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Three-body problem in heteronuclear mixtures with resonant interspecies interaction
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We use the zero-range approximation to study a system of two identical bosons interacting resonantly with a
third particle. The method is derived from effective field theory. It reduces the three-body problem to an integral
equation which we then solve numerically. We also develop an alternative approach which gives analytic solutions
of the integral equation in coordinate representation in the limit of vanishing total energy. The atom-dimer
scattering length, the rates of atom-dimer relaxation, and the three-body recombination to shallow and to deep
molecular states are calculated either analytically or numerically with a well-controlled accuracy for various
energies as functions of the mass ratio, scattering length, and three-body parameter. We discuss in detail the
relative positions of the recombination loss peaks, which in the universal limit depend only on the mass ratio. Our
results have implications for ongoing and future experiments on Bose-Bose and Bose-Fermi atomic mixtures.
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I. INTRODUCTION

The universal properties of particles with resonant short-
range interactions are a subject of intense research. Such
systems are characterized by a large scattering length and
display universal phenomena associated with a discrete scaling
symmetry [1,2]. For identical bosons, Efimov found that there
are infinitely many trimer states with an accumulation point at
the scattering threshold when the s-wave scattering length a is
tuned to the unitary limit 1/a = 0 [3]:

B
(n)
t = (e−2π/s0 )n−n∗h̄2κ2

∗/m, (1)

where m is the mass of the particles, s0 ≈ 1.00624, and κ∗ is
the binding wavenumber of the branch of Efimov states labeled
by n∗. The geometric spectrum in Eq. (1) is the signature of a
discrete scaling symmetry with scaling factor eπ/s0 ≈ 22.7. For
a finite scattering length larger than the range of the interaction,
the universal properties persist but there is only a finite number
of Efimov states.

Ultracold atoms are an ideal tool to study such phenomena
since the scattering length can be tuned experimentally using
Feshbach resonances. Efimov trimers in ultracold atomic
gases can be observed via their signature in three-body
recombination rates [4–8]. Kraemer et al. provided the first
evidence for Efimov trimers in an ultracold gas of 133Cs atoms
by observing the resonant enhancement of three-body recom-
bination caused by the trimers [9]. In a subsequent experiment
with a mixture of 133Cs atoms and dimers, Knoop et al.
observed a resonance in the loss of atoms and dimers [10]
which can be explained by an Efimov trimer crossing the atom-
dimer threshold [11]. Several recent experiments have also
obtained evidence of Efimov physics with other bosonic atoms.

Zaccanti et al. measured the three-body recombination rate
and the atom-dimer loss rate in an ultracold gas of 39K atoms
[12]. They observed loss features at large positive and negative
values of the scattering length, positions of which agree
with the discrete scaling symmetry. Gross et al. measured
the three-body recombination rate in an ultracold system of
7Li atoms [13]. They observed a three-atom loss resonance and

a three-body recombination minimum in the same universal
region on different sides of a Feshbach resonance. Their
positions are consistent with the universal predictions with
a discrete scaling factor of 22.7. Using ultracold 7Li atoms as
well, Pollack et al. [14] observed 11 three- and four-body
loss features in the inelastic loss spectrum. Their relative
locations on either side agree well with the universal theory,
while a systematic deviation from universality appears when
comparing features across the resonance. The origin of this
deviation is not understood. Barontini et al. [15] investigated
the Bose-Bose mixture 41K-87Rb and found three resonance
positions in the three-body loss. The two features for negative
scattering length were attributed to the two possible Efimov
trimers of the system, K-Rb-Rb and K-K-Rb, hitting the
three-atom threshold.

The Efimov effect can also occur for fermionic atoms with
at least three spin states. The first experimental studies of
many-body systems of 6Li atoms in the three lowest hyperfine
states were recently carried out by Ottenstein et al. [16] and
Huckans et al. [17]. Theoretical calculations of the three-body
recombination rate supported the interpretation that the narrow
loss feature arises from an Efimov trimer crossing the three-
atom threshold [18–21]. Very recently, another narrow loss
feature was discovered in the region of much higher magnetic
fields by Williams et al. [22] and Jochim and co-workers [23].
In this region, the scattering length is much larger and several
recombination features have been predicted using the universal
theory [24].

In this paper, we focus on heteronuclear systems with two
species of atoms where only the interspecies scattering length
is large. For comparable masses, the scaling factor is quite
large (for equal masses eπ/s0 ≈ 1986.1) as we now have only
two resonant interactions out of three. However, in the case of
two heavy atoms and one light atom, this factor can become
significantly smaller than the value 22.7 for identical bosons
[1,25–27], which should stimulate experimental investigation
of the discrete scaling invariance. Relaxation and recombi-
nation losses near an interspecies resonance have recently
been investigated in mixtures of rubidium and potassium.
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The Bose-Fermi combination 87Rb-40K has been studied at
the Joint Institute for Laboratory Astrophysics (JILA) [28]
and measurements on the Bose-Bose mixture 41K-87Rb have
been carried out in Florence [15]. We apply our theory to
these and other mixtures of interest for ongoing and planned
experiments.

II. METHOD

In this section, we set up the effective field theory method
which provides a convenient implementation of the universal
theory for large scattering length. We set h̄ = 1 but restore the
dimensions in our expressions for the recombination rate con-
stants. We consider a system of one boson or fermion of mass
m1 (species 1) and two identical bosons of mass m2 (species 2).
We assume the interspecies interaction to be resonant and
characterized by the s-wave scattering length a � �vdW, where
�vdW is the van der Waals range of the potential. Nonresonant
intraspecies interaction will be neglected. If species 1 is also
bosonic and weakly interacting, all the forthcoming results
directly apply to the other possible (interacting) triple by
simply exchanging the labels 1 and 2. We therefore include
only the interaction between the atoms of species 2 and the
dimers. Hence, our effective Lagrangian reads

L = ψ
†
1

(
i∂t + ∇2

2m1

)
ψ1 + ψ

†
2

(
i∂t + ∇2

2m2

)
ψ2 + g2d

†d

− g2(d†ψ1ψ2 + ψ
†
1ψ

†
2d) − g3

4
d†dψ

†
2ψ2 + · · · , (2)

where the dots represent higher-order derivative interactions,
and g2 and g3 are the bare two- and three-body coupling
constants.

From the Lagrangian (2), we can deduce Feynman rules and
obtain the full dimer propagator and the three-body integral
equation (see Ref. [1] for details on the derivation). For the
full dimer propagator we get

D(P0,P) = 2π

g2
2µ

[
1

a
−

√
−2µ

(
P0 − P 2

2M

)
− iε

]−1

, (3)

where P = |P|, µ = m1m2/(m1 + m2) is the reduced mass,
M = m1 + m2 is the mass of the dimer, and the limit of ε →
+0 is understood. The dimer wave function renormalization is
given by Z−1

D = g2
2aµ2/(2π ).

The scattering between a dimer and an atom is described
by the integral equation shown in Fig. 1. Using the Feynman
rules derived from Eq. (2) and projecting on relative s-waves,
we have

A(p,k; E) = 2πm1

aµ2

[
K(p,k) − g3

4m1g
2
2

]

+ m1

πµ

∫ �

0
dqq2

[
K(p,q) − g3

4m1g
2
2

]

× A(q,k; E)

− 1
a

+
√

−2µ
(
E − q2

2µAD

)
− iε

, (4)

where µAD = m2(m1 + m2)/(2m2 + m1) is the reduced mass
of an atom and a dimer; the relative momenta of the incoming

FIG. 1. Integral equation for the atom-dimer scattering
amplitude A. Solid (dashed) lines denote atom species 2 (1). Mixed
double lines denote the full dimer propagator.

and outgoing atom-dimer pair are denoted by p and k,
respectively; and E is the total energy. The contribution of
the s-wave projected one-atom exchange is given by

K(p,q) = 1

2pq
ln

(
p2 + q2 + 2pq

µ

m1
− 2µE − iε

p2 + q2 − 2pq
µ

m1
− 2µE − iε

)
, (5)

and the contribution of the three-body coupling g3 can be
written as

g3

4m1g
2
2

= −H (�)

�2
, (6)

where H (�) is a dimensionless log-periodic function of the
cutoff �, which depends on a three-body parameter �∗ [29].
The mass-ratio dependence of the discrete scaling factor
exp(π/s0) follows from the equation for s0:

s0 cosh(πs0/2) − 2 sinh(φs0)/ sin(2φ) = 0, (7)

where we introduce the parameter

φ = arcsin [1/(1 + δ)] (8)

and the notation δ = m1/m2. For particles of equal mass, the
solution of Eq. (7) is s0 ≈ 0.4137, leading to the scaling factor
exp(π/s0) ≈ 1986.1. Because of the log-periodicity of H (�),
one can always find a value of the cutoff � with H = 0.
In practice, one can therefore simply omit the three-body
coupling in the leading-order calculations and use the cutoff
� as a three-body parameter [30]. We use this strategy in the
following. For fixed δ, the values of � and �∗ are related by a
multiplicative constant.

The scattering amplitude A has simple poles at the three-
body bound-state energies E = −Bt < 0. The energies can
be obtained from the solution of the following homogeneous
integral equation for the bound-state amplitude B:

B(p; Bt ) = m1

πµ

∫ �

0

dqq2K(p,q) B(q; Bt )

− 1
a

+
√

2µ
(
Bt + q2

2µAD

) , (9)

which has nontrivial solutions only for three-body binding
energies Bt > 0. In the following, we use Eqs. (4) and (9) to
describe three-body properties of heteronuclear mixtures.

III. NUMERICAL RESULTS

Few-body loss phenomena offer a unique view on scat-
tering processes in ultracold quantum gases. In particular,
an enhancement of the loss rate can be an evidence of a
few-body resonance. The universal theory predicts the relative
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FIG. 2. (Color online) Dependence of the trimer energy on the
inverse scattering length 1/a in arbitrary units (dashed line). The
parameters a− and a∗ specify where the trimer state hits the three-atom
and atom-dimer thresholds, respectively.

positions of such resonances as a function of the scattering
length. The universality can thus be tested experimentally by
measuring the lifetime of a cold atomic gas as a function of
a. Ideally, in order to see the universal scaling, one needs to
detect more than one resonance in a single universal region,
that is, a region where the three-body parameter can be
assumed constant. This is believed to happen in a narrow
vicinity of a Feshbach resonance, where large variations of
a are accompanied by (assumed) much weaker variations of
the three-body parameter. We now discuss three-body loss
resonances in a heteronuclear mixture as predicted by the
universal theory.

A. Resonance positions

The mechanism of three-body losses and its relation to
the positions of Efimov levels in the heteronuclear case are
qualitatively the same as for three identical bosons. The
scattering-length dependence of the energy of a generic trimer
is illustrated in Fig. 2. On the negative side of a Feshbach
resonance, the trimer hits the three-body scattering threshold at
a = a− < 0, which leads to an enhanced probability of finding
three atoms at distances of the order of |a|. Such atoms can
then approach each other to distances of the order of �vdW and
recombine into a deeply bound dimer and a residual atom. The
released binding energy [of order h̄2/(2µ�2

vdW)] transforms
into the kinetic energy of the recombination products, which
hence leave the trap. On the positive side of the Feshbach
resonance there exists a weakly bound (shallow) dimer state
with binding energy Bd = h̄2/(2µa2). This formula taken
with a minus sign determines the atom-dimer threshold (solid
line in Fig. 2). By following the dashed line in Fig. 2
from negative to positive values of a, one can see that the
trimer crosses the atom-dimer threshold at a = a∗ > 0, where
one predicts an elastic atom-dimer resonance. At this point,
formation of deep dimer states (in this case called relaxation) in
atom-dimer collisions is also enhanced for the same reason as
above. According to [12], the atom-dimer scattering resonance
should be noticeable even in a purely atomic sample due to
rescattering processes. Indeed, before leaving the trap, shallow
dimers formed in the process of three-body recombination
can collide with other atoms. The recombination rate itself is
featureless around a = a∗, but the atom-dimer cross section
in the vicinity of this point is highly a dependent. Thus, at
a = a∗ the three-body recombination can be enhanced in the
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FIG. 3. (Color online) Solid line: a(n)
∗ /|a(n)

− | vs δ, where n is the
index of the Efimov state [see Eq. (1)]. Dashed line: a(n+1)

∗ /|a(n)
− | =

exp(π/s0)a(n)
∗ /|a(n)

− |.

sense that many more than three atoms are expelled from the
trap, leading to a measurable trap loss. We come back to this
issue in Sec. V.

The ratio of the two resonance positions, a∗/|a−|, is of
fundamental importance for studies of the universal three-body
physics as in the universal limit it does not depend on the
three-body parameter. In order to calculate this ratio we solve
the bound-state Eq. (9) for Bt = 0, a < 0, and for Bt = Bd ,
a > 0, with the same (arbitrary) cutoff �. The solid line in
Fig. 3 shows a

(n)
∗ /|a(n)

− | as a function of the mass ratio δ.
Here we use the index n introduced in Eq. (1) in order to
emphasize that the values of a∗ and a− are taken for one and
the same Efimov state (connected by the dashed line in Fig. 2).
The dashed line in Fig. 3 differs from the solid one by the
scaling factor exp(π/s0) and shows the ratio a

(n+1)
∗ /|a(n)

− |. Note
that the scaling factor rapidly increases with δ for δ >∼ 1 and
one can conclude that a sequence of Efimov resonances is more
likely to be seen in systems with smaller mass ratios.

B. Three-body recombination for a > 0

Let us now discuss the shapes of the inelastic loss
resonances and calculate the three-body rate constants in a
heteronuclear system. We first consider the case of positive
scattering length, a > 0, where the atoms can recombine into
the shallow dimer and into deep dimers. The recombination
into the shallow dimer can be related to the T -matrix element
shown in Fig. 4(a).

The event rate constant for inelastic scattering α is defined
by the rate equation

d

dt
n2 = 2

d

dt
n1 = −2αn1n

2
2, (10)

where ni denotes the atomic number densities of the corre-
sponding species.

(a) (b)

FIG. 4. Diagrammatic representation of (a) the three-body re-
combination amplitude and (b) the elastic three-body scattering. Line
patterns are the same as in Fig. 1.
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The rate constant αs for recombination into the shallow
dimer is given by

αs = 4µAD

√
µAD

µ
a2 |A (0,kD; 0)|2 , (11)

with the dimer breakup momentum kD = √
µAD/µa−1. If

deep dimers are present, their effect on the recombination
into the shallow dimer can be incorporated by analytically
continuing the three-body parameter into the complex plane
[18]. We thus make the substitution

� → � exp(iη∗/s0) (12)

in Eq. (4), where η∗ accounts for the effect of the deep dimers.
A nonzero value of η∗ also generates the width of the Efimov
trimers. By evaluating Eq. (11) numerically, we find that
the known analytical formula for the three-boson case [24]
simply acquires a new mass-dependent overall coefficient. The
modified analytical formula is hence

αs = C(δ)
D{sin2[s0 ln(a/a0∗)] + sinh2 η∗}

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

h̄a4

m1
, (13)

where D = 128π2(4π − 3
√

3) and the mass-dependent co-
efficient is denoted by C(δ). The parameter a0∗ gives the
position of the minimum in the three-body recombination. The
coefficient C(δ) is shown in Fig. 5. The error in the extraction
of C(δ) from fitting Eq. (13) to our numerical results for αs is
of order 10−3 for δ � 2. For larger values of δ the numerical
extraction of C becomes difficult because of a very large value
of the scaling factor. To depict C(δ) for δ � 2 we use the
analytical formula (56) derived in Sec. IV.

Although our calculations in this section are conducted by
varying the complex three-body parameter �, we present the
results in terms of the practically relevant length parameters
a− < 0, a∗ > 0, and a0∗ > 0, and the dimensionless elasticity
parameter η∗. The universal theory predicts that the ratios
a∗/|a−| and |a−|/a0∗ depend only on the mass ratio δ.
The former is shown in Fig. 3 and the latter is |a−|/a0∗ =
exp(π/2s0), as is derived in Sec. IV. This fixes the relative
positions of all the three-body loss features on both sides of
the Feshbach resonance.

The total rate of three-body recombination into all dimers
(shallow and deep) for a > 0 can be obtained from the optical
theorem. It relates the imaginary part of the forward T -matrix

0 1 2 3 4 5
δ

0
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0.08

0.12

C
(δ

)

0 25 50 75 100
0
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FIG. 5. (Color online) The coefficient C for the different three-
body recombination rates in dependence of the mass ratio δ = m1/m2.
The inset shows C for larger values of δ.

element [shown in Fig. 4(b)] for vanishing momenta to the
event rate constant of inelastic scattering, α. This leads to the
total recombination rate constant

αs + αd = ImT122→122 = 8πa3ImĀ(0,0; 0), (14)

where Ā denotes the appropriately infrared subtracted ampli-
tude [24]:

Ā(p,k; E) = A(p,k; E) − 4π (1 + δ)

m1ap2

+ 4π (1 + δ)2

m1p
arcsin [1/(1 + δ)]

+ 8a

m1
{(1 + δ)2 arcsin[1/(1 + δ)]

−
√

δ(2 + δ)} ln p. (15)

By subtracting Eq. (13) from Eq. (14) we find the rate constant
for the recombination into deep dimers:

αd = C(δ)
D coth(πs0) cosh(η∗) sinh(η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

h̄a4

m1
, (16)

where the coefficients C(δ) and D are the same as in Eq. (13).
When s0 is not too small such that exp(2πs0) � 1 (see

Table I), the denominators in Eqs. (13) and (16) are practically
independent of a. In this case the a dependence of αs and αd

is simplified, and the corresponding expressions are known in
the case of three identical bosons (see, for example, Ref. [1]).

C. Atom-dimer scattering

On the positive side of the Feshbach resonance (a > 0) it
is also possible to prepare an ultracold mixture of atoms and
weakly bound dimers (see, for example, Refs. [10,28]). An
important observable in this case is the atom-dimer scattering
length. Within our theory, it is given by

aAD = −µAD

2π
A

(
0,0; − 1

2µa2

)
, (17)

and its universal dependence on a is parametrized by

aAD = {C1(δ) + C2(δ) cot[s0 ln(a/a∗)]} a, (18)

where the coefficients C1(δ) and C2(δ), calculated numerically,
are shown in Fig. 6. Here we estimate the numerical error in
the determination of C1(δ) and C2(δ) to be of order 10−3.

0 2 4 6 8 10
δ

0

0.5
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2.5
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C
i(δ
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C
1
(δ)

C
2
(δ)

FIG. 6. (Color online) The parameters C1(δ) and C2(δ) in the
expression for the atom-dimer scattering length, Eq. (18).
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TABLE I. Universal parameters for various heteronuclear mixtures. The isotopes of rubidium and
cesium are 87Rb and 133Cs.

Parameter 7Li-Cs-Cs 6Li-Rb-Rb 7Li-Rb-Rb 40K-Rb-Rb 41K-Rb-Rb Rb-41K-41K

δ 0.053 0.069 0.081 0.460 0.471 2.21
s0 1.850 1.635 1.523 0.6536 0.6444 0.2462
exp(π/s0) 5.465 6.835 7.864 122.7 131.0 348 000
a∗/|a−| 0.13 0.16 0.18 0.51 0.52 0.91
C(δ) 0.072 0.068 0.066 0.037 0.037 0.015
C1(δ) 2.54 2.33 2.22 1.14 1.13 0.94
C2(δ) 2.52 2.5 2.47 2.08 2.07 1.30

Efremov and collaborators have recently derived Eq. (18)
for the atom-dimer scattering length in the Born-Oppenheimer
approximation valid in the limit δ → 0 [31]. For δ = 0.081,
corresponding to the 7Li-87Rb-87Rb system, our values for
the coefficients C1 and C2 agree with the ones given in
Ref. [31] to within 2–3% (see Table I). However, we observe a
stronger discrepancy in between our value, s0 = 1.523, and the
Born-Oppenheimer result, s0 = 1.322, for this system [31].

The effect of deep dimers on the atom-dimer scattering pro-
cess can be incorporated by replacing a∗ → a∗ exp(−iη∗/s0),
equivalent to Eq. (12). At the scattering threshold, the atom-
dimer relaxation rate constant β, defined by the rate equation

d

dt
nA = d

dt
nD = −βnAnD, (19)

is given by [8]

β (E = −Bd )

= −(4πh̄/µAD) ImaAD

= 2πC2(δ)
δ(δ + 2)

δ + 1

sinh(2η∗)

sin2[s0 ln(a/a∗)] + sinh2 η∗

h̄a

m1
.

(20)

Furthermore, we can calculate the atom-dimer relaxation
rate constant above threshold. It is related to the inelastic atom-
dimer scattering cross section by

β(E) = k

µAD

σ
(inel)
AD (E), (21)

where k = √
2µAD(E + Bd ). The energy dependent inelastic

cross section is given by the difference of the total and the
elastic cross sections,

σ
(inel)
AD (E) = 2µAD

k
ImA(k,k;E) − µ2

AD

π
|A(k,k;E)|2 . (22)

We can use this formula up to the dimer breakup threshold at
k = kD and thus map out the trajectory of the resonance peak.
It moves from a∗ at the scattering threshold, E = −Bd , to
|a−| at the dimer breakup threshold, E = 0. For δ < 3.475
the resonance peak moves to values a > a∗. Starting at
δ = 3.475, where we have exactly a∗/|a−| = 1, it reverses
this behavior and moves to values a < a∗. The peak height
diminishes considerably with the energy. This effect is very
large, especially for small values of δ. For example, for
η∗ = 0.1 and δ = 0.1, the peak at E = 0 is smaller by a factor
of 706 than the peak at E = −Bd . For δ = 10 this ratio still is

19.1. At E = 0, we find excellent agreement with the analytical
formula

β (E = −0) = π [δ(δ + 2)]3/2/(δ + 1)2

× sinh(2πs0) sinh(2η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

h̄a

m1
,

(23)

which is derived in Sec. IV. The peak position of β (E = −0)
coincides exactly with the position of the maximum of the
three-body recombination rate at threshold.

In Fig. 7, we show numerical results for β for η∗ = 0.1 and
δ = 0.471 corresponding to the K-Rb-Rb system observed in
the Florence experiment [15].

The solid, short-dashed, long-dashed, and dot-dashed lines
show β for E/Bd = −1, −0.95, −0.5, and 0, respectively.
As the energy is increased toward the breakup threshold,
the resonance height decreases strongly and the resonance
becomes less pronounced. The double-dot-dashed line shows
the trajectory of the resonance maximum as the energy is
increased from −Bd to zero. As the energy is increased, the
resonance position is shifted from a∗ toward larger values of
a until it reaches its maximum value of 2.04a∗ for E/Bd ≈
−0.25. For larger energies, the resonance position moves back
to smaller values of a and reaches |a−| = 1.89a∗ at the dimer
breakup threshold.

0.1 1 10
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*

1
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100

β 
[u

ni
ts
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h_  a
/m

1]

FIG. 7. (Color online) The dimer relaxation rate constant β in
units of h̄a/m1 for η∗ = 0.1 and δ = 0.471 as function of a/a∗.
The solid, short-dashed, long-dashed, and dot-dashed lines show β

for E/Bd = −1, −0.95, −0.5, and 0, respectively. The double-dot-
dashed line indicates the trajectory of the resonance maximum as the
energy is increased from −Bd to zero.
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D. Three-body recombination for a < 0

On the negative side of the Feshbach resonance, shallow
dimers are absent and atoms can only recombine into deep
dimers. The corresponding rate constant is again determined
by using the optical theorem

αd = ImT122→122 = 8πa3Im Ā(0,0; 0). (24)

We have performed numerical calculations of αd for mass
ratios δ � 2, where the numerical accuracy is better than 0.1%.
Our results agree with the formula

αd = C(δ)

2

D coth(πs0) sinh(2η∗)

sin2[s0 ln(a/a−)] + sinh2(η∗)

h̄a4

m1
, (25)

where the coefficients C(δ) and D are the same as in Eqs. (13)
and (16). Equation (25) is derived in the next section.

IV. ANALYTICAL APPROACH

Relying on an analysis of the recombination process in
configuration space, Macek et al. [32,33], Petrov [34], and
Gogolin and co-workers [35] have obtained a completely
analytic expression for the three-body recombination rate
constant for identical bosons with a large positive scattering
length a when there are no deep dimers (i.e., η∗ = 0). Braaten
and Hammer generalized this result to finite η∗ by making the
analytic continuation κ∗ → κ∗ exp(iη∗/s0) in the amplitude of
this process [1].

In this section we would like to present an approach
that allows one to calculate almost all zero-energy three-
body observables analytically [in particular, αs , αd (a > 0),
and αd (a < 0)] for heteronuclear Bose-Fermi or Bose-Bose
mixtures. We generalize the method introduced in Ref. [36]
for fermionic mixtures and present it in more detail, also
because it is conceptually different from the approaches of
Refs. [32,33,35].

Let us consider the process of three-body recombination
into the shallow heteronuclear dimer. When the total energy
of the system, E, becomes smaller than the binding energy of
the dimer, the three-body recombination rate tends to a finite
zero-energy value. In order to calculate this quantity, we work
in the coordinate representation. It is instructive to derive the
real-space analog of Eq. (4) directly from the Schrödinger
equation. At E = 0 the latter reads{∑

i=1,2

[
−h̄2∇2

Ri

2m2
+ U (|r − Ri|)

]
− h̄2∇2

r

2m1

}
� = 0, (26)

where Ri are the coordinates of the bosons and r is the
coordinate of the third atom. For the interspecies interaction,
we use the zero-range Fermi pseudopotential

U (|r − Ri|) = 2πh̄2a

µ
δ(r − Ri)

∂

∂|r − Ri| (|r − Ri|·). (27)

Let us temporarily adopt the units h̄ = 2µ = a = 1, sep-
arate the center-of-mass motion, and introduce the new co-
ordinates x = [R1 sin φ − R2 + r(1 − sin φ)]/ cos φ and y =
r − R1, where φ is defined in Eq. (8). The bosonic symmetry

condition, �(R1,R2,r) = �(R2,R1,r), in the new coordinates
reads

�(x,y) = �(−x sin φ + y cos φ,x cos φ + y sin φ), (28)

and Eq. (26) takes the form(−∇2
x − ∇2

y

)
�(x,y)

= f (x)δ(y) + f (−x sin φ + y cos φ)δ(x cos φ + y sin φ),

(29)

where we define

f (x) := −4π lim
y→0

∂[y�(x,y)]/∂y. (30)

From Eqs. (29) and (30) it is easy to see that

�(x,y) −−−→
y→0

f (x)(1/y − 1)/4π. (31)

Thus, the function f describes the motion of an atom relative to
the other two atoms when they are on top of each other. In some
cases it is useful to consider f as an atom-dimer wave function.
Indeed, for large x, expressions � ∝ φb(y) exp(ix)/x and
f (x) ∝ (8π )1/2 exp(ix)/x equivalently describe the relative
outgoing motion of the products of three-body recombination.
The coefficient (8π )1/2 is obtained by comparing Eq. (31)
and the small-y asymptote of the normalized molecular wave
function

φb(y) = exp(−y)/
√

2πy −−−→
y→0

(1/y − 1)/
√

2π. (32)

Therefore, in order to calculate the three-body recombination
rate constant, we first derive and solve an equation for
f , then separate the large-x asymptote f ∝ exp(ix)/x, and
finally relate the coefficient in front of it to the three-body
recombination rate constant.

Using the Green’s function G(X) = 1/4π3X4 of Eq. (29)
we can express � through f :

�(x,y) = �0 +
∫

{G(
√

(x − x′)2 + y2)

+G(
√

(x+x′ sin φ)2 + (y − x′ cos φ)2)}f (x′)d3x ′,
(33)

where �0 is a solution of the homogeneous Euler equation
(−∇2

x − ∇2
y )�0 = 0 without singularities. In the case of

three-body recombination, �0 is a correctly normalized wave
function of three free atoms. We consider the atoms in a volume
V in a state where the two bosons are not in the same quantum
state (cold thermal gas). Then, in the region relevant for the
recombination (x <∼ 1, y <∼ 1), we get

�0 =
√

2V −3/2. (34)

We point out that �0 should be set to zero for the problem of
atom-dimer scattering just below the breakup threshold (E =
−0) as in this case the atoms cannot move freely at large
distances.

The equation for f is obtained by substituting Eq. (33) into
Eq. (30). We write it in the form

(L̂ − 1)f (x) = 4π�0, (35)
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where the integral operator L̂ is defined as

L̂f (x) = 4π

∫
{G(|x − x′|)[f (x) − f (x′)]

− G(
√

x2 + x ′2 + 2xx′ sin φ)f (x′)}d3x ′. (36)

The operator L̂ conserves angular momentum, and Eq. (35) can
be written as a set of uncoupled equations for each spherical
harmonic of f (x). For the three-body recombination problem
at hand, we look for a spherically symmetric solution f (x) =
f (x). Then, Eq. (36) reduces to

L̂f (x) = 4

π

∫ ∞

0

[
f (x ′) − f (x)

(x2 − x ′2)2

+ f (x ′)
(x2 + x ′2)2 − 4x2x ′2 sin2 φ

]
x ′2dx ′. (37)

The integrals in Eqs. (36) and (37) are taken as principal values
[37].

Let us now discuss the structure of possible solutions of
Eq. (35). Obviously, f (x) is a sum of a particular solution
of the inhomogeneous Eq. (35) and a general solution of the
homogeneous equation

(L̂ − 1)χ (x) = 0. (38)

Physically, Eq. (38) describes the atom-dimer channel just
below the dimer breakup threshold (�0 = 0). Therefore, at
distances x � 1, the function χ (x) is a linear combination of
exp(ix)/x and exp(−ix)/x.

In order to understand the short-distance behavior of χ (x),
note the following property of the operator L̂:

L̂xν = λ(ν)xν−1 (39)

for any complex exponent ν in the region −3 < Re(ν) < 1,
which is, in fact, the region of convergence of the integral on
the left-hand side of Eq. (39) [38]. The function λ(ν) is given by

λ(ν) = −(ν + 1) tan
πν

2
− 2 sin[φ(ν + 1)]

sin(2φ) cos(πν/2)
(40)

and has two complex conjugate roots, ν1,2 = −1 ± is0, where
s0 is a real number satisfying Eq. (7). At short distances the
operator L̂ in Eq. (38) dominates over 1, and any solution of
this equation should be a linear superposition of χ ∝ x−1+is0

and its complex conjugate. From now on we use the notation
χ for the solution of Eq. (38) with the following asymptotes:

χ (x) =
{

Axν = Ax−1+is0 , x � 1

x−1eix+iσ−h + x−1e−ix−iσ+h, x � 1,
(41)

where A is a complex number, and σ and h are real numbers.
The physical solution of Eq. (38) (i.e., the one corresponding
to a given three-body parameter) is expressed as

χθ (x) = eiθχ (x) + e−iθχ∗(x), (42)

where θ is the three-body parameter (a complex number with
imaginary part η∗).

The normalization in Eq. (41) is chosen such that

〈pχ (px)|p′χ (p′x)〉
=

∫ ∞

0
pχ (px)p′χ (p′x)x2dx = 2πδ(p − p′). (43)

The first equality in Eq. (43) is our definition of the scalar
product (note the absence of the complex conjugation), and
the second equality follows from the fact that pχ (px) and
p′χ (p′x) are eigenfunctions of the symmetric operator L̂

corresponding to the eigenvalues p and p′. They are orthogonal
for p �= p′ and their scalar product in the vicinity of p = p′
can be worked out in the same way as in Ref. [39] (see Sec. 21
there). A simple change of the integration variable in Eq. (43)
leads to the completeness condition∫ ∞

0
p2χ (px)χ (px ′)dp = 2πδ(x − x ′)/x2. (44)

Equations (43) and (44) allow us to construct the integral
operator (L̂ − 1)−1 needed to solve Eq. (35). In order to avoid
problems with divergence of the corresponding integrals, let
us introduce an auxiliary function g0(x) related to f (x) by

f (x) = 4π�0[−1 − λ(0)/x + λ(0)λ(−1)g0(x)]. (45)

Substituting this expression into Eq. (35) and using Eq. (39),
we find that g0(x) satisfies the equation (L̂ − 1)g0(x) =
x−2. Applying the operator (L̂ − 1)−1 to x−2 we obtain the
following particular solution:

g0(x) = 1

2πx

∫ ∞

0
χ (z) dz

×
[∫ ∞

0

χ (y)ydy

y − x − i0
− 2πixχ (x)

1 − exp(−2πs0)

]
, (46)

where the first integral is defined as∫ ∞

0
χ (z)dz = lim

ε→+0

∫ ∞

0
χ (z)zεdz. (47)

The rule of going around the pole in the second integral and the
numerical coefficient in front of the second term in the square
brackets on the right-hand side of Eq. (46) regulate the entry of
χ (x), which can be arbitrary, into the particular solution g0(x).
Using this freedom, we choose these parameters in such a
way that g0(x) does not contain oscillating terms proportional
to x−1+is0 at small x. Direct calculation shows that in the
limit x → 0 the right-hand side of Eq. (46) equals g0(x) ≈
[
∫ ∞

0 χ (z)dz]2/2πx, to the leading order in x. On the other
hand, according to Eq. (39), the same quantity in the same
limit can be written as g0(x) = (L̂ − 1)−1x−2 ≈ L̂−1x−2 =
1/[λ(−1)x], which leads to the result∫ ∞

0
χ (z) dz =

√
2π/λ(−1). (48)

Another consequence of our choice of the particular solution
(46) is that removing the oscillating terms from g0(x) makes
it real, since any imaginary part of g0 would necessarily be
a solution of the homogeneous Eq. (38). Therefore, g0 would
have oscillations at short x, the absence of which we have
ensured. Clearly, the function f obtained by virtue of Eq. (45)
is also real. Moreover, property (39) ensures that f = o(1)
at small x (i.e., its Taylor expansion starts with x1 at least).
Therefore, this solution of Eq. (35) is not sensitive to the
short-range physics and does not depend on the three-body
parameter.
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Integrating Eq. (46) in the limit x � 1 we get

g0(x) −−−→
x→∞

−i

sinh(πs0)

√
2π

λ(−1)

cos[x+σ + i(h + πs0)]

x
.

(49)

It can be real only if h = −πs0 [note that λ(−1) < 0]; compare
Ref. [32].

Finally, the result that we are interested in is the linear
combination

fθ (x) = f (x) + γχθ (x), (50)

where the complex number γ is chosen such that fθ (x)
contains only an outgoing wave at large x (corresponding
to an atom and a dimer flying apart after the three-body
recombination event). This condition gives

γ = i
π�0λ(0)

√
2πλ(−1)

sinh(πs0) cosh(πs0 − iθ )
. (51)

Keeping only the relevant oscillating term at large x, we obtain

fθ (x) −−−→
x→∞ i4γ sin θ sinh(πs0) exp(ix + iσ )/x. (52)

Equation (52) together with Eqs. (31) and (32) gives us
the atom-dimer outgoing flux. Indeed, the large-x asymptote
f = ξ exp(ix)/x, where ξ is any complex amplitude, is
accompanied by the flux |ξ |2�∞, where

�∞ = 2 × (8π )−1 × (4π ) × 2 = 2. (53)

Here we have explicitly written out the following factors: the
factor of 2 reflects the two symmetric possibilities of forming
the dimer (corresponding to the interchange R1 →← R2), the
factor of (8π )−1 arises from the relation in between � and
f [see the discussion preceding Eq. (32)], the factor of 4π is
the solid angle in the outgoing atom-dimer channel, and the
last factor of 2 is the atom-dimer relative velocity in the x,y

coordinates. The three-body recombination rate constant αs is
obtained by taking the squared modulus of the prefactor in
front of exp(ix + iσ )/x in Eq. (52) and by multiplying it by
�∞, by the factor of 1/2, reflecting the fact that the number
of pairs in the gas of species 2 is n2

2/2, and by the factor
h̄a4/2µ in order to restore the original physical units. We
should also mention that the nine-dimensional volume V 3 is
taken to be a unit volume in the original system of coordinates
{r,R1,R2}. In the new coordinates {x,y,Rc.m.}, where Rc.m. is
the center-of-mass coordinate, this volume is V 3 = cos−3 φ.
The final result for the three-body recombination rate constant
reads

αs = 32π3 cos3φ λ2(0)|λ(−1)|
sin φ

× sin2[s0 ln(a/a∗0)] + sinh2 η∗
sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

h̄a4

m1
, (54)

where we have expressed the three-body parameter θ through
the original physical units:

θ = s0 ln(a/a∗0) + iη∗. (55)

Formula (54) is in excellent agreement with our numerical
results. Comparison with Eq. (13) leads to [40]

C(δ) = (1 + δ)2 arcsin [1/(1 + δ)] − √
δ(2 + δ)

2(4π − 3
√

3)
. (56)

As explained in Sec. III, the constant of the three-body
recombination into deep dimers can be derived from the optical
theorem. The result for αd is given by Eq. (16). Here we would
like to show how one can derive this result by using the method
of this section. In contrast to the recombination into shallow
states, we now have to look at the balance of the incoming and
outgoing fluxes of atoms corresponding to the short-distance
asymptote of fθ (x) given by Eq. (50)

fθ (x) −−−→
x→0

γχθ (x) = γ (Aeiθx−1+is0 + A∗e−iθ x−1−is0 ).

(57)

In analogy with �∞, let �0 denote the number of atom triples
disappearing at the origin (x = 0, y = 0), provided the function
f takes the form of the incoming wave x−1−is0 with unit
weight. With this definition, the recombination rate constant
follows from Eq. (57):

αd = (h̄a4/2µ)|γ |2�0|A|2 sinh(2η∗). (58)

The product �0|A|2 can easily be found from definition (41)
by equating the fluxes at x → 0 and at x → ∞ and using
Eq. (53):

�0|A|2 = 2�∞ sinh(2πs0) = 4 sinh(2πs0). (59)

Substituting Eqs. (59) and (51) into Eq. (58), we obtain
Eq. (16) exactly. We point out that it is in principle possible to
obtain �0, and, therefore, |A|2, by substituting the expression
f = x−1−is0 into Eq. (33) and calculating the incoming flux
from the resulting wave function � in the six-dimensional
configurational {x,y}-space.

Our analytical approach can also be used to derive αd on the
negative side of the resonance (a < 0). In this case we use the
units h̄ = |a| = 2µ = 1, and some equations described above
should be modified accordingly. In particular, Eq. (35) reads

(L̂ + 1)f̃ (x) = 4π�0 (60)

and we now introduce an auxiliary function g̃0 related to f̃ by

f̃ (x) = 4π�0[1 − λ(0)/x + λ(0)λ(−1)g̃0(x)], (61)

where g̃0 satisfies (L̂ + 1)g̃0(x) = x−2. We write the solution
in the form

g̃0(x) = 1

2πx

∫ ∞

0
χ (z)dz

∫ ∞

0

χ (y)ydy

y + x
(62)

and integrating it in the small-x limit we get the asymptote

f̃ (x) −−−→
x→0

i
2π�0λ(0)

√
2πλ(−1)

sinh(πs0)
Ax−1+is0 . (63)

The function f̃ is a solution of Eq. (60), but its oscillations at
small x do not have (in general) the correct phase imposed by
Eq. (41). This difficulty is resolved by observing that f̃ ∗ also
satisfies Eq. (60). The correctly behaving solution reads

f̃θ (x) = exp(iθ )f̃ (x) + exp(−iθ )f̃ ∗(x)

exp(iθ ) + exp(−iθ )
, (64)
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and by subtracting the outgoing flux from the incoming one at
small x we obtain the result [cf. Eq. (25)],

αd (a < 0) = 16π3 cos3φ λ2(0)|λ(−1)| coth(πs0)/ sin φ

× sinh(2η∗)

cos2[s0 ln(|a|/a0∗)] + sinh2 η∗

h̄a4

m1
. (65)

Equation (65) also gives the ratio

|a−|/a0∗ = exp(π/2s0). (66)

In other words, the maxima of αs and αd (a > 0) and the
maxima of αd (a < 0) are symmetric with respect to the center
of the Feshbach resonance.

Let us now return to the case a > 0 and discuss some
properties of atom-dimer collisions just below the dimer
breakup threshold (E = −0). Namely, by substituting the
large-x asymptote of χ into Eq. (42) one readily obtains the
s-wave contribution to the scattering S-matrix

S0 = −e2iσ cosh(πs0 + iθ )/ cosh(πs0 − iθ ). (67)

From this expression, one can calculate the atom-dimer
inelastic rate constant at zero total energy:

β (E = −0) = π cos2φ cot φ

× sinh(2πs0) sinh(2η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

h̄a

m1
, (68)

see also Eq. (23). Remarkably, β (E = −0) also reaches its
maximum at a = |a−|, and for small s0 the peak can be quite
narrow. We conjecture that this behavior is due to the Efimov
state that crosses the atom-dimer threshold at a = a∗ and then
exists as a scattering resonance. Our numerical results support
this conjecture. We find that for mass ratios δ < 3.475 the
resonance peak moves to values a > a∗, while it moves to
values a < a∗ for δ > 3.475. The resonance peak then hits
the three-atom threshold at a = |a−| exp(−π/s0). In Fig. 7,
we have shown β for the specific case η∗ = 0.1 and δ = 0.471
corresponding to the K-Rb-Rb system observed in the Florence
experiment [15]. The trajectory of the scattering resonance is
given by the double-dot-dashed line in the figure. For smaller
s0 leading to a larger scaling factor, we conclude that the center
of this Efimov scattering resonance can travel quite far from the
value a = a∗ at E = −Bd to the value a = |a−| exp(−π/s0)
at E = 0. We have verified this behavior numerically. It is thus
worth investigating this scattering resonance in the vicinity of
the atom-dimer threshold experimentally.

V. COMPARISON TO EXPERIMENT

There are several experiments on heteronuclear Bose-Bose
and Bose-Fermi mixtures, to which our results are directly
applicable (in the universal limit). In Table I, we present the
universal predictions for some combinations of alkali isotopes
being investigated at the moment and interesting from the
viewpoint of Efimov few-body physics. We sort them by the
value of the scaling factor.

A. The 40K-87Rb mixture

Zirbel et al. at JILA recently studied weakly bound
fermionic 40K-87Rb molecules and their stability in collisions

with atoms near a wide (open-channel-dominated) heteronu-
clear Feshbach resonance at B0 = 546.7 G [28]. In particular,
they measured the atom-dimer relaxation rate for collisions
of these dimers with Rb atoms as a function of a. The
corresponding data (see Fig. 2 in Ref. [28]) can be fit very
well with our Eq. (20), where the fitting parameters are
a∗ = 200 ± 50 aBohr and η∗ = 0.05 ± 0.02. In the same work,
the authors also measured the three-body recombination rate
constant on both sides of this Feshbach resonance (i.e., in the
same universal region). We fit their results with Eq. (25) on
the negative side of the resonance and with the sum αs + αd

given by Eqs. (13) and (16) on the positive side [41]. A good
agreement is achieved if we choose a∗ = 300 ± 100 aBohr (for
this mass ratio a− = −1.96a∗, see Table I) and the same η∗ as
above. These parameter values lead to a peak of the three-body
recombination at a = a− ≈ −600 aBohr. Although in Ref. [28]
the peak has not been identified, the overall shapes of β and α

measured for this particular Feshbach resonance indicate that
it is worth performing a more detailed measurement of the
three-body loss rate around this value of a.

B. The 87Rb-41K mixture

The group of Inguscio and Minardi in Florence investigated
a Bose-Bose mixture of 87Rb and 41K [15]. They observed
three loss resonances by scanning the scattering length and
monitoring the population dynamics of the species in the
vicinity of each of the resonances. For negative scattering
length, they identified a K-Rb-Rb resonance at a = −246 aBohr

and a K-K-Rb resonance at a = −22 000 aBohr. The third
resonance is observed at the positive scattering length
a = 667 aBohr and attributed to enhanced atom-dimer scatter-
ing in the K-Rb-Rb three-body system. This process is assumed
to contribute to three-body losses through multiple rescattering
processes (see also Ref. [12]). An independent confirmation
of this resonance in a system prepared directly out of K-Rb
dimers and Rb atoms would be desirable. Unfortunately, in
contrast to the JILA experiment, the dimers are bosonic and
their short lifetime can make such a confirmation difficult [42].

The interspecies van der Waals length in the K-Rb system is
�vdW = 72 aBohr, such that these resonances should be within
the range of validity of the universal theory. Assuming that the
observed K-Rb-Rb features are due to Efimov resonances,
one can extract the ratio a∗/|a−| = 2.7 from the Florence
experiment, whereas our theory predicts a∗/|a−| = 0.52. The
discrepancy can be attributed to the effective range corrections.
In particular, one should be careful with the feature at
a = −246 aBohr, which is not too large compared to the van
der Waals length. Besides, if we believe in the “rescattering”
nature of the positive-a resonance, one should take into account
a finite-energy shift of the position of the atom-dimer scattering
resonance. Indeed, even at zero temperature, dimers formed by
three-body recombination collide with stationary Rb atoms at
the finite collision energy [m2

Rb/(mK + 2mRb)2]Bd ≈ 0.16Bd .
In Fig. 7, we have shown numerical results for β for
energies from the scattering threshold, E = −Bd , up to the
breakup threshold, E = 0, using η∗ = 0.1 and δ = 0.471
corresponding to the K-Rb-Rb resonance at a = 667 aBohr.
At E = 0, the resonance peak is only 7% higher than the
minimum value of β and the resonance is almost completely
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FIG. 8. (Color online) αd vs a for the 41K-87Rb-87Rb system
assuming a− = −246 aBohr and three values of η∗: η∗ = 0.12 (dashed
line), η∗ = 0.01 (solid line), and η∗ = 0.4 (dash-dotted line). Data
points indicated by diamonds are taken from Refs. [15,42]; see text.

washed out. Moreover, the peak value of β at E = 0 is a
factor of 300 smaller than at E = −Bd . Of course, the explicit
numbers depend on the value of η∗, but one should not exclude
the possibility of other explanations of the positive-a feature.

Aside from detecting the positions of the resonances, it is
desirable to compare the actual shapes of the a-dependence
of the loss rate with the theoretical predictions, especially on
the positive side of the resonance, where αs + αd is rather
smooth. So far, the three-body recombination rate in the
87Rb-41K mixture has been measured for two values of a < 0
[15,43], and the comparison with our calculation is rather
inconclusive. Figure 8 shows αd for the K-Rb-Rb resonance
at a = −246 aBohr, where only the recombination into deep
dimers can occur. The dashed curve is calculated using the
value η∗ = 0.12 suggested in Ref. [15]. The data point close
to the resonance is taken from Refs. [15,43], whereas the one
farther away from the resonance gives an upper limit of the
recombination rate [42]. In order to illustrate the sensitivity of
the result to η∗, we also show it for η∗ = 0.01 (solid line)
and η∗ = 0.4 (dash-dotted line). The discrepancy between
the measured recombination rate at the resonance and our
result for η∗ = 0.12 is about one order of magnitude. In
order to understand its origin, more measurements around the
resonance position are required. Such data would allow for a
more precise determination of the width parameter η∗ and of
the resonance shape predicted by the universal theory.

C. Future experiments

The Tübingen group of Zimmermann recently studied
the 7Li-87Rb and 6Li-87Rb mixtures. They identified and
quantified several interspecies Feshbach resonances in both
of them [44,45] and have reached quantum degeneracy [46].
These mixtures are characterized by quite small mass ratios
and, therefore, small scaling factors, which is favorable for
observing the discrete scaling invariance. Another very good
candidate for studying the Efimov effect with even smaller
scaling factors is a mixture of 133Cs with either isotope of
lithium (the 7Li-133Cs mixture was created in Heidelberg [47]).
The universal parameters for these mixtures can be found
in Table I. Predictions for the three-body recombination and

atom-dimer relaxation rates can be obtained from Eqs. (13),
(16), (20), (23), and (25).

VI. SUMMARY AND CONCLUSION

In this paper, we have calculated the three-body loss rates
in heteronuclear mixtures of atoms for the case of large
scattering length between the unlike atoms. We have analyzed
this problem using two complementary methods.

First, we have formulated a universal effective field theory
for this system and derived momentum-space integral equa-
tions for the trimer energies and the atom-dimer scattering
amplitude. From an analysis of the bound-state equation, we
have calculated the ratio of the resonance positions a∗/|a−| as
a function of the mass ratio, δ. Moreover, we have calculated
the three-body recombination and atom-dimer relaxation rates
numerically. We have provided semianalytical expressions for
the rate constants of three-body recombination into shallow
and deep dimers as a function of the interspecies scattering
length a and the Efimov width parameter η∗. Furthermore,
we have calculated the atom-dimer relaxation constant from
the scattering threshold at E = −Bd up to the dimer breakup
threshold at E = 0.

Second, we have carried out an analysis of the recombi-
nation and relaxation process in configuration space. We have
generalized the method developed in Ref. [36] to heteronuclear
bosonic mixtures and obtained analytic expressions for the
recombination and relaxation rates at E = 0. We find excellent
agreement of these expressions with our numerical results from
the momentum-space integral equations.

The expressions in Eqs. (13), (16), (25), and (56) fully
determine the three-body recombination rates for heteronu-
clear bosonic mixtures with resonant scattering between the
unlike atoms in the universal zero-range theory. The atom-
dimer relaxation rates at E = −Bd and E = 0 are given by
Eqs. (18), (20), and (23). These equations are universal and
can be used to analyze experimental data for any combina-
tion of atoms with the range applicability of the universal
theory.

In Ref. [48], D’Incao and Esry give a general functional
dependence of the recombination rates on the scattering length
for all possible combinations of bosons and fermions. This
includes the case of two identical bosons and a third atom with
J = 0, which we address here. We agree with their expressions
for αd in the case a < 0 and for β. For αs , our general form
(54) does not agree with their result. The proportionality of αs

to sin2(s0 ln a + φ3) where φ3 is a short-range phase [48,49]
emerges only if exp(2πs0) � 1 and the expression (54) can
be simplified (cf. Ref. [1]). This is the case for small mass
ratios δ. Moreover, our prediction for the dependence of αs

on δ [see Eqs. (13) and (56)] differs from the result αs ∝
[δ(2 + δ)]3/2a4/(1 + δ)2/m1 obtained in Ref. [48].

We have applied our results to some heteronuclear mixtures
in ongoing and planned experiments. We find good agreement
between theory and the JILA experiment [28] that investigated
40K-87Rb molecules and their stability in collisions with
atoms near a wide heteronuclear Feshbach resonance at
B0 = 546.7 G. For the recent experiment by the Florence
group which uses a mixture of 41K and 87Rb atoms [15,43],
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we observe moderate discrepancies between theory and exper-
iment. We obtain a∗/|a−| = 0.52 for the resonance positions
while the experimental ratio is a∗/|a−| = 2.7. Because neither
the effective range corrections nor the experimental errors of
the ratio are known accurately, no definite conclusion can be
drawn at the moment. In particular, our analysis of atom-dimer
relaxation suggests that explanations should be considered
other than an Efimov resonance for the feature at a = 667 aBohr

that was used to extract the value of a∗.
Using the value η∗ = 0.12 extracted in Ref. [15], we find

that the calculated recombination rate at the resonance is about
one order of magnitude too small. Using smaller values of η∗,
the size of the experimental rate can be reproduced. In order
to resolve this discrepancy, more measurements around the
resonance position are required. Currently, there are only two
data points and η∗ cannot be determined accurately. Additional
data would allow for a more precise determination of η∗
and allow for a test of the resonance shape predicted by the
universal theory.

Finally, we have calculated the universal parameters deter-
mining the three-body loss rates for various other mixtures and

have summarized them in Table I. Extending earlier work by
D’Incao and Esry [48,49], our predictions lay the theoretical
ground for the experimental observation of Efimov physics in
heteronuclear mixtures. They should be useful for planning
and analyzing future experiments.
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D.S.P. is supported by the Île-de-France Cold Atom Research
Institute, IFRAF, by the French National Research Agency,
ANR (Grant No. 08-BLAN-65), by the EuroQUAM-FerMix
program, and by the Russian Foundation for Fundamental
Research.

[1] E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[2] L. Platter, Few-Body Syst. 46, 139 (2009).
[3] V. Efimov, Phys. Lett. B 33, 563 (1970).
[4] E. Nielsen and J. H. Macek, Phys. Rev. Lett. 83, 1566 (1999).
[5] B. D. Esry, C. H. Greene, and J. P. Burke, Phys. Rev. Lett. 83,

1751 (1999).
[6] P. F. Bedaque, E. Braaten, and H.-W. Hammer, Phys. Rev. Lett.

85, 908 (2000).
[7] E. Braaten and H.-W. Hammer, Phys. Rev. Lett. 87, 160407

(2001).
[8] E. Braaten and H.-W. Hammer, Phys. Rev. A 70, 042706 (2004).
[9] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin,

B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl,
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