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Electron-impact ionization of hydrogenlike ions in QED theory
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Relativistic cross sections for electron-impact ionization including quantum electrodynamic effects are studied
for hydrogenlike ions in the two-potential formalism. Results are compared with other theoretical calculations
and experimental data. Effects of the transverse-photon interaction as well as vacuum polarization potential
between charges are analyzed. Systematic behaviors along the H-isoelectronic sequence are summarized.
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I. INTRODUCTION

Electron-impact ionization is one of the major fundamental
processes for understanding the atomic structure and collision
mechanisms. Knowledge of ionization cross sections has
applications in astrophysics, plasma physics, and radiation
physics. In particular, the electron-impact ionization cross
sections for highly charged ions are important in the study of
high-temperature plasmas. However, obtaining extensive data
on ionization cross sections of highly charged ions is difficult
in both theory and experiment.

The cross sections of electron-impact ionization for U91+-
U90+ were first measured by Claytor et al. [1] at 222 keV
electron energy in the heavy-ion channeling experiment. Marrs
et al. [2,3], O’Rourke et al. [4], and Watanabe et al. [5]
obtained the electron-impact ionization cross sections for some
intermediate- and high-Z hydrogenlike ions in electron-beam
ion trap experiments. Donets and Ovsyannikov [6] measured
the ionization cross sections for Ne9+ and Ar17+. Among
theoretical calculations, the direct electron-impact-ionization
cross sections for U91+ and U90+ were evaluated in the
lowest-order quantum electrodynamics (QED) by Pindzola
et al. [7] and for hydrogenic ions with nuclear charge Z

between 26 and 92 by Moores and Pindzola [8] using a
relativistic distorted-wave method. Electron-impact ionization
for U91+ including exchange effects are later calculated by
Pindzola et al. [9]. Moores and Reed [10] investigated the
effects of the transverse-photon interaction in the relativistic
distorted-wave calculations for high-Z hydrogenlike ions.
Ionization cross sections for a variety of ions with one to four
bound electrons and nuclear charge Z from 10 to 92 has been
studied by Fontes et al. [11] in the relativistic distorted-wave
approximation including the transverse-photon interaction for
incident electron energies up to about 6 units of ionization
energy.

A complete kinematic analysis of impact-ionization pro-
cesses has been presented by Huang [12], in which all dynam-
ical parameters are given in terms of reduced matrix elements.
By the two-potential formalism, relativistic cross sections
of electron- and positron-impact ionizations of hydrogen-,
helium-, lithium-, and berylliumlike ions have been reported
by Kao et al. [13], Hsu et al. [14], Kuo et al. [15],Chang
et al. [16], Szuma [17], Huang et al. [18],Sun [19], Kuo and
Huang [20,21], and Chang et al. [22].

In this work, we apply the two-potential formalism to calcu-
late electron-impact ionization cross sections of hydrogenlike
ions with QED effects. In Sec. II we present the general theory
of electron-impact ionization in the two-potential formalism.
The interaction Hamiltonians for the ionization processes and
the transition matrix elements in terms of radial integrals for
hydrogenlike targets are given in Sec. II. Numerical results
and discussions are provided in Sec. III, and the conclusion is
made in Sec. IV.

II. THEORY

A. Kinematic analysis

In electron-impact ionization processes, the target ion is
ionized by an incident electron of linear momentum ki and
energy Ei , and the two emerging electrons are described by
(kp,Ep) and (ks ,Es), where the primary (faster) electron is
specified by subscript p and the secondary (slower) electron
by subscript s. By energy conservation, we have

Ei + Eb = Ep + Es, (1)

where Eb is the energy of the bound electron.
If both the incident electron and the target ion are unpo-

larized, the triple-differential cross section in a relativistic
formulation have been given by Huang [12] in atomic units
as

d3σ

dEsd�pd�s

= (2π )4

c6

[
kpEpksEsEi

ki

] ∑
(f i)

|Tf i |2, (2)

where c is the speed of light, Tf i is the appropriate transition
amplitude, and the summation over (f i) denotes symbolically
averaging over the initial and summing over the final polar-
izations. The single differential cross section is obtained by
integrating over �p and �s as

dσ

dEs

= (2π )4

c6

[
kpEpksEsEi

ki

] ∫
d�p

∫
d�s

∑
(f i)

|Tf i |2

= 2π3

k2
i (2Jb + 1)

∑
α

d2
α, (3)

where Jb is the total angular momentum of the target, and the
summation is over all possible channels denoted by the index
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α ≡ (κi,κp,κs,j,J ). Here the real amplitude dα is defined by
the reduced matrix element of the partial wave amplitude in
channel α,

dα exp(iδα) = ili−(lp+ls ) exp[i(σκp
+ σκs

)]

×〈α−[Jα(jpjs)j ]J‖HI‖(jbji)J 〉, (4)

where σκp
and σκs

denote the Coulomb phase shifts of the two
outgoing electrons, Jα and J the total angular momentum
of the residual ion and of the entire collision complex,
respectively, and HI the appropriate interaction Hamiltonian.

The total cross section is obtained by integrating over Es as

σ =
∫ (Ei+Eb)/2

c2

dσ

dEs

dEs, (5)

where c2 represents the rest energy of the electron.

B. Two-potential formulation

The total Hamiltonian H of the projectile-target system can
be separated into two parts:

H = Hi + Vi, (6)

where Hi is the unpertubered Hamiltonian before the collision
and Vi is the interaction potential between the projectile and
the target during the collision.

In collision theory, the transition matrix element Tf i of
electron-impact ionization is given in the prior form by

Tf i = 〈�(−)
f |Vi |�i〉 − 〈P�

(−)
f |Vi |�i〉, (7)

where the first and second terms are the direct and exchange
terms, respectively, and �i is the eigenstate of Hi and �

(−)
f

is the eigenstate of H with the incoming-wave boundary
condition. Here the symbol P denotes the permutation between
electrons.

In the two-potential formulation, we separate the inetraction
potential Vi into the distorting potential Ui and the residual
potential Wi as

Vi = Ui + Wi. (8)

We can therefore reduce the transition matrix elements (8) into
the two-potential form as

Tf i = 〈�(−)
f |Wi |ψ (+)

i 〉 − 〈P�
(−)
f |Wi |ψ (+)

i 〉, (9)

where ψ
(+)
i denotes the wave function in the distorting

potential Ui .

C. Interaction Hamiltonians

In the relativistic theory, the unperturbed Hamiltonian Hi

and the interaction potential Vi are written as

Hi = (cα1 · p1 + c2β1) + (cα2 · p2 + c2β2) + Vn(r2), (10)

Vi = Vn(r1) + V (r12), (11)

where αi and βi are Dirac matrices and the indices 1 and 2
refer, respectively, to the incident and bound electrons before

the collision as well as the scattered and ejected electrons after
the collision. Here Vn(ri) is the nuclear potential of the form

Vn(r) =

⎧⎪⎪⎨
⎪⎪⎩

− Z

2R

(
3 − r2

R2

)
, r � R,

−Z

r
, r > R,

(12)

where R is the radius of a uniformly charged nucleus.
The potential V (r12) in (11) stands for the electron-electron

potential in the QED theory in various levels of approximation,
for example, the Coulomb interaction or the Coulomb interac-
tion plus the transverse-photon interaction. These interactions
between charges are due to the exchange of four types
of photons, namely, one timelike photon, one longitudinal
photon, and two transverse photons, which are referred to
as the covariant-photon interaction in totality. The exchange
of the timelike and longitudinal photons together leads to
the instantaneous Coulomb interaction. The transverse-photon
interaction [23,24] refers to the exchange of two types of
transverse photons.

In addition, processes involving the creation of virtual
electron-positron pairs by the photon field produce the
vacuum-polarization potential between charges. The lowest-
order vacuum-polarization potential, known as the Uehling
potential, may be expanded for a spherical charge distribution
in a convergent form valid for all distances [25]. The ratios
of vacuum-polarization potentials of various orders to the
Coulomb potential for a point nucleus have been evaluated
by Huang [25] for r � 1351.6 fm, where the Uehling potential
falls to less than 0.1 ppm of the Coulomb potential.

Because in the initial state the incident electron is generally
screened by the bound electron, we may choose Ui and Wi in
(8) as

Ui = Vn(r1) + vi(r1), (13)
Wi = V (r12) − vi(r1). (14)

Here the average potential vi(r1) is due to the wave function
�0(r2) of the bound electron of the hydrogenlike target,

vi(r1) = 〈�0(r2)| 1

r12
|�0(r2)〉. (15)

D. Transition matrix elements

The wave function ψ
(+)
i in (9) can be expressed as

ψ
(+)
i = χ

(+)
i (r1)�0(r2). (16)

Here the distorted wave function χ
(+)
i for the incident electron

with the outgoing-wave boundary condition satisfies the
equation

(cα1 · p1 + c2β1 + Ui − Ei)χ
(+)
i (r1) = 0. (17)

As an approximation to the final-state wave function �
(−)
f ,

we choose the distorted final-state wave function of product
form as

�
(−)
f ≈ χ (−)

p (r1)χ (−)
s (r2), (18)
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where χ (−)
p (r1) and χ (−)

s (r2) satisfy the following equations:

(cα1 · p1 + c2β1 + Up − Ep)χ (−)
p (r1) = 0, (19)

(cα2 · p2 + c2β2 + Us − Es)χ
(−)
s (r2) = 0. (20)

Here the distorting potentials Up and Us are for the primary
(faster) and secondary (slower) electrons, respectively. In the
present calculation, we choose the model such that the primary
electron is completely screened in the asymptotic region
by the secondary electron, while the secondary electron is
affected only by the Coulomb potential of the nucleus. This
model works quite well away from the ionization threshold.
Therefore, the distorting potentials Up and Us are given
explicitly as

Up(r1) = Vn(r1) + vi(r1), (21)

Us(r2) = Vn(r2). (22)

By using a graphical method [26], we obtain an expression
for the real transition matrix elements dα of Eq. (4) in terms of
3n − j coefficients and radial integrals. The electron-electron
interaction between two-particle configurations in the jm

scheme has the general form [26]

〈ab|V (r12)|cd〉
=

∫
d3r1

∫
d3r2 u†

a(1) u
†
b(2) V (r12) uc(1) ud (2), (23)

where a, b, c, and d indicate generally different Dirac orbitals
with the form

unκm(r) = 1

r

[
Gnκ (r)�κm(θ,ϕ)

iFnκ (r)�−κm(θ,ϕ)

]
. (24)

Here the radial functions Gnκ and Fnκ are the large and small
components, respectively, and �κm(θ,ϕ) are two-component
normalized spherical spinors. The jm-scheme matrix element
(23) may be reduced to a linear combination of radial integrals
suitable for numerical computations [26]:

〈ab|V (r12)|cd〉 =
∑

j

Gj (ab; cd)Xj (ab; cd). (25)

Here the coefficient Gj (ab; cd) relates to angular-momentum
couplings of the interacting particles and is defined in terms of
3-jm symbols as

Gj (ab; cd) =
(

ja j mc

ma mc − ma jc

) (
jb md mc − ma

mb jd j

)
.

(26)

The expression Xj (ab; cd) is called the interaction strength
with the general form

Xj (ab; cd) = Cj (ab; cd)Ij (ab; cd), (27)

Cj (ab; cd)

= (−)ja+jd [(2ja + 1)(2jb + 1)(2jc + 1)(2jd + 1)]1/2

×
(

ja j jc

1
2 0 − 1

2

) (
jb j jd

1
2 0 − 1

2

)
, (28)

where Ij (ab; cd) is defined in terms of radial integrals,
depending on the specific form of V (r12). In the following,
we summarize the results for various interactions.

(i) Coulomb interaction, 1/r12:

Ij (ab; cd) = −〈WacRjWbd〉even, (29)

which has the explicit form

〈WacRjWbd〉even =
∫ ∞

0
dr1

∫ ∞

0
dr2Wac(r1)RjWbd (r2),

(30)

with
Wαβ(r) = Gα(r)Gβ(r) + Fα(r)Fβ(r),

Rj = rj
</rj+1

> .

Here the superscript in the notation 〈 〉even(odd) denotes the
selection rule that both (la + j + lc) and (lb + j + ld ) have
to be even (odd).

(ii) Transverse-photon interaction, −(α1 · α2) eiωr12

r12
+ (α1 ·

∇1)(α2 · ∇2)[ eiωr12 −1
ω2r12

]:

Ij (ab; cd)

= −(1 − δj0)(κa + κc)(κb + κd )
(2j + 1)

j (j + 1)
〈VacgjVbd〉odd

+ (κc − κa)[〈Vacgj−1Pbd〉even − 〈Vacgj+1Pbd〉even]

+ j (j + 1)[〈PacsjQbd〉even − 〈QactjPbd〉even], (31)

where

sj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− i

r1
jj+1(ωr2)hj (ωr1), r1 > r2,

r
j−1
1

ω2r
j+2
2

− i

r1
jj (ωr1)hj+1(ωr2), r1 < r2,

(32)

tj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r
j−1
2

ω2r
j+2
1

− i

r1
jj−1(ωr2)hj (ωr1), r1 > r2,

− i

r1
jj (ωr1)hj−1(ωr2), r1 < r2,

(33)

with jj and hj being the spherical Bessel and Hankel functions,
respectively. In (30) the different combinations of radial
functions are defined as

Vαβ(r) = Gα(r)Fβ(r) + Fα(r)Gβ(r),

Pαβ(r) = Gα(r)Fβ(r) − Fα(r)Gβ(r) + Vαβ(r)(κβ − κα)/j,

(34)
Qαβ(r) = −Gα(r)Fβ(r) + Fα(r)Gβ(r)

+Vαβ (r)(κβ − κα)/(j + 1).

III. RESULTS AND DISCUSSION

A. Total and single-differential cross sections

For comparative studies of total and single-differential cross
sections of ions, we use the reduced cross sections defined as

σR ≡
(

I

IH

)2

σ,

(35)
dσR

dus

≡ I 3

I 2
H

dσ

dEs

,
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FIG. 1. Reduced single-differential cross sections in a.u. (a2
0 ) for

Ne9+ at incident energies u = 1.1, 4, and 15 in threshold energy units.

where I = c2[
√

1 − (Zα)2 − 1] denotes the ionization poten-
tial of the particular ion in consideration and IH denotes that of
the hydrogen atom. We shall also adopt the threshold-energy
units u = (Ei − c2)/I , up = (Ep − c2)/I , and us = (Es −
c2)/I measured with respect to the rest energy of the electron.
We have calculated cross sections for hydrogenlike ions with u

ranging from 1.05 to 15. Results for selected ions Ne9+, Ar17+,
Fe25+, Mo41+, Dy65+, Au78+, Bi82+, and U91+ are plotted in
Figs. 1–10 along with available experimental and theoretical
data for comparison. In these figures, “Dirac” indicates cross
sections with only Coulomb interaction between electrons
and “Transverse” indicates cross sections with Coulomb plus
transverse-photon interaction. The reduced cross sections (35)
are given in atomic units throughout, that is, in units of a2

0 ,
where a0 is the Bohr radius.

The single-differential cross sections for Ne9+ at u = 1.1,
4, and 15 are presented in Fig. 1, and those for U91+ in Fig. 2.
Cross sections are almost constant at low incident energies for
all ions, as exemplified in the case of u = 1.1 for Ne9+ and
U91+. These flat single-differential cross sections are due to the
fact that Coulomb wave functions of the two outgoing electrons
are insensitive to small variations in the momenta kp and ks

near the ionization threshold. Therefore, all possible sharings
of the available kinetic energy between the two outgoing
electrons are almost equally probable. In Figs. 1 and 2, all
curves at u = 4 and 15 decrease monotonically with us . We
note particularly that the total cross section comes mainly
from the low-us region at high incident energies. This can be

FIG. 2. Reduced single-differential cross sections in a.u. (a2
0 ) for

U91+ at incident energies u = 1.1, 4, and 15 in threshold energy units.

explained by the properties of the Coulomb wave function,
which can be written as

φ(Z,k,r) = (2π )−3/2eπη/2|�(1 − iη)|
× eik·r

1F1(iη; 1; ikr − ik · r), (36)

where η = Z/k and k and 1F1 are the momentum in the
Coulomb potential of charge Z and the confluent hypergeomet-
ric function, respectively. The amplitude of the Coulomb wave
function mainly depends on the parameter Z/k; therefore, it is
insensitive to small absolute changes in k when the momentum
is high. At high incident energies, the momentum kp of the
primary electron is generally high while the amplitude of the
secondary-electron wave function decreases as ks increases.
Namely, an uneven sharing of the available kinetic energy
(u − 1) is more favorable at high incident energies.

In Fig. 3, we show our total cross sections for Ne9+ and
compare them with the theoretical Dirac results of Fontes
et al. [11] and with the experimental data of Donets and
Ovsyannikov [6]. The difference between our transverse and
Dirac cross sections is small. The experimental results seem
too large. Our total cross sections of Ar17+ are presented
in Fig. 4 and in general agree with the experimental data
of Donets and Ovsyannikov [6] and the theoretical Dirac
results of Shi et al. [27]. In Fig. 5, we display our total cross
sections of Fe25+, which are compared with the results from
theoretical Dirac calculation of Shi et al. [27] and experimental
measurements by O’Rourke et al. [4]. The theoretical results
are in good agreement with each other, while the measurements
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FIG. 3. Reduced total cross sections in a.u. (a2
0 ) for Ne9+.

FIG. 4. Reduced total cross sections in a.u. (a2
0 ) for Ar17+.

FIG. 5. Reduced total cross sections in a.u. (a2
0 ) for Fe25+.

FIG. 6. Reduced total cross sections in a.u. (a2
0 ) for Mo41+.

of O’Rourke et al. are smaller than all theoretical calculations
at low incident energies and approach our results at higher
energies. Our calculation results of Mo41+ are presented
in Fig. 6 and are compared with the theoretical Dirac and
transverse results of Moores and Reed [10], Fontes et al. [11],
and Shi et al. [27] and the experimental data by Marrs et al. [3]
and Watanabe et al. [5]. It can be seen that our Dirac and
transverse results in general agree well with other theoretical
results and experimental data in all energy range.

In Figs. 7 and 8, we present our total cross sections of
Dy65+ and Au78+, and compare with the experimental data
by Marrs et al. [3] and the theoretical data by Moores and
Reed [10] and by Fontes et al. [11]. Our Dirac and transverse
data are in fair agreement with the calculation of Moores and
Reed, and Fontes et al. and Marrs’ measurements coincide with
our transverse data. Comparison for Bi82+ between our Dirac
and transverse results, the theoretical calculations of Moores
and Reed [10], and the experimantal data of Marrs et al. [3]
are shown in Fig. 9. The transverse and Dirac cross sections
of ours are in good agreement with Marrs’ measurements
and the Moores and Reed calculation. In Fig. 10, our total

FIG. 7. Reduced total cross sections in a.u. (a2
0 ) for Dy65+.
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FIG. 8. Reduced total cross sections in a.u. (a2
0 ) for Au78+.

FIG. 9. Reduced total cross sections in a.u. (a2
0 ) for Bi82+.

FIG. 10. Reduced total cross sections in a.u. (a2
0 ) for U91+.

FIG. 11. The percentage contribution of the vacuum polar-
ization to the total cross section for U91+ in electron-impact
ionization.

cross sections of U91+ are compared with the experimental
data of Claytor et al. [1] and Marrs et al. [2], as well
as with the theoretical results of Moores and Reed [10]
and Fontes et al. [11]. Our transverse data are within the
error bars of the experimental value of Marrs et al. Our
Dirac and transverse curves almost coincide with the data of
Moores and Reed and Fontes et al., except at higher incident
energies where our transverse curve is slightly higher than
other theoretical transverse data. Claytor’s measurements at
222 keV remains a factor of two higher than all theoretical
calculations.

According to our theoretical calculation, we found that
the transverse-photon interaction increases ionization cross
sections under 5% with Z � 26. The transverse cross sections
are always larger than the Dirac calculation at all incident
energies, even near threshold. The transverse-photon interac-
tion increases ionization cross sections with increasing atomic
number and with increasing incident energy.

The cross sections are also calculated for U91+ in Coulomb
plus transverse-photon interaction with and without the
vacuum-polarization potential between the electron and the nu-
cleus. The percentage contribution of the vacuum-polarization
potential to the cross section is plotted in Fig. 11. As expected,
the vacuum-polarization effect contributes about one part per
thousand to the ionization cross section [21].

B. Exchang effect

Exchange effects are quite substantial in electron-impact
ionization of atoms and ions. The reduced transverse cross
sections with and without exchange terms are compared for
He+, Ca19+, Kr35+, Xe53+, Hf71+, and U91+ in Fig. 12. We note
that exchange effects raise the cross section near threshold
and lower it as the excess energy increases for low- and
intermidiate-Z ions, like He+, Ca19+, and Kr35+. For highly
charged ions, like Xe53+, Hf71+, and U91+, exchange effects
in general elevate the cross section at all incident energy
regions.

042711-6
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FIG. 12. Exchange effects in the reduced cross sections of He+,
Ca19+, Kr35+, Xe53+, Hf71+, and U91+.

C. Scaling law and fit of ionization cross sections

In earlier studies of electron-impact ionization, Thom-
son’s scaling law [28] by classical mechanics, σ =
4(IH/I )2(1/u)(1 − 1/u)(πa2

0), has provided a simple fitting
formula to estimate ionization cross sections. An improved
scaling law has been given as σ = (1/u)(A ln u + B) in the

Bethe-Born theory, where A and B are constants. Moores and
Nussbaumer [29] have attempted to include the relativistic
effects by using the Mott-Massey formula,

σ = A

u

{
ln u + B − ln

(
1 − v2

c2

)
− v2

c2

}
, (37)

where v is the velocity of the incident electron. A rela-
tivistic form of the energies of incident electron is adopted
in this formula. The parameter A may be determined
from the photonionization cross section, and B by fitting
to the Coulomb-Born results. Both A and B supposedly
depend on the nuclear charge Z; however, they did not
discuss the Z dependence of the parameters A and B

along isoelectronic sequences. Recently, Fontes et al. [11]
fitted their QED cross sections to a modified Mott-Massey
formula,

σ = 1

u

{
A ln u+ D

(
1 − 1

u

)2

+ Cu

(
1− 1

u

)4

+
[

c

u
+ d

u2

]

×
(

1 − 1

u

) }(
IH

I

)2 1

141

[
140 +

(
Z

20

)3.2
]

, (38)

where coefficients A, D, c, and d are constants fitted by ion
Z = 20, and parameter C is a function of Z.

In our previous work [13], nonrelativistic and relativistic
cross sections with only Coulomb interaction have been
studied along the H-isoelectronic sequence. Nonrelativis-
tic cross-section curves approach a universal curve with
increasing Z, while relativistic curves with QED effects
have obvious deviations for high-Z ions from the universal
curve.

In this work, we propose to fit the calculated reduced cross
sections σR by a simple double series of 1/u and Z as

σR =
(

1 − 1

u

) 4∑
m=0

4∑
n=0

Amnu
−mZn, (39)

where Amn can be represented by the 5 × 5 matrix A, which
is given as

A =

⎛
⎜⎜⎜⎜⎜⎝

2.313 17(−1) 7.290 51(−3) −6.348 98(−5) 3.459 31(−5) −1.842 85(−7)

2.175 91(+1) 5.272 58(−3) 3.646 49(−3) −3.026 12(−4) 2.067 06(−6)

−3.609 48(+1) 1.052 73(−2) −2.074 19(−2) 1.196 61(−3) −8.330 14(−6)

4.299 74(+1) −6.684 49(−1) 5.897 50(−2) −2.194 23(−3) 1.499 78(−5)

−2.127 99(+1) 7.459 87(−1) −4.615 00(−2) 1.357 94(−3) −9.024 81(−6)

⎞
⎟⎟⎟⎟⎟⎠ , (40)

where the number n in the parenthesis (n) means the power
of 10. The reduced cross sections σR of ions 2 � Z � 92
are fitted for the incident-energy region 1.05 � u � 15. The
errors in the fitting are less than 1% in most cases and in
general less than 2%. With the simple expansion matrix given
in (40), we can predict rather accurately QED cross sections of
hydrogenlike ions with 2 � Z � 92 for a wide incident-energy
range.

IV. CONCLUSION

A fully relativistic calculation of electron-impact ionization
including Coulomb and transverse-photon interactions, as
well as vacuum polarization potential for highly charged
hydrogenlike ions, is performed. Exchange effects are
included by antisymmetrizing the transition amplitude in the
two-potential distorted-wave approximation. Contributions of
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the vacuum-polarization potential are about at the one-part-
per-thousand level in the Coulomb-plus-transverse-photon
interaction. The total cross section is modified by exchange
effects for all ions in wide energy region. The exchange
terms increase the cross section in the transverse case at all
incident energies for high-Z ions. QED effects are studied
by comparison with the ionization cross section in only the
Coulomb interaction and the Coulomb-plus-transverse-photon
interaction. With increasing atomic number, QED effects
become more and more important and enhance the
single-differential and total cross sections even at lower
incident energies. The QED reduced cross sections can be

fitted by a simple double series expansion of 1/u and Z for
a wide energy range. These fits are quite accurate within
1% in most cases by comparing with our calculations. Cross
sections for ions with 2 � Z � 92 along the H isoelectronic
sequence can be derived easily and quickly by matrix in (40).
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