is not too high, that is, 〈pi〉 < m. This corresponds to a binding energy Eb < 10 keV. This q → 0
nr limit is simultaneous with the approach of the scattering angle θ to 0◦ (θ → 0◦) around the Compton peak
maximum. This explains the observation that it is possible to obtain an accurate Compton peak (CP) even when
ω1 > m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω1 = 1 MeV
if θ < 20◦. However as ω1 increases into the MeV range, the maximum θ at which an accurate Compton peak
can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of
CP to higher energy is greatest, which starts at 180◦ when ω1 < 300 keV, begins to decrease, approaching zero
even though the θ at which the relativistic increase in the CP magnitude remains greatest around θ = 180◦. The
relativistic contribution to the prediction of Compton doubly differential cross sections (DDCS) is characterized
in simple terms using Ribberfors further approximation to his full RIA expression. This factorable form is given
by DDCS = KJ , where K is the kinematic factor and J the Compton profile. This form makes it possible to
account for the relativistic shift of CP to higher energy and the increase in the CP magnitude as being due to
the dependence of J (pmin, ρrel) (where pmin is the relativistic version of the z component of the momentum of
the initial electron and ρrel is the relativistic charge density) and K(pmin) on pmin. This characterization approach
was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic.
Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.
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I. INTRODUCTION

The main purpose for this work is to show that there is
a low-momentum-transfer (q) nonrelativistic (nr) limit for
the relativistic impulse approximation (RIA) expression for
Compton doubly differential cross sections (DDCS) (differen-
tial with respect to the energy and angle of the scattered photon
with the ejected electron not observed) and that one can recover
the corresponding nr expressions, then to use this q → 0 nr
limit as a basis for characterizing relativistic contributions
to the Compton peak. This provides an explanation for why
it is possible to obtain an accurate Compton peak even at
relativistic photon energies if the scattering angle is small.
Another purpose is to show that this characterization can
be used as a guide for introducing relativistic kinematics
into nr expressions that are more accurate than the impulse
approximation (IA). The advantage here is that applications
of such expressions are easier to extend to the calculation of
DDCS for larger systems than their fully relativistic versions.

The impulse approximation is the most widely used
approach for the prediction of Compton differential cross
sections. Some examples of applications of this theory to the
prediction of Compton DDCS of light atoms in nonrelativistic
(nr) regimes are found in Refs. [1–3]. The nonrelativistic
theory, which is what the IA approach was originally based
on, starts with a two-term interaction Hamiltonian Hint =
(e2A2/2m2) − e( �p · �A)/m. This nonrelativistic matrix ele-
ment corresponds to the A2 term in Hint taken in nonrelativistic
first-order QED perturbation theory. This A2 matrix element

largely describes the Compton peak region of the DDCS
spectrum. The matrix element resulting from the �p · �A term
is obtained in second-order QED perturbation theory. This
second-order matrix element involves transitions to interme-
diate states. The infrared rise results as the scattered photon
energy decreases, approaching zero. This matrix element
also contributes to the Compton peak region, the extent
being dependent on photon energies, scattering angle, and Z.
Nonrelativistic IA (NRIA) expressions can be derived from
the A2 matrix element. This is based on the assumption that
the momentum and energy transfer from an incident photon to
a target electron is sufficiently large that the electron binding
effects can be neglected, and the bound electrons of the atom
are treated as a momentum distribution of free electrons. As
a result, one can approximate the final state of the excited
electron by a plane-wave state. A purely NRIA result can be
derived from the A2 matrix element, in this way treating the
final state as a plane wave and the initial electron as free [4–6];
however, Eisenberger and Platzman [7] showed that this is not
necessary for the derivation of the IA result for DDCS.

More than three decades ago it was shown that it is possible
to obtain reasonably accurate DDCS in relativistic regimes by
using the A2 matrix element with relativistic kinematics. For
example, Schumacher et al. [4] used the A2 matrix element but
with a relativistic momentum pf and energy Ef of the ejected
electron to obtain Compton peaks at ω1 = 279 keV for K-, L-,
and M-shell ionization of Cu and Pb. More recently, Costescu
and Spanulescu [8] used a more general approach by first
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taking the nr limit of the second-order perturbation relativistic
QED S-matrix element to obtain expressions for DDCS and
triply differential cross sections (TDCS), free of spurious
singularities but having a separable A2 and �p · �A form (not
separable in the fully relativistic S-matrix expression). He then
introduced relativistic kinematics, resulting in expressions that
can be used to obtain reasonably accurate K-shell DDCS at
all θ if ω1 < 300 keV. At higher energies this expression only
works at smaller scattering angles. This was illustrated by their
example calculation in which ω1 = 661 keV and θ � 60◦.

In NRIA theory, DDCS are proportional to the Compton
profile, given by

J
(
pnr

z ,ρnr
) = 2π

∫ ∞

pnr
z

dp pρnr(p), (1)

where p is the initial electron momentum. ρnr(p) is the Fourier
transform of the nr charge density ρnr(r) for an electron in a
given nonrelativistic quantum state. pnr

z is the z component
of the initial electron momentum given from conservation of
energy and momentum as

pnr
z =

∣∣∣∣ (ω1 − ω2)m

q
− q

2

∣∣∣∣ , (2)

where ω1 and ω2 correspond to the energies of the incident and
scattered photons and q = | �K1 − �K2| is the magnitude of the
momentum transfer, where �K1 and �K2 represent the momenta
of the incident and scattered photons. Also the units c = h̄ =
1 apply throughout. The expression for Compton scattering
DDCS in terms of the Compton profile J (pnr

z ,ρnr) [7] is

d2σ

dω2d�2
= KnrJ

(
pnr

z ,ρnr
)
, (3)

where �2 is the solid angle for the scattered photon and the nr
kinematic factor Knr is given by

Knr = r2
0 mω2X

nr

2ω1q
, (4)

with Xnr = 1 + cos2 θ , where θ is the photon scattering angle
and r0 the classical electron radius.

For relativistic regimes, a widely used version of IA theory
was obtained by Ribberfors [9]. In this approach the RIA
formula for DDCS is given by Eq. (15) in [9]. Ribberfors
derived an explicit expression for DDCS from RIA theory,
starting with the relativistic S-matrix formulation of Jauch
and Rohrlich for the Compton matrix element [10], namely,

d2σ

dω2d�2
= m2r2

0 ω2

2qω1

∫ ∞

pmin

pρrel(p)

E(p)

∫ 2π

0
X̄(p,ζ )dpdζ

= πm2r2
0 ω2

qω1

∫ ∞

pmin

pρrel(p)X̄int(p)

E(p)
dp, (5)

where E(p) = (p2 + m2)1/2 is the energy of the initial electron
and X̄(p,ζ ) is the relativistic kinematic component [9], a
function of ω1, ω2, and θ as well as p and ζ , where ζ

is the azimuthal angle of the initial electron. X̄(p,ζ ) and
its integrated form X̄int(p) = (1/2π )

∫ 2π

0 X̄(p,ζ )dζ will be
discussed in Sec. II B. Later Ribberfors [9] obtained a simpler
but approximate expression from Eq. (5) by integration by
parts over p, then employing the fact that J (∞) = 0 and that

the energy of the initial electron E(p) is approximately equal
to m, he obtained a more approximate nonrelativistic-form
expression, which like the NRIA expression has a separable
kinematic factor and Compton profile, to be referred to as the
KJ approximation and may be written as

d2σ

dω2d�2
= K rel(pmin)J (pmin,ρrel), (6)

where J (pmin,ρrel) is the relativistic Compton profile, a func-
tion of the relativistic charge density ρrel, and the relativistic
variable pmin [9] used in place of pz is given by

pmin = (1/q)|E(pmin)(ω1 − ω2) − ω1ω2(1 − cos θ )|. (7)

The relativistic kinematic factor in Eq. (6) is given by

K rel(pmin) = r2
0 m2ω2X̄(pmin)

2ω1qE(pmin)
. (8)

X̄(pmin), the integrated (over p and ζ ) form of X̄(p,ζ ) is
a function of ω1, ω2, and θ , given by Eq. (49) in [9] (also
discussed in Sec. II). Equation (6) can be used in place of the
full RIA expression [Eq. (5)] provided that the average initial
momentum of the ejected electron is small: 〈pi〉 < m even if
ω1 > m, for example in the case of K-shell ionization when
Z < 30. At higher Z this expression yields an overestimation
of the magnitude of the Compton peak, but it does give a
reasonably accurate prediction for its position on the ω2 scale.
This approximate RIA expression allows one to understand
the relativistic contributions to the position and magnitude of
the Compton peak in terms of a factorable K rel(pmin) and
J (pmin,ρrel) and the variables pmin and ρrel. A systematic
account and analysis for when and why the KJ approximation
breaks down will be the subject of a future publication.

Much of the results in this work on inelastic photon atom
Compton scattering can also apply to inelastic electron atom
collisions in which the atom is ionized, including the (e, 2e)
experiment. This is because the RIA expression for DDCS for
this process has the same form as Eq. (5) for the full RIA
expression. Also the inelastic electron scattering expression
can as an approximation be placed in the same form as Eq. (6)
[11]. Here K and pmin are in terms of an initial and scattered
electron rather than a photon. Some examples in which such
RIA inelastic electron scattering expressions are applicable can
be found in [12]. Also, with regard to the q → 0 nr limit, it is a
known fact that relativistic effects decrease with decreasing q.
For example, when q is sufficiently low, nonrelativistic approx-
imations have been used for calculations of electron scattering
off 3He at kinetic energies in the hundreds of MeV [13].

In Sec. II, mathematical and physical arguments are given
for how NRIA expressions for DDCS can be recovered
from the corresponding RIA expressions in the limit of low
momentum transfer (q → 0) provided that 〈pi〉 < m. This
q → 0 nr limit is advantageous, because it is in terms of ω2

and θ, the differential variables for DDCS, and this limit
is valid even at high ω1 (ω1 > m). Also it is argued that
much of the relativistic kinematic contribution to the Compton
peak is associated with the difference between two simple
terms, ω1ω2, which is a term in the relativistic pmin, and
[ω2

1 + ω2
2]/2, a term in the nr pnr

z . This approach allows for
an explanation for why one can use nonrelativistic expressions
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to obtain accurate predictions for DDCS around the Compton
peak when θ is small, even in the 1-MeV range. In Sec. III,
examples are given of comparisons between the predictions
of DDCS from S-matrix theory [10] and RIA theory [9],
for the latter using Eqs. (5) and (6) along with various
nonrelativistic modifications of these two equations. Here a
discussion is given on the relativistic contributions to the
Compton peak due to K and J and their dependence on
pmin and ρrel and the dependence of these two parameters
on ω1, θ, and Z. The results provide a guide for predicting
under what circumstances nr expressions can be used to obtain
an accurate Compton peak when ω1 is in the relativistic
regime. Finally, characterization of relativistic contributions to
Compton DDCS will be discussed for theories that go beyond
IA theory in Sec. IV. In this case the example discussed is an
improved approach for introducing relativistic kinematics into
the A2 matrix element expression such that it can be used to
obtain an accurate Compton peak.

II. KINEMATIC NONRELATIVISTIC LIMIT OF RIA
EXPRESSIONS FOR DDCS

The kinematic nonrelativistic limit of both the full [Eq. (5)]
and more approximate factorized [Eq. (6)] RIA expressions are
obtained in the limit q → 0 by first assuming that the average
initial momentum of the ejected electron is such that 〈pi〉 < m.
Then the two nr limits pmin → pnr

z as ω2 → ω1 and X̄ →
1 + cos2 θ → 2 as θ → 0◦ are taken. The three limits q →
0, ω2 → ω1, and θ → 0◦ are simultaneous at the Compton
profile maximum. In this section the nr limits of pmin and X̄

are discussed in Secs. II A and II B, respectively. In Sec. II C,
it is shown that the q → 0 nr limit is fundamental in that it also
applies to the simplest example of Compton scattering, which
is the scattering of a photon off of a stationary free electron.
Some of the equations in this section will be used to make
the A2 matrix element expression for DDCS kinematically
relativistic.

A. Nonrelativistic limit of pmin

The expression for pnr
z can be placed in a form similar to that

of pmin by substitution of the explicit formula for the magnitude
of momentum transfer, q = [ω2

1 + ω2
2 − 2ω1ω2 cos θ ]1/2 into

Eq. (2). This yields

pnr
z = (1/q)

∣∣m(ω1 − ω2) + ω1ω2 cos(θ ) − (
ω2

1 + ω2
2

)/
2
∣∣.
(9)

It can be argued that if 〈pi〉 < m such that the Compton
profile and therefore the Compton peak is sufficiently narrow,
causing the relevant range of pmin to be much less than m,
the result is E(pmin) = (p2

min + m2)1/2 ≈ m. By making these
assumptions, Eq. (7) for pmin can be expressed as

pmin ≈ prel
z = (1/q)|m(ω1 − ω2) + ω1ω2 cos(θ ) − ω1ω2|.

(10)

Clearly as the ω2 at which the Compton peak has its maximum
amplitude ω

pk
2 approaches ω1 (ωpk

2 → ω1 is simultaneous
with q → 0 and θ → 0◦), pmin → pnr

z . In Sec. III, it is
shown from numerical calculations that most of the kinematic
relativistic contribution to the Compton peak is associated with

the difference between pmin and pnr
z . This means that such

relativistic contributions can be characterized as the difference
between the third terms in Eqs. (9) and (10) since the first
two terms are identical. Not only does pmin → pnr

z result when
q → 0, it also does when ω � m because ω1 and ω2 are small.

Simple expressions for the position of the Compton profile
maximum on the ω2 scale can be obtained from Eq. (10)
in the relativistic case by setting pmin = 0 and solving for
ω2(pmin = 0):

ω2(pmin = 0) = mω1

m + ω1(1 − cos θ )
, (11)

and from Eq. (9) by setting pnr
z = 0 in the nr case:

ω2
(
pnr

z = 0
) = −(m − ω1 cos θ )

± [(m − ω1 cos θ )2 − ω1(ω1 − 2m)]1/2.

(12)

Both ω2(pmin = 0) and ω2(pnr
z = 0) at a given ω1 are smallest

when θ = 180◦. As θ decreases, both approach ω1, becoming
equal to ω1 when θ = 0. However, due to conservation of
energy, ω1 − ω2 = Ek + |Eb| (where Ek is the kinetic energy
of the ejected electron and Eb is the binding energy of the
ejected electron), and ω2(pmin = 0) and ω2(pnr

z = 0) can never
equal ω1 if the outgoing electron was initially bound. As
a result, θ cannot go all the way to zero and still have a
Compton peak maximum in the DDCS spectrum without
violating conservation of energy. This means that when Ek is
zero at the Compton peak maximum, θ > 0 and ω2(pmin = 0)
and ω2(pnr

z = 0) are both less than ω1 and the nr limit is never
quite reached. The smaller 〈pi〉 (or Eb) is, the closer is the
approach of pmin to its nr limit pnr

z . Therefore the true nr limit
for the RIA expression for DDCS at the Compton peak results
when θ → 0, not when Ek → 0. In Sec. III C, Eqs. (11) and
(12) will be used to calculate the relativistic shift with respect
to ω2 of the position of the Compton profile in the DDCS
spectrum such that it can be compared to the relativistic shift of
the position of the Compton peak over all θ at various ω1 and Z.

B. Nonrelativistic limit of the kinematic factor X̄

The nr limit of Eq. (5) or (6) is not complete without also
taking the nr limit of X̄. In Eq. (5) this involves taking the
nr limit of X̄(p,ζ ) and E(p) and in Eq. (6) the nr limits of
X̄(pmin) and E(pmin). Both X̄(p,ζ ) and X̄(pmin) are given by
expressions of the same form:

X̄ = R

R′ + R′

R
+ 2m2

[
1

R
− 1

R′

]
+ m4

[
1

R
− 1

R′

]2

, (13)

only differing in the expressions for R and R′. For both Eqs. (5)
and (6)

R′ = R − ω1ω2(1 − cos θ ), (14)

where R for Eq. (5) is given by

R(p,ζ ) = ω1[E(p) − D(p) − H (p) cos ζ ], (15)

where E(p) = [p2 + m2]1/2, D, and H are given by [9]

D(p) = (ω1 − ω2 cos θ )(p cos β)/q, (16)
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β is the angle between the vectors for momentum transfer and
that of the initial electron, and

H (p) = (ω2 sin θp sin β)/q = ω2 sin θ
(
p2 − p2

min

)1/2/
q.

(17)

R(pmin) for Eq. (6) is given by

R(pmin) = ω1[E(pmin) − D(pmin)], (18)

where E(pmin) = [p2
min + m2]1/2, D(pmin) is given by [9]

D(pmin) = (ω1 − ω2 cos θ )pmin/q, (19)

and H (pmin) = 0.
The nr limit of E(p) in Eq. (5) is valid around the

Compton peak maximum since the maximum amplitude of
the Compton profile occurs at pmin = 0 with J (∞, ρrel) = 0.
The assumption that p < m over the range of p at which
J (p,ρ) has a significant value is valid if J is sufficiently narrow
(the smaller 〈pi〉 becomes, the more narrow J becomes).
With these assumptions, E(p) becomes nearly constant and
approximately equal to m. In the case of Eq. (6), E(pmin) ≈ m

around the Compton peak (see Sec. II A). The nr limits of
X̄(p,ζ ) in Eq. (5) and X̄(pmin) in Eq. (8) [for Eq. (6)] can then
be obtained when θ → 0, resulting in ω1ω2(1 − cos θ ) → 0
in Eq. (14), making R ≈ R′, even if ω1 is high. Then in
Eq. (13), (1/2π )X̄(p,ζ ) → X̄(pmin) → Xnr = 1 + cos2 θ →
2. As a result, the kinematic factors in Eq. (5), which
includes X̄, E(p), and the p-independent factor m2r2

0 ω2/2qω1

[integration over X̄(p,ζ ) in the θ → 0◦ limit with respect
to ζ in Eq. (5) yields 2πXnr, where 2π is part of J as in
Eq. (1)] reduce to Knr [Eq. (4)]. Also K rel [Eq. (8)] reduces
to Knr [for Eq. (6)]. The results of the θ → 0 limit, the nr
limit for pmin → pnr

z as ω
pk
2 → ω1 (where ω

pk
2 is the ω2 at

which the Compton peak is at its maximum amplitude), along
with the assumption 〈pi〉 < m, resulting in ρrel → ρnr (see
Sec. III B), make it possible for Eq. (3) to be obtained from
the low-momentum-transfer nr limits of Eqs. (5) or (6) at the
Compton peak.

There is an alternate way to obtain the q → 0 nr limit of
Eq. (5). This involves starting with the expression for X̄int,
which is the integrated (over ζ ) form of X̄ and is given by [9]

X̄int(p) = 1

2π

∫ 2π

0
X̄dζ = 2 + F

{
1

[E − W − D)2 − H 2]1/2

− 1

[(E − D)2 − H 2]1/2

}

+ m2

ω2
1

{
E − D

[(E − D)2 − H 2]3/2

+ E − W − D

[(E − W − D)2 − H 2]3/2

}
, (20)

where

F = W − 2m2

ω1
− 2m4

ω2
1W

, (21)

W = ω2(1 − cos θ ). (22)

If one assumes that as 〈pi〉 → 0, then pmax → pmin → 0
(where pmax is the highest |pmin| at which the Compton profile
has a significant magnitude, located at the tail region J ), then

E → m, D → 0, and H → 0 and substitution of Eqs. (21)
and (22) into (20) yields

X̄
〈pi 〉→0
int = 2 +

[(
W − 2m2

ω1
+ 2m4

ω2
1W

) (
1

m − W
− 1

m

)]

+ m4

ω2
1

[
1

m2
+ 1

(m − W )2

]
. (23)

After substitution of

ω1 = mω2(pmin = 0)

m − ω2(pmin = 0)(1 − cos θ )
(24)

[obtained from rearrangement of Eq. (11)] into Eq. (23), the
result is

X̄
〈pi 〉→0
int = [ω2(1 − cos θ )]2

m[m − ω2(1 − cos θ )]
+ 1 + cos2 θ. (25)

Thus the nonrelativistic limit X̄nr
int = 1 + cos2 θ results either

when θ → 0◦ or when ω � m. Both limits require 〈pi〉 < m

(low Eb or Z). Using this along with the ω2 → ω1 limit, which
yields the limit pmin → pnr

z , and ρrel → ρnr as 〈pi〉 → 0, one
obtains the nr expression from the RIA expression for DDCS
[Eq. (5)]. The ω1 � m nr limit can also be obtained for the
nonintegrated X̄(p,ζ ) in a similar way.

X̄(pmin) is greatest when θ = 180◦, increasing with increas-
ing ω1 especially if θ is large (see Fig. 1). As θ decreases
to less than about 35◦, the three X(pmin) curves begin to
merge with the Xnr = 1 + cos2 θ curve. This suggests that
one can use Xnr to calculate DDCS at the Compton peak when
θ < 35◦ even at energies as high as 1 MeV. Finally, if one
considers X̄(pnr

z ) (heavy dashed curves) it is clear that it never
exceeds 2 at any energy or angle and like X̄(pmin) merges
with the Xnr curve, ultimately going to 2 as θ goes to zero.
Interestingly X̄(pnr

z ) appears to saturate at 2 at all θ as ω1

becomes increasingly larger. This suggests that much of the
non-ρ relativistic contribution to the Compton peak magnitude
is due to the difference between X̄(pmin) and X̄(pnr

z ). The
relativistic shift is due almost entirely to the difference between
ω1ω2 in pmin and (ω2

1 + ω2)/2 in pnr
z . Also, as the relativistic
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FIG. 1. θ dependence of the kinematic factor X at the Compton
peak maximum. X̄(pmin) [see Eqs. (13) and (18)], solid lines; X̄(pnr

z ),
short heavy dashed lines; Xnr = 1 + cos2 θ , fine dotted line: 1. 1.00
MeV, 2. 662 keV, and 3. 320 keV.
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shift increases, the increase in the peak magnitude is enhanced
due to the increase of relω

pk
2 /nrω

pk
2 , where relω

pk
2 and nrω

pk
2

correspond to the ω
pk
2 for the RIA [Eq. (5)] and NRIA [Eq. (3)]

expressions for DDCS, respectively.
The results in Secs. II A and II B suggest that one can use

nonrelativistic kinematics for small-angle scattering around
the Compton peak even at relativistic photon energies. One
can use Eqs. (11) and (12) to predict when one can use nr
expressions for the calculation of the Compton peak even at
high ω1 if Eb for the ejected electron is less than around 20 keV.
At higher Eb these formulas can still give a rough estimate
for when nr expressions apply; however, as Eb approaches
100 keV, the kinematic factors can substantially alter the shape
and ω

pk
2 of the Compton peak. A systematic analysis of the

ranges of ω1, θ, and Z under which the q → 0 nr limit is valid
will be given in Sec. III C.

C. The low-momentum-transfer nr limit of the kinematic
expression for inelastic photon scattering off a free

stationary electron

Here it is shown that the q → 0 nr limit is valid for
the kinematic expression for the simplest case of Compton
scattering, which is inelastic scattering of a photon off a free
stationary electron. Some of the formulas in the following
will be used to make the A2 matrix element kinematically
relativistic (see Sec. IV). Here the magnitude of the momentum
of the electron after photon scattering, pf , is equal to the
photon momentum transfer to the electron (due to conservation
of momentum), that is,

pf = q = [
ω2

1 + ω2
2 − 2ω1ω2 cos θ

]1/2
. (26)

The nonrelativistic momentum of the ejected electron is given
by

pnr
f = [2mEk]1/2, (27)

where Ek is the kinetic energy of the ejected electron. The
relativistic momentum is given by

prel
f = [

E2
k + 2mEk

]1/2
. (28)

Also the nonrelativistic energy of the ejected electron is given
by

Enr
f = m (29)

and the relativistic energy by

Erel
f = m + Ek. (30)

The spectrum of photon scattering off a free stationary electron
consists of a narrow band that occurs at a discrete ω2 rather than
a peak over a range of ω2 as in atomic scattering. Therefore the
limits θ → 0, ω2 → ω1, and q → 0 are always simultaneous.
In the low-ω nr limit, as ω → 0, q also approaches zero.
Then in Eq. (26) as q → 0, pf → 0 and Ek → 0. This results
in prel

f → pnr
f and Erel

f → Enr
f . Clearly, both the q → 0 and

ω � m limits in this case are essentially the same.
One can understand the relativistic shift of the Compton

peak in scattering of a photon off a bound electron in terms of
this simple free-electron experiment. From Eqs. (26)–(28), for
a given ω1 and θ it is clear that the condition prel

f = q requires

a higher ω2 (ωpk
2 ) than when pnr

f = q, because prel
f � pnr

f . The
relativistic shift will increase with increasing ω1 at a fixed θ .
It also increases with increasing θ at a fixed ω1.

III. CHARACTERIZATION OF THE RELATIVISTIC
CONTRIBUTIONS TO COMPTON DDCS

In this section, the relativistic contributions to the Compton
peak magnitude and position are characterized using the full
(5) and the more approximate factorized (6) RIA expressions.
In Sec. III A, using Eq. (6) the various relativistic components
that affect the Compton peak magnitude and position are
investigated. Equation (6), although it is approximate, allows
one to assess the relativistic contribution to the peak magnitude
due to the dependence of the kinematic factor K(pmin) on pmin

as well as the dependence of J (pmin,ρrel) on ρrel and to assess
the relativistic contribution to the peak position due to the
dependence of J (pmin,ρrel) on pmin. Equation (5) could be
used here; however, determining the separate contributions
of K and J would not be possible. Also Eq. (6) only loses
its accuracy when Eb is greater than about 10 keV and the
inaccuracy is only reflected in the Compton peak magnitude,
not its position. Doubly differential cross sections were
obtained from relativistic second-order perturbation S-matrix
expressions [10] using the code of Bergstrom and co-workers
[14] with a Dirac Slater potential. Doubly differential cross
sections from S-matrix calculations are used as a standard
for assessing the accuracy of results obtained from RIA [9]
and NRIA [6,7] expressions. All calculated Compton DDCS
are done within the independent particle approximation and
are therefore inclusive. In Sec. III B the Z dependence of the
relativistic contribution to the Compton peak magnitude due
to K-shell ρrel is investigated by comparing J (pmin,ρrel) to
J (pmin,ρnr) at various Z. Also the nr limit ρrel → ρnr, which is
nonkinematic in that it remains relativistic as q → 0 (as well
as when ω � m), is discussed. In Sec. III C Eqs. (3) and (5)
are used to obtain the relativistic shifts and increases in the
Compton peak magnitude over all θ at chosen ω1 and Z. The
purpose is to provide the necessary information that one can
use to determine when one can use nr expressions to obtain an
accurate Compton peak at high ω1.

All DDCS from IA expressions were obtained from hydro-
genlike wave functions. This is a good approximation because
screening effects are negligible for the K-shell ionization of
moderate to heavy atoms. Doubly differential cross sections
from NRIA theory using Eq. (3) were obtained by using the
following expression:

J (pz,ρnr) =
∫ ∞

pz

pρnr(p)dp = (2αZm)5

12π
[
p2

z + (αZm)2
]3 . (31)

Doubly differential cross sections obtained by using Eq. (6) in
which ρrel is replaced by ρnr(p) = χ2(p) are obtained from the
Fourier transform of the nr radial hydrogenlike wave function
given by

χ (p) = 23/2(αZm)5/2

π1/2[(αZm)2 + p2]2
. (32)

043404-5



L. A. LAJOHN PHYSICAL REVIEW A 81, 043404 (2010)

In the relativistic case where ρrel(p) = [G2(p) + F 2(p)] the
expression

J (pmin,ρrel) =
∫ ∞

pmin

p[G2(p) + F 2(p)]dp, (33)

which involves numerical integration over p, is used.
G(p) and F (p) are the Fourier transforms of the corre-

sponding radial Dirac large G(r) and small F (r) compo-
nent hydrogenlike wave functions, given by the following
expressions:

G(p) = (2αZm)γ+1/2C+ γ sin
[
(γ + 1) tan−1

(
p

αZm

)]
π1/2p[p2 + (αZm)2]

(γ+1)
2

, (34)

F (p) =
(2αZm)γ+1/2C−

{
sin[γ tan−1( p

αZm
)]

p
− γ cos[(γ+1) tan−1( p

αZm
)]

[p2+(αZm)2]1)/2

}
π1/2p[p2 + (αZm)2]

γ

2

(35)

where

C± =

⎧⎪⎨
⎪⎩

1 ±
[
1 + (

αZ
γ

)2
]−1/2

2�(2γ + 1)

⎫⎪⎬
⎪⎭

1/2

, (36)

with γ = [1 − (αZ)2]1/2. These expressions are used for
calculating DDCS from Eq. (5) as well as J (pmin,ρrel) in
Eq. (6).

A. Identification of the relativistic contributions
to the Compton peak

Doubly differential cross section predictions obtained from
RIA expressions and nonrelativistic modifications of it, along
with S-matrix theory, for Cu (Z = 29) with ω1 = 662 keV
and θ = 180◦, are given in Fig. 2. See Refs. [15–18] for some
examples of the many measurements and calculations done on
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FIG. 2. Doubly differential cross sections for copper (Z =
29), K-shell ionization, ω1 = 662 keV. and θ = 180◦. Curves are
labeled as follows: 1, S-matrix, solid line; 2, RIA based on
Eq. (5), short heavy dashes; 3, RIA based on Eq. (6), heavy
dots; 4, Eq. (6) with K rel(pnr

z ), J (pmin,ρrel), fine dots; 5, Eq. (6)
with K rel(pmin), J (pnr

z ,ρrel), dots and long dashes; 6, Eq. (6)
with K rel(pnr

z ), J (pnr
z ,ρrel), dots and short dashes; 7, Eq. (6) with

Knr, J (pnr
z ,ρrel), dots in pairs; 8, Eq. (6) with Knr, J (pnr

z ,ρnr) fully
nonrelativistic [NRIA, same as Eq. (3)], dots in triples.

Compton DDCS at high ω1. A value of θ = 180◦ was chosen to
maximize relativistic effects on the Compton peak magnitude.
The Compton peak predictions from S-matrix (designated by
peak 1 in Fig. 3) and RIA expressions using Eq. (5) (peak 2)
yield a maximum peak amplitude located at ω

pk
2 = 188 keV,

which corresponds to an ejected electron velocity of ve/c of
0.84. The predicted DDCS obtained from Eq. (6), designated
by peak 3, although an approximation of Eq. (5), is in good
agreement with peaks 1 and 2. From these results one can
conclude that the full RIA expression of Ribberfors [Eq. (5)]
as well as his approximation [Eq. (6)] of Eq. [5] works well,
for a light element at ω1 = 662 keV.

The effects of replacing pmin by pnr
z in K of

Eq. (6) are shown [i.e., K rel(pmin), J (pmin,ρrel) → K rel(pnr
z ),

J (pmin,ρrel) for peak 3 → 4]. The magnitude of the resulting
Compton peak 4 is reduced by more than 60% and its position
is only slightly altered (compared to peak 3). If pmin is
replaced by pnr

z in J but not K [i.e., K rel(pmin), J (pmin,ρrel) →
K rel(pmin), J (pnr

z ,ρrel) for peak 3 → 5] the result is a peak shift
to lower ω2 by about 82 keV with about a 50% reduction of
the peak magnitude, which is largely due to ω

pk
2 being smaller

for peak 5 compared to 3 and the DDCS magnitude being
proportional to ω2 [see Eq. (8)], but with a substantial contribu-
tion due to the difference between X̄(pmin) at ω

pk
2 = 188 keV

and at ω
pk
2 = 106 keV and a smaller contribution due to q,

which is also a function of ω2. If K and J are both functions
of pnr

z [i.e., K rel(pmin), J (pmin,ρrel) → K rel(pnr
z ), J (pnr

z ,ρrel)
for peak 3 → 6], the resulting peak 6 has a magnitude more
than 75% less than peak 3 and is located at ω

pk
2 = 106 keV,

which is about 82 keV lower than the ω
pk
2 of peak 3. Next

the kinematic factor is made completely nonrelativistic in
Eq. (6); by replacing K rel(pnr

z ) [Eq. (8)] by Knr [Eq. (4)],
the resulting peak, 7, has a somewhat greater magnitude
than 6 [i.e., K rel(pnr

z ), J (pnr
z ,ρrel) → Knr, J (pnr

z ,ρrel) for peak
6 → 7]. Finally, Eq. (6) becomes completely nonrelativistic
[NRIA, equivalent to Eq. (3)] when ρrel replaces ρnr; the
resulting peak, 8 [i.e., Knr, J (pnr

z ,ρrel) → Knr, J (pnr
z ,ρnr) or

peak 7 → 8], is very similar to peak 7, demonstrating a
nearly negligible relativistic effect due to ρrel on DDCS.
These comparisons show that most of the relativistic effect
on the Compton peak within RIA theory is associated with
the difference between pmin and pnr

z , confirming conclusions
based on the result given in Fig. 1.
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FIG. 3. Z dependence of the K-shell Compton profile as a
function of pmin: J (pmin,ρrel), solid line; J (pmin,ρnr); short heavy
dashed line; and J (pmin,ρrel) with γ = 1, heavy dots. The units are
defined as h̄ = c = 1. (a) Z = 29; (b) Z = 62; (c) Z = 92.

B. Relativistic contribution of the K -shell ρrel to
the Compton profile

Here a discussion is given on how relativistic effects due
to ρrel affect the magnitude and shape of the Compton profile.
See, for example, [19,20] for measurements and calculations
of the Compton profiles of heavy atoms. The position of the
Compton profile J on the ω2 scale is determined by where
pmin [Eq. (11)] or in the nr case by where pnr

z [Eq. (12)] is
zero. As q → 0 the Compton profile moves to higher ω2 and
its position is dependent on ω1 and θ . However, the magnitude
and shape of J are not changed unless Z is changed. If Z is
changed the position of J is not altered; however, the shape
and magnitude of the Compton peak are indirectly affected
with changing Z due to the presence of kinematic factors (see
Sec. III C). In IA theory, not only does the Compton profile
always have its maximum amplitude at pmin = 0 or pnr

z = 0,
it is always symmetrical with respect to the zero position.

The results in Fig. 3 are obtained from Eqs. (31) and (33).
In Eq. (31) pnr

z is replaced by pmin. The nr limit of G(p) is
χ (p) and that of F (p) is zero [see Eqs. (32) and (34)–(36)].
Here this nr limit is due to two limits: γ → 1 and p → 0,

both simultaneous with Z → 0. The p → 0 limit results as
the Compton profile narrows with decreasing Z (〈pi〉) (see
arguments in Sec. II B). The nr limits of G(r) and F (r) involve
γ → 1 but not p → 0. In Fig. 3 a comparison is made among
J (pmax,ρrel), J (pmax,ρrel) with γ = 1, and J (pmax,ρnr). This
shows the total relativistic contribution to J due to the γ → 1
[compare J (pmin,ρrel) to J (pmin,ρrel) with γ = 1], where
F (p) → 0, and that due to p → 0 [compare J (pmin,ρrel) with
γ = 1 to J (pmin,ρnr)]. Here fmax is defined as the percentage of
the contribution of the small component wave function, F (p)
[Eq. (35)], to the Compton profile amplitude at its maximum.
When Z = 29 [γ = 0.98, fmax = 1.6%], the difference in the
maximum amplitude between J (pmin,ρrel) and J (pmin,ρnr) is
nearly negligible, with the magnitude of the latter less than
2% greater than the former at pmin = 0. This confirms that
one can use ρnr to calculate DDCS at any energy and θ if
Z < 30. However, as Z increases above 29 the differences
between J (pmin,ρrel) and J (pmin,ρnr) increase. This difference
in the magnitude between J (pmin,ρrel) and J (pmin,ρnr) is about
9.5% when Z = 62 (γ = 0.89, fmax = 7.3%) and is about
26% when Z = 92 (γ = 0.74, fmax = 16.4%), an increase
that is proportional to Z2. The difference in the shape of
the relativistic and nonrelativistic Compton profiles becomes
more apparent with increasing Z. The curves cross, with
the relativistic Compton profile magnitude exceeding the
nonrelativistic one at high |pmin|. It is clear from Fig. 3 that,
with increasing Z, this relativistic effect around the maximum
amplitude and at the tails of the Compton profile becomes
progressively greater. These effects are partly due to the
increase of fmax with increasing Z. Most of the rest of the
effect on the tails is due to the effect γ → 1 has on G(p). The
p → 0 factor appears to have its greatest influence around the
Compton profile maximum.

The Compton profile at its maximum increases in mag-
nitude and becomes more narrow with decreasing Z. As
Z decreases the contribution of the small component F (p)
to J rapidly decreases. This is largely because as γ →
1, C+ → 2−1/2 while C− → 0. However, the decrease in
the contribution of F (p) to J is enhanced by p → 0 be-
cause G(p)/N+ → 1/(αZm)3 while F (p)/N− → 0 [N+ =
(2αZ)γ+1/2C+/π1/2] and [N− = (2αZ)γ+1/2C−/π1/2]. Thus
as Z becomes small, F (p) → 0, G(p) → χ (p), and ρrel

behaves more like ρnr. Then the Compton profile magnitude
at pmin = 0 continues to increases now in proportion to
1/Z. In this limit J also becomes more narrow because
Eb = αZm decreases and pmin or pz must also become
progressively smaller in order for J to have a significant
magnitude.

The relativistic decrease in the Compton peak associated
with the dependence of the Compton profile J on ρrel also ap-
plies to the DDCS peak that results from the inelastic electron
atom collisions with ionization, since the RIA expression for
that process can also be expressed approximately in DDCS =
KJ form [11] as in the inelastic photon-atom scattering case.
However, the dependence of J on pmin will be somewhat
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different because the inelastic electron scattering version of
this parameter is somewhat different.

C. ω1, θ , and Z dependence of the relativistic shift and increase
in magnitude of the Compton peak

Here the dependence of the size of the K-shell Compton
peak relativistic shift 
ω

pk
2 and the extent of the relativistic

increase in the Compton peak magnitude Rrel over all θ are
evaluated at selected ω1 and Z. The effect that ω1 and Z has
on 
ω

pk
2 and Rrel as well as their respective approach to the nr

limit is analyzed.
In Fig. 4, the relativistic shift on the scale of ω1 is

defined as 
ωrel
2 = [relω

pk
2 − nrω

pk
2 ]/ω1, where relω

pk
2 and nrω

pk
2

are the positions of the RIA and the corresponding NRIA
Compton peak maxima, respectively. These relativistic shifts
are compared to the shifts of the Compton profile where

ωrel

2 = [ω2(pmin = 0) − ω2(pnr
z = 0)]/ω1 [where ω2(pmin =

0) and ω2(pnr
z = 0) are defined by Eqs. (11) and (12),

respectively]. In Table I the minimum that θ can be and still
have a Compton peak maximum in the DDCS spectrum is
represented by θmin. Values of θmin for various ω1 and Z are
given. The maximum θ at which one is within an n% level
of convergence is also given for these variables. For example,
when ω1 = 1.0 MeV and Z = 15, 
ωrel

2 is within 0.1% of
convergence (on the scale of ω1) when 2.8◦ � θ � 10.6◦.
In this case, a 0.1% level of convergence corresponds to a
relativistic shift of 1 keV and the RIA and NRIA Compton
peaks are virtually indistinguishable on the DDCS spectrum.
Finally, in Table I, θmax is defined as the θ at which 
ωrel

2 is at a
maximum.

The approach of 
ωrel
2 to zero as θ → 0◦, which is actually

due to the simultaneous limit ω
pk
2 → ω1 improving with

decreasing Z, since θmin decreases due to conservation of
energy. The convergence of 
ωrel

2 is well within 1% of ω1 in
the DDCS spectrum at all ω1 when Z < 62. Not surprisingly

ωrel

2 increases with increasing ω1, while the θmax decreases,
eventually approaching 0◦, as ω1 continues to increase into the

MeV range. This approach of θmax to zero can be explained
in the context of the Compton profile, labeled CPF in Fig. 4.
The reason for this behavior is that the approach of ω2(pnr

z = 0)
[see Eq. (12)] to ω1 with decreasing θ lags behind the approach
of ω2(pmin = 0) [see Eq. (11)] to ω1 at intermediate θ due to
ω2(pnr

z = 0) being quadratic and having terms of differing sign
and powers of cos θ . At a given ω1, 
ωrel

2 increases and θmax

decreases with decreasing Z, approaching the limit of 
ωrel
2

for the Compton profile (CPF). This Z dependence is due
to the effect that the kinematic factors have on the Compton
profile. As ω1 increases, this approach to the Compton profile
limit requires a progressively lower Z. When ω1 = 320 keV
and Z = 92, 
ωrel

2 is higher than the CPF curve because the
impulse approximation loses its validity with increasing Z and
decreasing ω1.

Figure 5 shows the θ dependence of the ratio Rrel =
Arel/Anr of the maximum magnitude of the RIA Compton peak
Arel(at relω

pk
2 ) to that of the NRIA Compton peak magnitude

Anr(at nrω
pk
2 ). One sees that Rrel is strongly influenced by X̄ (see

Fig. 1), the ratio relω
pk
2 /nrω

pk
2 , with a smaller effect due to the

dependence of q on ω2. The size of Rrel as well as its approach
to unity is dependent on ρrel/ρnr. Rrel is greatest at large θ,

especially if Z is low. Rrel increases with increasing ω1. This
is partly due to X̄(relω

pk
2 )/X̄(nrω

pk
2 ), but there is a potentially

larger scale up due to relω
pk
2 /nrω

pk
2 , which is especially large

when ω1 is in the MeV range, where nrω
pk
2 shifts to a very

low ω2. Rrel is somewhat affected by q(nrω
pk
2 )/q(relω

pk
2 ) [see

Eqs. (3) and (5)]. Rrel for a given ω1 decreases with increasing
Z because ρrel/ρnr decreases and because the error caused by
treating K and J in Eq. (3) as factorable increases. Like 
ωrel

2 ,
the approach of Rrel to the nr limit as θ → 0◦ improves with
decreasing Z. At θmin, the convergence of Rrel is to within 1%
when Z = 15, 3% for Z = 29, then rapidly becomes poorer
as Z exceeds 60 (also see Table I).

There are two relativistic factors that do not disappear as
θ → 0◦: ρrel/ρnr (to be referred to as the ρ factor) and the
KJ factor, which results in treating K and J in Eq. (3) [also

TABLE I. ω1, θ, and Z dependence of the relativistic peak shift 
ω
pk
2 and increase in its magnitude Rrel. 
ω

pk
2 = relω

pk
2 −nrω

pk
2

ω1
and

Rrel = Arel
max/A

nr
max is the ratio of the maximum amplitudes of the relativistic Arel

max to the nonrelativistic Anr
max Compton peaks at θmin. θmin is

the smallest θ possible for the Compton peak maximum to be in the DDCS spectrum. θn% is the largest θ in order to have an n% level of
convergence of 
ωrel

2 . θmax is the θ at which 
ω
pk
2 is at its maximum.

ω1 (keV) Z θmin (deg) 
ωrel
2 at θmin Rrel at θmin θ(0.1%) (deg) θ(1%) (deg) θmax (deg)

1000 15 2.8 8 × 10−6 0.9921 10.6 19.6 68.5
1000 29 5.8 9.6 × 10−5 0.9708 9.96 19.5 72.1
1000 62 13.0 2.05 × 10−3 0.8699 – 20.1 82.1
1000 92 35.5 1.31 × 10−2 0.7264 – – 97.5
662 15 5.9 3.0 × 10−5 0.9922 15.0 26.7 105.3
662 29 7.5 7.55 × 10−5 0.9707 14.8 27.3 107.5
662 62 20.0 3.12 × 10−3 0.8713 – 28.2 120.9
662 92 35.5 1.98 × 10−2 0.7463 – – 180
320 15 9.8 5. × 10−5 0.9921 24.5 51.1 180
320 29 17.8 2.25 × 10−5 0.9708 25.8 51.1 180
320 62 45.0 7.53 × 10−3 0.8937 – 49.9 180
320 92 103.0 4.41 × 10−2 1.05 – – 180
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FIG. 4. θ , ω1, and Z dependence of the relativistic shift 
ωrel
2 .

The relativistic shift on the ω1 scale is defined as 
ωrel
2 = [relω

pk
2 −

nrω
pk
2 ]/ω1, where relω

pk
2 and nrω

pk
2 are the ω2 at which the RIA

and NRIA Compton peaks have their maximum amplitude. CPF
represents the relativistic shift of the Compton profile given by

ωrel

2 = [ω2(pmin = 0) − ω2(pnr
z = 0)]/ω1, where ω2(pmin = 0) and

ω2(pnr
z = 0) are given by Eqs. (11) and (12), respectively.

Eq. (6)] as separable functions with respect to p rather than
using the integrated full RIA expression [Eq. (5)]. Here the ρ

factor is obtained from the difference between the maximum
Compton peak amplitudes from Eqs. (5) versus (6), while the
contribution from both the ρ and KJ factors comes from the
corresponding difference in peak amplitudes from Eqs. (3)
versus (5). Both the ρ and KJ factors cause Rrel to decrease
with increasing Z. The contribution of the ρ factor is always
proportional to Z2 near the Compton profile maximum, but
it is independent of ω1 and θ , while the KJ factor, which
is nearly independent of ω1, is strongly dependent on θ ,
largest at 180◦, and much smaller at small θ . For example,
when Z = 15 and ω1 = 662 keV, the KJ factor causes a 1.2%
increase in the Compton peak amplitude above its exact value
when θ = 180◦ but only a 0.30% increase when θ = 5.9◦.
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FIG. 5. θ , ω1, and Z dependence of the relativistic increase in the
Compton peak magnitude Rrel. Rrel = Arel/Anr, where Arel and Anr

are the maximum amplitudes of the RIA and NRIA Compton peaks
at relω

pk
2 and nrω

pk
2 , respectively.

When Z = 62 the increase in peak magnitude is 19.0% and
5.2% when θ is 180◦ and 20◦, respectively. The increase in the
peak magnitude that results by replacing ρrel by ρnr is 0.50%
and 9.5% when Z is 15 and 62, respectively. The increase of
the KJ contribution is proportional to Z2 at 180◦ and when θ is
less than about 35◦, but it deviates greatly from Z2 behavior at
intermediate angles. The Z2 dependence of the KJ factor that
results as θ → 0◦ is because X̄ → Xnr = 1 + cos2 θ, causing
X̄ to become independent of p (see Fig. 1 and discussion
in Sec. II B). Such effects will be explained in a future
manuscript on a systematic comparison between Eqs. (5) and
(6) with numerical examples and mathematical explanations
for when and why Eq. (6) breaks down. The only factors
that contribute significantly to the deviation of Rrel from
unity at small θ are the ρ and KJ factors. Both effects are
proportional to Z2 and the KJ error is much smaller, in fact
about one-fourth of what it is at θ = 180◦. Thus it should
be easy to correct for any errors at small θ that would occur
using nr expressions to calculate DDCS even when Z is fairly
high.
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IV. RELATIVISTIC CHARACTERIZATION OF THE A2

MATRIX ELEMENT EXPRESSION FOR
CALCULATING DDCS

The nonrelativistic first-order perturbation QED S-matrix
expression for DDCS based on the first term of Hint designated
by 〈i|A2|j 〉 (see Sec. I, can be made kinematically relativistic
(see, for example, [4] and [8]) by making the momentum
and energy of the ejected electron relativistic. In this section
it is demonstrated that the relativistic shift of the Compton
peak is associated with momentum, while the relativistic
increase in the Compton peak amplitude is associated with
energy. This separation of relativistic effects with respect
to variables is similar to that in the corresponding RIA
expression as discussed in Sec. III A. The main difference
here is that, in the RIA expression, ρ is a separable factor
which can be made relativistic or nonrelativistic, while in
〈i|A2|j 〉, the wave-function component which is nr cannot
readily be factored out. Further, a modification of this approach
for making the 〈i|A2|j 〉 expression for DDCS kinematically
relativistic, which yields a more accurate Compton peak, will
be proposed and tested.

The expression based on 〈i|A2|j 〉 for calculating DDCS is
nonrelativistic but is derived from a more precise theory than
the corresponding NRIA expression [Eq. (3)] and is given by

d2σ

dω2d�2
= r2

0

(
ω2

ω1

)(
1 + cos2 θ

2

)

×
∫ π

0

∫ 2π

0
|〈i|A2|f 〉|2 sin θedθedφe, (37)

where 〈i|A2|f 〉 [see Eq. (A2)] is derived from Eqs. (23) and
(24) of Gavrila [21]. Here 〈i| and |f 〉 represent the initial
and final states, respectively, and θe and φe are the polar and
azimuthal angles for the ejected electron, respectively. His
expression has been shown to yield an accurate Compton peak
in nr regimes (see, for example, [14]). In Fig. 6, where Z = 29
and ω1 = 320 keV, peak 1 corresponds to the S-matrix, peak
2 to the RIA [Eq. (5)], and peak 3 to 〈i|A2|f 〉 predictions
for DDCS. Peak 3 is shifted to a lower ω2 by about 14 keV
from peaks 1 and 2 and has a much smaller peak magnitude.
If one replaces pnr

f [Eq. (27)] by prel
f [Eq. (28)] in the 〈i|A2|f 〉

expression [Eq. (37)], the Compton peak shifts to higher ω2,
with a small increase in the peak magnitude due to the direct
proportionality of DDCS to ω2 [compare the Compton peak
labeled 3 for 〈i|A2|f 〉 to that labeled 4 for 〈i|A2|f 〉 with prel

f in
place of pnr

f in Fig. 6]. This is similar to what would happen if
one were to replace pnr

z by pmin in J but not K using Eq. (6). If
one replaces Enr

f [Eq. (29)] by Erel
f [Eq. (30)] with pf still nr,

the result is an increase in peak magnitude with no significant
shift in the peak position (compare peak 5 to peak 3). Then
pnr

f and Enr
f are replaced by prel

f and Erel
f , respectively. This

modified matrix element is referred to as rpe〈i|A2|f 〉 (where
rpe stands for relativistic momentum and energy). By using
rpe〈i|A2|f 〉, the resulting peak 6 is in reasonable agreement
with the S-matrix and RIA predictions, but it could be better.
Apparently just making pf and Ef relativistic is not quite
enough. However, these results demonstrate that most of the
relativistic shift is associated with pnr

f → prel
f and the increase

in the peak magnitude can be attributed to Enr
f → Erel

f . The nr
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FIG. 6. Effect of relativistic kinematics on the prediction of
the Compton peak for Cu (K-shell) calculated from modified and
unmodified 〈i|A2|f 〉 [see Eq. (37) and the Appendix, Eq. (A2)]
with ω1 = 320 keV and θ = 180◦: pnr

f [Eq. (27)]; prel
f [Eq. (28)]; Enr

k

[Eq. (29)]; Erel
f [Eq. (30)]. 1, S-matrix, solid line; 2, RIA [Eq. (5)],

short heavy dashes; 3, 〈i|A2|f 〉, heavy dots; 4, 〈i|A2|f 〉 with prel
f and

Enr
f , fine dots; 5, 〈i|A2|f 〉 with Erel

f and pnr
f , dots and long dashes; 6,

〈i|A2|f 〉 with prel
f and Erel

f (rpe〈i|A2|f 〉), dots and short dashes; 7,
〈i|A2|f 〉 with prel

f and Enr
f and Xnr = 1 + cos2 θ replaced by X̄(pmin)

in Eq. (37) designated by X̄〈i|A2|f 〉.

limit in this case occurs as Ek → 0 rather than as θ → 0 as in
the RIA case.

One can obtain a more accurate Compton peak than peak
6 in Fig. 6, by replacing 1 + cos2 θ = Xnr in Eq. (37) by
X̄(pmin) [Eqs. (13) and (18)], with 〈i|A2|f 〉 a function of
prel

f and Enr
f . This modified expression for DDCS is referred

to as X̄〈i|A2|f 〉. The idea here is that since the relativistic
increase in the Compton peak magnitude is associated only
with Enr

f → Erel
f (not pnr

f → prel
f ) in 〈i|A2|f 〉 this effect is

similar to the difference in the Compton peak magnitude
predictions between Xnr and X̄ in the RIA expression for
DDCS. The resulting peak 7 has an ω

pk
2 that is in good

agreement with peaks 1 and 2 and a magnitude that is just
a little less than these two peaks.

In Figs. 7(a) and 7(b) for Cu with ω1 = 662 keV, the
rpe〈i|A2|f 〉 expression for DDCS yields a Compton peak
magnitude that is over 75% greater than the S-matrix result
when θ = 180◦, while if θ = 120◦ the difference decreases to
about 45% (compare peak 3 for rpe〈i|A2|f 〉 to peaks 1 and 2
for the S-matrix and RIA results, respectively). A large-θ and
low-Z example was chosen because Costescu and Spanulescu
[8] reported that, when ω1 = 661 keV, their expression can
only yield a good Compton peak when θ � 60◦. The other
reason for this choice is that the contribution of the infrared
rise to the Compton peak which is only due to the �p · �A matrix
element (〈i| �p · A|f 〉) is minimized when Z is low and tends
to decrease with increasing θ . One apparent reason for the
result of Costescu and Spanulescu [8] is that inelastic photon
scattering behaves progressively less relativistic as θ → 0◦.
Thus if ω1 is not too relativistic, their approximation is good
even at large θ , but as ω1 is increased, θ must be progressively
smaller such that the Compton peak behavior does not become
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FIG. 7. Accuracy of K-shell DDCS obtained from X̄〈i|A2|f 〉 compared to rpe〈i|A2|f 〉 at large θ with ω1 = 662 keV: 1, S-matrix, solid
line; 2, RIA, short heavy dashes; 3, rpe〈i|A2|f 〉, heavy dots; 4, X̄〈i|A2|f 〉, fine dots. (a) Z = 29, θ = 180◦; (b) Z = 29, θ = 120◦; (c) Z = 62,
θ = 180◦; (d) Z = 62, θ = 120◦.

so relativistic that their approximation breaks down. The
present results are much better when the Compton peak is
obtained by using X̄〈i|A2|f 〉 rather than rpe〈i|A2|f 〉 (compare
peak 4 to peaks 1–3). The result is similar for Sm (Z = 62) with
ω1 = 662 keV when θ = 180◦ [Fig. 7(c)] and when θ = 120◦
[Fig. 7(d)]. However, peak 4 is shifted to a slightly lower ω2

compared to the RIA and S-matrix results (peaks 1 and 2).
This shift becomes progressively more pronounced as Z is
increased above Z = 62 (results of which are not shown).
This shift to lower ω2 is in part due to the difference in
the respective nr limits for the 〈i|A2|f 〉 expression, which
is Ek → 0, and the corresponding RIA expression for DDCS,
which is ω

pk
2 → ω1. This small shift, which might otherwise

be larger, is probably reduced by the fact that there is no
〈i| �p · �A|f 〉 component included in the present calculations.
This may also account for the fact that peak 4 in Figs. 7(c)
and 7(d) is not greater in magnitude than peaks 1 and 2 even
though at Z = 62 the magnitude of the nr Compton profile is
almost 10% greater in magnitude than the relativistic one (see
Sec. III B and Fig. 3). The magnitude of the X̄〈i|A2|f 〉 peak
eventually does exceed that of the S-matrix and RIA results
as Z is increased higher than 62 (also not shown). X̄〈i|A2|f 〉
always yields a more accurate Compton peak than rpe〈i|A2|f 〉

when ω1 is high, while the difference in the Compton peaks
due to using X̄〈i|A2|f 〉 instead of rpe〈i|A2|f 〉 decreases with
decreasing ω1. A more detailed study of the use of X̄〈i|A2|f 〉
for calculating both DDCS and TDCS will be given in a
future paper. The use of a X̄〈i|A2|f 〉 expression should yield
a more accurate Compton peak for TDCS (see the Appendix)
than the corresponding RIA expressions. This is because IA
theory breaks down for TDCS unless 〈pi〉/q � 1, while for
DDCS the requirement for accuracy is much less rigid and is
〈pi〉/q � 1 [22]. Such limitations do not apply to the
corresponding 〈i|A2|f 〉 expressions for DDCS or TDCS.

V. SUMMARY AND CONCLUSIONS

The low q → 0 limit of the RIA expression for DDCS
was taken in terms of ω2 and θ, the differential variables
for DDCS. This made it possible to characterize much of the
relativistic kinematic contribution to DDCS as being due to the
difference between ω1ω2 in pmin and (ω2

1 + ω2
2)/2 in pnr

z . This

characterization was completed by linking ω
pk
2 → ω1 to the

limit pmin → pnr
z then to the relativistic shift of the Compton

peak, which is due to the dependence of J (pmin,ρ) on pmin,
and to the relativistic increase in the peak magnitude due to
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the dependence of X̄(pmin) on pmin. The second limit θ → 0
leads to X̄(pmin) → 1 + cos2 θ → 2, which accounts for the
remainder of the relativistic kinematic effect on the Compton
peak, much of which also depends on the difference between
one term in pmin and pnr

z . Also these two limits as well as
q → 0 are simultaneous at the Compton profile maximum
where pmin = pnr

z = 0. This characterization of relativistic
contributions to the Compton peak provides a useful guide for
estimating the relativistic effects under various circumstances
and for knowing when purely nonrelativistic or kinamatically
modified nr expressions will suffice at high energies. For
example, this characterization shows that one can obtain
accurate predictions for DDCS at any energy and scattering
angle by using relativistic kinematics with a nonrelativistic
charge density for atoms of nuclear charge less than about 30
(for K-shell ionization, or Eb < 10 keV in general). From the
present results, one can also understand why good predictions
for the position and magnitude of the Compton peak can
be obtained from unmodified nonrelativistic expressions (not
necessarily IA) even if ω > m if θ is small and 〈pi〉 < m

(Eb < 10 keV). In fact nr expressions can yield accurate
predictions for the Compton peak even if ve/c is as high
as about 0.4. The θ range that would allow one to use nr
expressions decreases with increasing ω1. For example, at
ω1 = 3 MeV, θ would have to be less than about 5◦ in order to
obtain an accurate Compton peak; however, θmin also decreases
with increasing ω1.

Calculations from nr expressions generally do not re-
quire nearly as much computer resources as are needed for
relativistic expressions. For example, calculation of DDCS
using the relativistic code of Bergstrom [14] requires rapidly
increasing amounts of computation time with increasing
energy and decreasing binding energy of the ejected electron.
Also computations when ω1 > 900 keV are not possible. If
one is doing whole-atom DDCS calculations it is clearly
not practical and sometimes not possible to use this fully
relativistic code. Under such circumstances, it becomes nec-
essary to use simpler nr expressions such as IA or if greater
accuracy at small θ is needed one may use the nr S-matrix
expressions of Gavrila [21], which provide accurate DDCS in
nr regimes. Such expressions do not have the restrictions that
the relativistic version does. Also any relativistic error due to
ρnr is proportional to Z2 near the Compton peak maximum
and can be corrected. Thus knowing the ranges of θ , ω1 and
Z, over which nr expressions can be used helps one to choose

the theoretical method that requires the least in computational
resources (a big advantage for very large systems) but yields
the necessary level of accuracy.

The present results indicate that it may be possible to use
the simplest NRIA expression [Eq. (3)] even for a K-shell
Compton peak for a fairly high Z at small θ , since the only
significant relativistic effects that remain are those due to the ρ

and KJ factors, both effects being proportional to Z2. It should
be possible to correct around the Compton peak maximum for
Z at least as high as about 60 or Eb < 50 keV. For whole-atom
DDCS, which are obtained from a weighted sum of subshell
DDCS, one might use nr S-matrix expressions for the K

and if necessary L shells, then use NRIA expressions for
the remaining subshells at small θ . The simpler the expression
the more possible it becomes to do calculations on larger
systems such as whole atoms, molecules, and clusters as well
as to make it easier to include electron-electron correlation
effects in such larger systems.

The results given in Sec. IV show that one can use the
improved kinematically relativistic 〈i|A2|f 〉 matrix element
arrived at from the information gained in characterization of
the RIA expression for DDCS to calculate DDCS, valid at
any θ . If a more accurate Compton peak and/or a full DDCS
spectrum is needed one may, in principle, combine 〈i|A2|f 〉
with a kinematically relativistic 〈i|p · A|f 〉.
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APPENDIX

The expression for triply differential cross sections, differ-
ential with respect to ω2, the solid scattering angle �2 of the
photon, and the solid angle for the ejected electron �e is given
by

d3σ

dω2d�2d�e

= r2
0

(
ω2

ω1

) (
1 + cos2 θ

2

)
|〈i|A2|f 〉|2, (A1)

where 〈i|A2|f 〉 is the A2 matrix element, with 〈i| and |f 〉
representing the initial and final states, respectively. The
explicit expression for the complex square of the 〈i|A2|f 〉
matrix element is given by

|〈i|A2|f 〉|2 = |N |2
[q2 − ( �pf · �q)]2 +

(
αZEf

pf

)2
( �pf · �q)2] exp

[
−2

(
αZEf

pf

)
tan−1

(
2λpf

q2p2
f +λ2

)]
[
q2

(
q2 − 2p2

f + 2λ2
) + (

λ2 + p2
f

)2][
q2 + p2

f + λ2 − 2(�q · �pf )
]4 , (A2)

where

�pf · �q = pf [K1 cos θe − K2(sin θe cos φe sin θ + cos θe cos θ )] (A3)

and

N =
(

32

π

)
(2λ5pm)1/2 exp

(
π

∣∣∣∣αZEf

ipf

∣∣∣∣
/

2

)
�

(
1 − i

∣∣∣∣αZEf

ipf

∣∣∣∣
)

. (A4)

See Eqs. (27) or (28) for pf ; for Ef = m + ω1 − ω2 − |Eb| see Eqs. (29) or (30) and λ = αZm.
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