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Electron-impact ionization excitation of helium in the quasiphoton regime
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The triply differential cross section of ionization excitation of helium, leaving the residual ion in the n = 2
excited states, is evaluated for the kinematics considered experimentally by Dupré et al. [J. Phys. B 25, 259
(1992)]. The interaction of the incident electron with the target is described at the first order, while the interaction
of the ejected electron with the residual ion is treated very accurately within the formalism of the Jacobi matrix
method. In the quasiphoton limit and for low ejected electron energies, the presence of series of doubly excited
states, mainly below the n = 3 single ionization threshold in helium, makes the triply differential cross sections
extremely sensitive to both the energy and the emission angle of the ejected electron. We show that the convolution
of our results with a Gaussian energy profile, in which the full width at half-maximum corresponds to the energy
resolution in the experiment, has a significant effect. Our results suggest that it is also important to account
for the finite resolution on the measurement of the scattering angle when the experimental data are compared
to the theoretical predictions. Comparison of our theoretical results convoluted both in energy and in angle
with the experimental data demonstrates the importance of an accurate description of the helium spectrum. A
possible two-step mechanism involving single ionization of the target followed by excitation of the core electron
is proposed to explain the remaining discrepancies.
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I. INTRODUCTION

The simultaneous ionization excitation of helium by fast
electron impact is a highly correlated process which has posed
considerable challenge to both experiment and theory in recent
years. Despite significant progress in our understanding of
this process, there are still large and unexplained discrepan-
cies between experiment and theory for certain kinematics.
In this contribution, we focus on the strongly asymmetric
coplanar kinematics used in the experiment by Dupré et al. [1]
and calculate the triply differential cross section of ionization
excitation of helium leaving He+ in the excited n = 2 states.

In the experiment by Dupré et al. [1], the scattered electron
energy was fixed at 5.5 keV. Three values of the ejected
electron energy were considered, namely, 5, 10, and 75 eV,
while the corresponding scattering angles are 0.35◦, 0.32◦, and
1◦, respectively. In these kinematics, the amount of momentum
transferred to the target is very small (large impact parameter),
meaning that the dipolar or quasiphoton limit is approached.
Moreover, for ejected electron energies of 5 and 10 eV, exit
channels involving series of doubly excited states of helium
are accessible. This and the fact that the energy and angular
resolution in the experiment are relatively low make the
comparison between theory and experiment rather delicate.

From the theoretical point of view, we can distinguish
two types of calculations, depending on whether or not the
exit channels involving doubly excited states of helium are
included. In the experiment by Dupré et al. [1], the energy
resolution varies from 4 to 5 eV. It is therefore expected that
the effects of the doubly excited states of helium are washed
out when the ejected electron energy is equal to 5 or 10 eV.

*bernard.piraux@uclouvain.be

This is the reason why, in the first type of calculation, doubly
excited states of helium are fully neglected. Calculations
based on this assumption involve first Born [2–4] and second
Born [2,3,5] approaches. All these second Born calculations
rely on the closure approximation [2,3,5] and its variants.
Note, however, that a second-order distorted-wave calculation
was performed by Chen and Madison [6] without making the
closure approximation. They used a small but complete set of
pseudostates to perform the sum over the intermediate states of
the target. Regarding the second type of calculation, Fang and
Bartschat [7,8] are the only ones who have performed first- and
second-order calculations involving the contribution of doubly
excited states. In particular, they considered the 10-eV ejected
electron energy case.

In the case of kinematics involving relatively large momen-
tum transfers, it is undeniable that the inclusion of second-
order effects [2,3,5,7] improves the theoretical predictions
significantly. However, the comparison between these predic-
tions and the experimental data obtained by Stefani et al. [9],
Bellm et al. [10,11], Dürr et al. [12], Rouvellou et al. [13], and
Dogan and Crowe [14] shows that the agreement is far from
being perfect. On the one hand, higher-order contributions
could be significant. On the other hand, and despite efforts to go
beyond the closure approximation [6], an accurate calculation
of the second Born term remains an important challenge.

For very low-momentum transfers, it is legitimate to ques-
tion the importance of second-order effects. It is interesting
to note that, for an ejected electron energy of 75 eV in the
experiments by Dupré et al. [1], second-order effects were
negligible [2,3,5,7]. All first-order calculations agree very
well with the experimental data. In that case, however, the
exit channels that lead to the autoionization of helium are
not directly accessible. The situation changes dramatically
when the electron is ejected with energies equal to 5 or
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10 eV. Despite a slight improvement due to the inclusion of
second-order effects, the agreement between the experimental
data of Dupré et al. [1] and the theoretical predictions remains
very poor. Fang and Bartschat [8] pointed out that, in addition
to the correct description of the autoionization channels, the
finite energy and angular resolution in the experiment require
the convolution of the theoretical triply differential cross
section (TDCS) with the response function of the detectors.
In their calculations, they convoluted the TDCS at 10 eV
with a Gaussian energy profile of 400 meV full width at
half-maximum.

In this contribution, we calculate the ionization excitation
TDCS in helium for all kinematics considered in the exper-
iment by Dupré et al. [1]. As the first step, we treat the
problem within the first-order Born approximation. The helium
ground-state wave function is calculated accurately by means
of a spectral method which has been described in great detail
by Foumouo et al. [15]. The final single-continuum state is
generated by means of the Jacobi matrix method [16,17]. This
method provides a fully correlated multichannel scattering
wave function which takes into account accurately electron
correlations and, in particular, the contribution of the doubly
excited states of helium. Moreover, for the ejected electron
energies of 5 and 10 eV, we take into account the finite energy
and angular resolution given in the experiment by convolution
with the corresponding Gaussian profiles.

The organization of this paper is as follows. Section II
describes the essentials of the theory. In Sec. III, we present
and discuss our results for the TDCS for all kinematics
considered experimentally by Dupré et al. [1]. The last section
is devoted to the conclusion and perspectives. Atomic units
are used throughout, unless otherwise stated explicitly.

II. THEORY

We consider the electron-impact ionization excitation of
helium initially in its ground state, with the residual ion He+

left in the n = 2 states. In this process, Ei and �ki are the energy
and the momentum of the incident electron, which we assumed
to be fast. The quantization axis coincides with the direction
of this incident electron. After the collision, the scattered and
ejected electrons have energies Ef and Ee and momenta �kf

and �ke, respectively. They emerge into the solid angles d�f

and d�e centered about the directions (θf ,φf ) and (θe,φe).
The TDCS for ionization excitation of helium is written as

d3σ

dEd�ed�f

= (2π )4 kekf

ki

|Tf i |2, (1)

where Tf i is the transition matrix element. Under the present
conditions, we neglect the exchange of the incident electron
with the target electrons and calculate the transition matrix
element within the first Born approximation:

T
(1)
f i = − 1

(2π )3
〈eı�kf .�r1�f (�r2,�r3)|V |eı�ki .�r1�i(�r2,�r3)〉, (2)

where �i(�r2,�r3) and �f (�r2,�r3) are the initial and final wave
functions of helium, and V is given by

V = − 2

r1
+ 1

|�r1 − �r2| + 1

|�r2 − �r3| , (3)

where �r1, �r2, and �r3 are the position vectors of the projectile
and the two target electrons, respectively. By integrating over
�r1 and by using the Bethe relation [18], we obtain

T
(1)
f i = − 1

(πK)2
〈�f (�r2,�r3)|(−1 + ei �K.�r2 )|�i(�r2,�r3)〉, (4)

where �K = �ki − �kf is the momentum transfer. Note that in
the present case, the magnitude of this momentum transfer is
much less than 1. In the next two subsections, we describe
briefly the method used to generate the wave function of any
bound state and single continuum of helium.

A. Helium bound-state wave functions

The calculation of the bound-state wave functions of helium
is based on a spectral method of configuration interaction
(CI) type. It consists in expanding the wave function in a
finite basis of symmetrized products of discrete hydrogenlike
functions for the radial coordinates and bipolar harmonics for
the angular coordinates. For a given value of L, the total
angular momentum of helium and M , its projection on the
quantization axis, the bound-state wave function of energy Eα

is written

�L,M
α (�r2,�r3) =

∑
LM

∑
l2l3

∑
n2n3

βl2l3
n2n3

ψl2l3LM
n2n3

×A
(

S
κ3
n3l3

(r3)

r3
�LM

l2l3
(r̂2,r̂3)

S
κ2
n2l2

(r2)

r2

)
, (5)

where ψl2l3LM
n2n3

is the expansion coefficient. A projects onto
either singlet or triplet states to ensure the symmetry or
antisymmetry of the spatial wave function as required by the
Pauli principle. The coefficient βl2l3

n2n3
= 1 + (1/

√
2 − 1)δl2l3

n2n3

controls the redundancies which, from the exchange of the
electrons, may occur in the basis. The radial hydrogenlike
functions Sκ

nl(r) are Coulomb-Sturmian functions defined for
a given angular momentum l and radial index n by

Sκ
nl(r) = Nκ

nl rl+1e−κrL2l+1
n−l−1(2κr), (6)

where κ is a dilation parameter and L2l+1
n−l−1(2κr) a Laguerre

polynomial. The normalization constant given by

Nnl =
√

κ

n
(2κ)l+1

(
(n − l − 1)!

(n + l)!

)1/2

(7)

is derived from the condition
∫ ∞

0 Sκ
n,l(r)Sκ

n,l(r)dr = 1. The
radial index n is a positive integer satisfying n � l + 1.
The Coulomb-Sturmian functions are solutions of the Sturm-
Liouville problem:(

−1

2

d2

dr2
+ l(l + 1)

2r2
− ξ

r
+ κ2

2

)
Sκ

n,l(r) = 0, (8)

with the associated boundary conditions Sκ
n,l(0) = 0 and

Sκ
n,l(∞) = 0. ξ = κn is the eigenvalue and κ is fixed and real.

As a result, the Coulomb-Sturmian functions form a complete
and discrete basis of square integrable functions. Note that they
are exact solutions of the Schrödinger equation for a single
electron in the Coulomb field of a nucleus of charge Z: when
κ = Z/n, the Coulomb-Sturmian function Sκ

n,l(r) coincides
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with the hydrogenic bound state of principal quantum number
n and angular quantum number l.

The angular part of the expansion (5) is expressed in terms
of bipolar harmonics:

�LM
l2,l3

(r̂1,r̂2) =
∑

m2,m3

〈l2m2l3m3|LM〉Yl2,m2 (r̂1)Yl3,m3 (r̂2), (9)

which couple the two individual electron angular momenta l1
and l2 in the L-S scheme. Yl,m(r̂) denotes a spherical harmonic,
and 〈l2m2l3m3|LM〉 is a Clebsch-Gordan coefficient [19]. To
preserve parity, which is a good quantum number, the L-S
coupled individual angular momenta of the electrons must
satisfy (−1)L = (−1)l2+l3 .

The expansion coefficients ψl2l3LM
n2n3

are obtained by impos-
ing that the wave function is a solution of the time-independent
Schrödinger equation. In fact, by performing a single diago-
nalization of the atomic Hamiltonian for each value of the
total angular momentum L, we obtain discrete eigenenergies
corresponding to bound states and to pseudostates representing
the continuum. In the present case, we use 30 Coulomb-
Sturmian functions per electron and per pair of individual
electron angular momenta. For L = 0, the number of these
pairs is 4. This gives a ground-state energy of −2.9033 a.u.,
compared to −2.903 724 377 0 a.u., the reference data of Drake
[20]. The fact that our CI approach does not fulfill the Kato
cusp condition associated with two-electron coalescence limits
the accuracy of the ground-state energy of helium. For excited
bound states, however, the Kato cusp condition plays a minor
role and the accuracy of the energy increases rapidly with the
degree of excitation. This requires, however, the introduction
of various sets of dilation parameters [15].

The method described above to generate the bound states of
helium can also be used to evaluate the energy and width of the
doubly excited states. This is done by performing a complex
dilation of the atomic Hamiltonian [15].

B. Helium single-continuum wave functions

We describe the single continuum of helium by a multi-
channel scattering wave function. This wave function can be
generated accurately with the so-called Jacobi- or J -matrix
method. This method, which is of spectral type, bears a
close resemblance to the R-matrix theory. As in the latter
case, the configuration space is divided into two regions. In
the inner region, the space is spanned by the same finite
Coulomb-Sturmian basis used to generate the bound states
of the Hamiltonian. In the outer region, it is assumed that the
outgoing electron moves in a screened Coulomb potential. To
reproduce correctly the asymptotic behavior of the outgoing
electron wave function in each channel, it is expanded in an
infinite basis of Coulomb-Sturmian functions.

For a given channel �, and a given total energy E of the
final state, this single-continuum wave function reads as

��(�r2,�r3) =
∑

α

b�
α (E,k̂e)�L,M

α (�r2,�r3)

+
∑
�′

∑
n′

f �′�
n′ (E,k̂e)��′

n′ (�r2,�r3). (10)

The channel � ≡ (ν,λ,l; L,M) is characterized by a given
value of the target radial and angular quantum numbers, the

angular momentum of the ejected electron, and the target total
angular momentum and its projection, respectively. The right-
hand side of expression (10) contains two terms. The first
is the representation of the scattering wave function in the
inner region, while the second term accurately describes its
asymptotic behavior. It is a double expansion over all included
channels and over n′, the radial index of the Coulomb-Sturmian
functions describing the ejected electron. ��′

n′ (�r2,�r3) is the two-
electron wave function in the outer region. It is given by

��′
n′ (�r2,�r3) = A

(
χν ′λ′(r3)

r3
�L′M ′

λ′l′ (r̂2,r̂3)
S

κ2
n′l′ (r2)

r2

)
, (11)

where χν ′λ′(r3) is the wave function associated with the bound
states and the pseudostates representing the continuum of the
residual ion. It is obtained by diagonalizing the Hamiltonian
associated with He+ in our finite Coulomb-Sturmian basis. By
demanding that ��(�r2,�r3) satisfies the Schrödinger equation,
we obtain an algebraic system of equations to solve for
the coefficients b�

α (E,k̂e) and f �′�
n′ (E,k̂e). The outer-region

expansion coefficients are written as follows:

f �′�
n′ (E,k̂e) = f �′�

n′ (E)
∑
µ′m′

〈λ′µ′l′m′|LM〉y∗
l′m′ (k̂e), (12)

where

f �′�
n′ (E) = τ

l′2
n′ (E − ε)δ��′ − �

l′2
n′ (E − ε)T��′ . (13)

In this expression, l′2 refers to channel �′ and ε is the energy
of the target electron. τ l′2

n′ is the coefficient of the expansion
of the regular Coulomb wave in Coulomb-Sturmian functions,
while �l′2

n′ is the expansion coefficient of either an outgoing
Coulomb wave for open channels or a dying exponential
for closed channels. It is important to stress that all closed
channels do contribute to the transition matrix T��′ . Let us
also mention that the double-continuum channels are treated
in an approximated way. Asymptotically, the outer electron
is described by a Coulomb wave, and the inner one by a
pseudostate. In the inner region, however, we stress that the
double continuum is correctly described.

The reliability of the J -matrix approach has been tested
in numerous cases [15]. In the present contribution, the
convergence of our results is tested against the number of
Sturmian functions and the number of pairs (λ,l) of individual
electron angular momenta for several fixed values of both
the energy and the emission angle of the ejected electron.
We actually included 50 Coulomb-Sturmian functions per
electron and per pair (λ,l). We take into account six values
(from 0 to 5) of the total angular momentum L and at least
four pairs (λ,l) per L. Under these conditions, the number
of channels included in the single-continuum wave function
is about 350 for a given L. It is important to note that in
the present case, there is no restriction on the parity of the
final-state wave function: states of natural and unnatural parity
are included. Note that within our first-order treatment of the
collision, states of unnatural parity are not expected to play a
significant role in the quasiphoton limit.

To check the computer code, we proceeded as follows. We
calculated, both analytically and numerically, the TDCS for
electron-impact single ionization of helium. In this calculation,
the ground-state wave function is the Sturmian expansion
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of the Byron and Joachain wave function [21], which is an
analytical fit to the Hartree-Fock wave function, while the
final state is taken as the Sturmian expansion of a symmetrized
product of the He+ ground-state wave function for the bound
electron times a Coulomb wave with an effective charge
Z = 1. We obtain in this case a perfect agreement between
the analytical and the numerical results. Ionization excitation
has also been considered in this way by replacing the He+
ground-state wave function by the wave function of some
excited states. We also get an excellent agreement between
both the analytical and the numerical calculations.

III. RESULTS

We begin our discussion by considering the TDCS for
the kinematics in which Ei = 5640.41 eV, Ef = 5500 eV,
Ee = 75 eV, and θf = 1◦. This corresponds to a momentum
transfer of 0.44 a.u. In Fig. 1, we compare our first-order
results to the experimental results of Dupré et al. [1] and
to other first Born results. They include the close-coupling
calculations of Marchalant et al. [2], the convergent-close-
coupling calculations of Kheifets et al. [4], the R-matrix
with pseudostates method of Fang and Bartschat [7], and
the Faddeev-Merkuriev-Jacobi matrix approach of Zaytsev
et al. [22]. All first Born results are in fair or excellent
agreement with the experimental data. Fang and Bartschat [7],
Marchalant et al. [3], and Kheifets et al. [5] evaluated the
second-order contributions. Their results clearly show that the
corresponding effect is very small for this type of kinematics.
In fact, the TDCS exhibits a behavior which is very similar to
that of the corresponding TDCS for single ionization of helium
without excitation of the residual ion in the limit of very small
momentum transfers, namely, two peaks along the direction of

0 45 90 135 180 225 270 315 360
0

0.5

1

1.5

2
x 10

−3

θ
e
 (deg)

T
D

C
S

 (
a.

u
.)

 

 

Our results
Dupré et al. [1]
Marchalant et al. [2]
Zaytsev et al. [22]
Kheifets et al. [4]
Fang and Bartschat [7]

E
f
 = 5500 eV  θ

f
 = 1 deg  E

e
 = 75 eV

FIG. 1. Triply differential cross section for electron-impact ion-
ization excitation of He in its ground state, leaving He+ in the
n = 2 states, as a function of the ejected electron angle θe. The
incident electron energy Ei = 5640.41 eV, the scattered electron
energy Ef = 5500 eV, and the ejected electron energy Ee = 75 eV.
The scattering angle is θf = 1◦. Filled circles are the experimental
results of Dupré et al. [1]. Our first-order result is the bold solid
line. These are compared to the first Born results of Fang and
Bartschat [7] (dashed line), Kheifets et al. [4] (dot-dashed line),
Marchalant et al. [2] (dotted line), and Zaytsev et al. [22] (thin solid
line).
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FIG. 2. (Color online) Triply differential cross section for
electron-impact ionization excitation of He in its ground state, leaving
He+ in the n = 2 states, as a function of the ejected electron energy
Ee and angle θe. The scattered electron energy Ef = 5500 eV and
the scattering angle θf = 0.32◦.

the momentum transfer, with the binary peak higher than the
recoil one.

The situation changes dramatically for very low energies
of the ejected electron, where exit channels involving doubly
excited states of helium are directly accessible. Whether or not
the inclusion of the second-order contribution is decisive is still
an open question, which is addressed later. It is clear, however,
that it is crucial to describe accurately the target electron
correlations. We show this by considering the two other
kinematics that have been studied experimentally by Dupré
et al. [1], namely, (Ei = 5570.41 eV, Ef = 5500 eV, Ee =
5 eV, θf = 0.35◦) and (Ei = 5575.41 eV, Ef = 5500 eV,
Ee = 10 eV, θf = 0.32◦). It is important to stress that our
J -matrix calculation of the final single-continuum wave
function takes accurately into account the presence of various
series of doubly excited states of helium. Figures 2 and 3 show
three-dimensional graphs of the TDCS as a function of both the
ejection angle θe and the ejected electron energy for these two
kinematics. Figure 2 shows the TDCS for an ejected electron
energy around 10 eV. In the region very close to Ee = 10 eV,
the TDCS exhibits moderate variations due to the presence of
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FIG. 3. (Color online) Same as Fig. 2, for the same scattered
electron energy, Ef = 5500 eV, and a scattering angle θf = 0.35◦.
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the doubly excited states above the n = 3 threshold. However,
at the n = 3 threshold (Ee = 7.54 eV) and below, very sharp
variations occur. Below the n = 3 threshold, these sharp
resonances are due to L = 1 and L = 2 doubly excited states.
Given the finite-energy resolution of 4.2 eV in the experiment,
this region of resonances should also contribute significantly to
the experimental cross section. As shown in Fig. 3, the presence
of very sharp variations is even more pronounced in the case
where the ejected electron energy is around 5 eV. In that case,
we also see a strong effect of the n = 2 threshold in the large
energy interval from 0.1 to about 4.4 eV. Above this, the sharp
variations in the TDCS are due to the same resonances as
mentioned previously for the 10-eV case. To illustrate the high
sensitivity of the TDCS to the ejected electron energy, Fig. 4
shows the ejected-electron energy dependence of the TDCS in
a narrow interval around 10 eV [Fig. 4(a)] and 5 eV [Fig. 4(b)]
for two fixed values of the ejection angle close to the position
of the binary and recoil peaks, respectively.

As mentioned by Fang and Bartschat [8], comparison of
the theoretical predictions with the experimental data requires
a convolution of the theoretical results with the response
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FIG. 4. Ejected-electron energy dependence of the triply differ-
ential cross section of electron-impact ionization excitation of helium
leaving the residual ion in the excited n = 2 states. Two kinematics are
considered: (a) ejected-electron energy Ee around 10 eV, scattered-
electron energy Ef = 5500 eV, and scattering angle θf = 0.32◦ and
(b) ejected-electron energy Ee around 5 eV, scattered-electron energy
Ef = 5500 eV, and scattering angle θf = 0.35◦. In each case, two
values of the ejection angle, close to the positions of the binary and
recoil peaks, are chosen.

function of the detector. By means of their second Born
treatment, they calculated the TDCS in the case where the
ejected-electron energy is equal to 10 eV and convoluted their
results with a Gaussian energy profile of width 400 meV. Such
a width, however, does not include the sharp variations of
the TDCS around Ee = 7 eV, which, given the experimental
energy resolution of 4.2 eV, should contribute.

In the following, we analyze the convolution of our results
in energy for the Ee = 10 eV case and in both energy and
angle for Ee = 5 eV. Note that the convolution of our results
in energy and/or in angle requires an enormous amount of
numerical calculations. This is the main reason why the angular
convolution was performed only in the Ee = 5 eV case, which
has not been treated before. We convolute our results in energy
with a Gaussian profile of width 4.2 eV, which is the energy
resolution of the experiment by Dupré et al. [1]. The results
are presented in Fig. 5 for Ee = 10 eV. In Fig. 5(a), we show
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FIG. 5. Ejection angle dependence of the triply differential cross
section of electron-impact ionization excitation of helium, leaving the
residual ion in the excited n = 2 states, for a kinematics in which the
scattered-electron energy is Ef = 5500 eV and the scattering angle,
θf = 0.32◦. (a) For a fixed value of the ejected-electron energy of
10 eV, our uncovoluted result (bold solid line) is compared to the
experimental data of Dupré et al. [1] and to the first Born results of
Marchalant et al. (dotted line) [2], Kheifets et al. (dot-dashed line) [4],
and Fang and Bartschat (dashed line) [7]. (b) Our data for various
ejected-electron energies and our energy-convoluted result [bold solid
line labeled (C)] obtained with a Gaussian profile of width 4.2 eV
are compared to the same experimental data and to the convoluted
second-order results (thick dashed line) of Fang and Bartschat [8].
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our unconvoluted results compared to the first Born results of
Marchalant et al. [2], Kheifets et al. [4], and Fang and Bartschat
[7]. Our results are systematically above the other first-order
predictions and in fair agreement with the experimental data,
in particular, around the binary peak. The second-order results
of Marchalant et al. [3], Kheifets et al. [5], and Fang and
Bartschat [7,8] are in better agreement with the experimental
data than their respective first-order results. In Fig. 5(b), we
show the TDCS for various energies of the ejected electron
as well as the result of the energy convolution. These data are
compared to the convoluted second-order results of Fang and
Bartschat [8] and to the same experimental results. The fact
that the convoluted second-order results of Fang and Bartschat
are systematically below our first-order convoluted data is
intriguing. This might be related to the number of channels
taken into account in our final-state wave function, which
is much higher than in the calculations of Fang and Bartschat.
Surprisingly, the agreement of our energy-convoluted results
with the experimental data deteriorates, although our results
are still above all the other first and second Born predictions.
We actually see two possible reasons to explain this effect.
First, it is possible that some resonances between the n = 2
and the n = 3 thresholds are not resolved with our basis due
to its finite size. In particular, we expect that the inclusion of
many pairs (λ,l) of individual electron angular momenta is
necessary to reproduce the spectrum of helium in this region
accurately [23]. This suggests that a detailed study of the
helium resonances and convergence tests of the TDCS for
many values of the ejected electron parameters are necessary.
This detailed study can be performed with our approach but
requires enormous computational resources not yet available.
In the present calculations, we do observe a convergence of
the TDCS against the number of pairs (λ,l) but for values of
the ejected electron energy of 75 and 10 eV. Note that in the
latter case, the energy convolution requires the calculation of
the TDCS for ejected electron energies ranging from 14 to
6 eV, with a very thin energy discretization in the region of the
resonances.

The second reason is related to the inclusion of the
second-order contributions. The fact that the amplitude of
the recoil peak is higher than the amplitude of the binary
one suggests that second-order effects are indeed important.
The previous discussion clearly demonstrates that within
a second Born treatment, an accurate description of the
resonances is necessary. Moreover, it is not clear whether
the closure approximation is still valid. Indeed, we could
imagine the following two-step mechanism: a first transition
from the helium ground state to a single-continuum state,
leaving the residual ion in its ground state (single ionization),
followed by a second transition to another single-continuum
state in which the bound electron is excited while the ejected
one keeps the same energy (excitation of the electron core).
It is important to realize that the coupling between two single
continua can be very strong when the free electron has the same
energy in both single continua. This and the fact that helium
may reach its final continuum state via intermediate resonances
prevent a second-order treatment where all intermediate states
have the same weight (closure approximation). Instead, this
treatment requires a very large number of intermediate target
states to be taken into account accurately. Note that a similar
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FIG. 6. Same as Fig. 5, for a scattering angle θf = 0.35◦ and an
ejected-electron energy equal to 5 eV (a) or about 5 eV (b).

second-order process involving the coupling of two single
continua occurs in the case of two-photon ionization excitation
of a two-electron system. Proulx et al. [24] have studied this
process in the case of H− and have shown that the coupling
between the two single continua leads to a very strong effect
due to the resonant excitation of the core electron.

Let us now consider Fig. 6. In Fig. 6(a), we show our
unconvoluted result for an energy of the ejected electron
of 5 eV and compare it to both the experimental data of
Dupré et al. [1] and the first Born results of Marchalant
et al. [2], Kheifets et al. [4], and Fang and Bartschat [7].
Our unconvoluted results are significantly higher than both
the experimental data and the other theoretical predictions.
However, it is important to bear in mind that for an energy
of 5 eV, the many resonances between the n = 2 and the
n = 3 thresholds play a role in making the TDCS extremely
difficult to calculate. Figure 6(b) shows our energy-convoluted
results. As expected, the effect is extremely important: in the
region of the binary peak, the convoluted results get much
closer to the experimental data but stay higher than both
the experimental data and the other theoretical predictions.
Around the recoil peak, the gap between the experimental data
and our predictions increases. In Fig. 7, we show our energy-
convoluted result for the TDCS as a function of the angle of
the ejected electron for various scattering angles. Clearly, the
TDCS varies significantly in amplitude and the position of
both peaks changes as expected. After the convolution on the
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FIG. 7. (Color online) Ejection angle dependence of the triply
differential cross section of electron-impact ionization excitation of
helium, leaving the residual ion in the excited n = 2 states, for a
kinematics in which the scattered-electron energy is Ef = 5500 eV.
Our energy-convoluted data (curves labeled CE) are given for various
scattering angles θf between 0.17◦ and 0.53◦. Our angle- and
energy-convoluted result is the bold solid line labeled CEA. We use a
Gaussian profile of width 0.36◦ for the convolution on the scattering
angles. These results are compared to the experimental data of
Dupré et al. [1].

scattering angles with a Gaussian profile of width 0.36◦, which
corresponds to the experimental resolution, our results get even
closer to the experimental data, in particular, around the binary
peak. However, important discrepancies subsist regarding the
position of the binary peak and the amplitude of the recoil
peak. This suggests, again, that second-order effects must be
important.

IV. CONCLUSION

In this contribution, we calculate the TDCS of ionization
excitation of helium by impact of fast electrons. The interaction
of the incident electron with helium is treated at the first
order, while electron correlations in the target are accurately
described by means of a spectral method that includes a Jacobi-
matrix treatment of the multichannel scattering wave function
of the final single continuum. Our results are compared to
the experimental data of Dupré et al. In the case where
the ejected electron has an energy of 75 eV, the agreement
between our first-order results and the experimental data is
excellent. Moreover, our results also agree with the other
first- and second-order predictions. This means that in this
quasiphoton regime, the second-order results are negligible as
expected. However, for much lower ejection energies, between
5 and 13.6 eV, the situation changes dramatically. In this case,
exit channels leading to autoionization of helium are directly

accessible. At an ejection energy of 10 eV, our first-order
results get very close to the experimental data and, in fact,
closer than the other first- and second-order results in the
vicinity of the binary peak. However, if the theoretical data are
convoluted in energy with a Gaussian profile whose width
at half maximum is equal to the experimental resolution,
the results change significantly. The fact that the effect of
the convolution is so important is attributed to the presence
of doubly excited states below the n = 3 threshold and
to the presence of the n = 3 threshold itself. By contrast,
the doubly excited states above the n = 3 threshold do not
influence the results significantly. Nevertheless, it is surprising
that the agreement between the experimental data and our
results deteriorates once the energy convolution is performed.
This suggests that second-order contributions are important.
However, our results clearly show that such calculation should
include an accurate description of many doubly excited
states and go beyond the closure approximation, which still
represents a challenge. For an ejection energy of 5 eV, our
unconvoluted first-order results are too high compared to the
experimental results. In this case, the presence of the second
and the third thresholds, and the doubly excited states between
them, makes the TDCS extremely sensitive to both the energy
and the angle of the ejected electron. The energy convolution
of our results improves the agreement with the experimental
data in the region of the binary peak, while the opposite is
observed around the recoil peak. On the other hand, we show
that the triply differential cross section is also very sensitive to
the value of the scattering angle. This led us to convolute our
results in both energy and angle. This, however, is not sufficient
to explain the remaining discrepancies between theory and
experiment. We propose a two-step mechanism involving a
transition between two single-continuum states in which the
bound electron of the residual ion may be resonantly excited.
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