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Optically pumped atoms with velocity- and spin-changing collisions at low gas pressures
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We discuss optical pumping when (a) the collision rates of optically pumped atoms with atoms or molecules
of the background gas are small enough that individual velocity groups can be preferentially excited by a
monochromatic light beam, (b) the collision rates are still fast enough to partially transfer the spin polarization to
other velocity groups, and (c) there are nonnegligible losses of polarization due to collisional spin relaxation and
Larmor precession. These conditions lead to a strong correlation between the velocity and the spin polarization
of the atoms—that is, to “spin-tagging” of the different velocity groups. This regime is similar to that of optically
pumped 23Na atoms of the Earth’s upper atmosphere, but it is seldom encountered in laboratory experiments. For
cooling and trapping experiments, the collision rates with background gas are negligible. For gas-cell experiments
the velocity-changing rates are normally so fast compared to spin relaxation or Larmor precession rates that the
atoms have a Maxwellian velocity distribution with negligible correlation between the spin polarization and the
velocity. We analyze the limiting cases of strong and weak collisions, which change the velocity by a large or
small fraction, respectively, of the mean thermal velocity. The Keilson-Storer model [J. Keilson and A. E. Storer,
Q. Appl. Math. 10, 243 (1952)] is used to discuss strong collisions, with memory parameter α = 0 and weak
collisions with α → 1. For weak collisions, the physics can be modeled by coupled Fokker-Planck equations,
identical to those for forced diffusion in a harmonic-oscillator potential well. In this limit there are solutions
analogous to the quantum mechanical coherent states of a harmonic oscillator.
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I. INTRODUCTION

There has been increasing interest in the use of Na
guidestars [1–5] in the adaptive optics community. A ground-
based laser is tuned to the 590 nm D2 line of Na atoms and
directed toward the star or other astronomical object of interest.
The laser scatters from the Na atoms that occur naturally in
the atmosphere at an altitude of 90 to 100 km. The back
scattered light from these atoms serves as an artificial star
that can be used to compensate for atmospheric turbulence
and to substantially improve the angular resolution of the
telescope.

The lasers used to produce Na guidestars can cause optical
pumping of the Na atoms. The number density [N ] of
atmospheric molecules and atoms is so low [1], typically
[N ] ≈ 1014 cm−3, that the optical absorption lines are almost
those of collision-free atoms. This homogeneous linewidth
is so narrow that only the small fraction of atoms that
happen to have the resonant Doppler shift can interact with
a monochromatic pumping laser. Velocity-changing collisions
allow spin-polarized atoms produced at the resonant velocity
to populate the rest of velocity space. Spin precession around
the geomagnetic field, with a magnitude B ≈ 1/2 gauss, is fast
enough to substantially degrade any transverse spin polariza-
tion produced by the optical pumping in the time it takes
for velocity-changing collisions to fill out the Maxwellian
velocity distribution. The geomagnetic field does not matter if
it happens to be parallel to the viewing direction, but it can be an
important factor if it is nearly perpendicular to the viewing di-
rection. Spin-flipping collisions with the “buffer gas” can also
degrade the spin polarization before an atom can be transferred
from the pumped velocity group to other velocity groups. A
grazing-incidence collision between an alkali-metal atom and
an O2 molecule or O atom that causes a negligible change in

velocity can be expected to flip the spin of the alkali-metal
atom because of the large (basically electrostatic) exchange
interaction between the unpaired electrons. This is similar to
spin-exchange collisions between pairs of alkali-metal atoms
in a laboratory environment, but the density [Na] ≈ 103 cm−3

of Na atoms is so low in the upper atmosphere that collisions
between pairs of Na atoms are completely negligible. In
contrast, conventional laboratory buffer gases like N2, He, or
Ar do not have unpaired electron spins, so an alkali-metal atom
can have a million or more velocity-changing collisions before
the weak spin-rotation interaction [6] finally flips the spin.
The conditions we summarized cause the optical pumping of
the Na layer to be very different from that encountered in
laboratory pumping of gas cells. The most striking difference
will be a strong correlation between the spin polarization and
the component of the atomic velocity along the laser beam. A
close analog of the physics of the Na guidestar is encountered
for optically pumped 154Sm [7]. Here the nonspherically
symmetric ground state has spin-relaxation rates comparable
to the rates of velocity-changing collisions, even for buffer
gases like N2, He, Ne, Ar, Kr, and Xe that cause very slow
spin relaxation for alkali-metal atoms.

Special mathematical tools are needed to analyze the
physics discussed previously. We can model the behavior of
the pumped atoms with evolution equations of the form

∂

∂t
yr = −Kryr + Sr . (1)

Each component of Eq. (1) is a function of x, a dimensionless
measure of the velocity of a Na atom along the direction of
a monochromatic laser pumping beam and time t , which we
measure in units of the “velocity damping” time. The element
of the atomic density matrix for atoms with velocities between
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x and x + dx is yr dx = yr (x, t)dx. The subscript r denotes
the velocity-independent relaxation rate r . The real part of r

is proportional to the rate of spin-changing collisions and the
imaginary part of r is proportional to the Larmor precession
rate—or to some other Bohr frequency of the atom. Different
elements yr of the density matrix will have different relaxation
rates r . The source rate Sr = Sr (x, t) is proportional to the
optical pumping rate and it is a linear combination of all of the
yr of the system.

The collisional damping operator Kr can be represented
in various ways, notably as the kernel of an integral
transform

Kryr (x, t) =
∫ ∞

−∞
dx ′(x|Kr |x ′)yr (x ′, t). (2)

The velocity of an optically pumped alkali-metal atom will
change by a small or large fraction of its mean thermal velocity
depending on whether the collision is “weak” or “strong.”
The kernel Kr will be more “diagonal” in velocity space for
weak collisions than for strong collisions. A comprehensive
review of the “linear transport equation” or “Boltzmann
transport equation” (1) was given by Berman [8]. With minor
changes in notation, the kernel Kr of Eq. (1) is often written
as (x|Kr |x ′) = (r + 1)δ(x − x ′) − (x|W |x ′) and (x|W |x ′) is
called the collision kernel [7,9].

The formal solution to Eq. (1) is

yr (x, t) =
∫ ∞

0
dτ

∫ ∞

−∞
dx ′(x|Tr (τ )|x ′)Sr (x ′, t − τ ), (3)

where a formal expression for the impulse-response function
is

Tr (τ ) = e−Krτ . (4)

For a time-independent source term Sr = Sr (x), the transients
associated with Eq. (1) die down and the time-independent,
steady-state density matrix yr (x) is given by Kryr = Sr , the
solution of which can be written as

yr (x) =
∫ ∞

−∞
dx ′(x|Gr |x ′)Sr (x ′). (5)

A formal expression for the Green’s function is

Gr = 1

Kr

=
∫ ∞

0
Tr (τ )dτ. (6)

As we will show in this article, the fundamental operators Kr ,
Tr (τ ), and Gr have various representations, some more conve-
nient for numerical computation and some more convenient for
abstract discussions. For example, Gr can be expressed as an
infinite series (253) of Hermite polynomials, or alternately, as
an infinite series (254) of Gaussians. For the limiting cases of
weak or strong collisions the fundamental operators also have
nonseries expressions: Eqs. (84), (86), and (132) or Eqs. (261)
through (263).

As an example of the different behavior of velocity distribu-
tions that evolve because of weak or strong collisions, consider
a Gaussian initial distribution y0(x, 0) ∝ exp −(x − x0)2/2σ 2

0
that is created by an impulsive source S(x, t) = y0(x, 0)δ(t −
�t), where �t → 0 is a small, positive time increment. We
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FIG. 1. (Color online) Source-free time evolution from
Eq. (7) of an initial, Gaussian velocity distribution y0(x, 0) =
e(x−x̄0)2/2σ 2

0 /
√

2πσ 2
0 with σ 2

0 = 1/50 and x̄0 = 2 for weak and strong
collisions and with r = 0. The curves are plotted for t = 0, 0.1, 1,
and 100. In this and subsequent figures, all quantities plotted are
dimensionless.

see from Eq. (3) that the distribution at time t will be

y0(x, t) =
∫ ∞

−∞
(x|T0(t)|x ′)y0(x ′, 0)dx ′. (7)

For simplicity, we let r = 0. In Fig. 1 we show the free
evolution, evaluated with Eq. (7), of the same initial Gaussian
distribution of velocities for the limits of weak and strong
collisions, with impulse response functions T0(t) given by
Eqs. (86) and (262), respectively. Salient features that one
can see in Fig. 1 are:

1. For the weak-collision limit, the initial Gaussian distri-
bution continuously changes its variance σ 2

t and its mean x̄t ,
but remains a Gaussian until it settles down to a Maxwellian
distribution, that is, a Gaussian distribution with mean x̄0 = 0
and variance σ 2

∞ = 1/2. One can use Eq. (86) to show
that if the initial distribution has a variance σ 2

0 and mean
x̄0 at time t = 0, then σ 2

t = (σ 2
0 − 1/2)e−2t + 1/2 and x̄t =

x̄0e
−t . Non-Gaussian initial distributions also evolve to the

Maxwellian distribution, but they change their shapes in the
process.

2. For the strong-collision limit, the initial Gaussian
distribution damps exponentially, with no change in its initial
variance σ 2

0 or mean x̄0. This represents atoms that have not
yet had collisions. Atoms that have had collisions immediately
assume a Maxwellian distribution with a variance σ∞ = 1/2
and with a mean x̄∞ = 0. The distribution becomes
bimodal at intermediate times. The part of the distribution
representing atoms that have not yet had a strong collision
undergoes simple exponential damping for any shape of the
initial velocity distribution.

3. Both weak and strong collisions lead to the same
Maxwellian distribution at late times, with variance σ 2

∞ =
1/2. So any experimental phenomenon that depends mostly
on final-state distributions will not be sensitive to whether
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the collisions are weak or strong. Steady-state experiments
to investigate the relative importance of weak and strong
velocity-changing collisions must be designed with velocity-
independent damping rates r that are large enough to maximize
the contributions of intermediate times, when there is the
largest possible difference between the evolving distributions
for weak and strong collisions.

We devoted about half of this article to the optical-
pumping physics that motivated us and to simple examples
of how to solve problems with the formalism we introduce.
The remainder of the article is devoted to details of the
mathematics, which includes a brief review of previous work
on similar problems as well as new methods that we hope
will be useful well beyond the optical-pumping physics of
guidestars.

II. EVOLUTION

We consider a hypothetical Na isotope with nuclear spin
quantum number I = 0. The procedures we outline below
work just as well for a real 23Na atom with I = 3/2, but
because of the much larger size of the density matrix, 8 × 8
instead of 2 × 2, illustrating the discussions of this article
with a real 23Na atom will complicate the discussion without
adding additional insight into the physics. The ground-state
Hamiltonian for the hypothetical atom is

H = h̄ωSz, where ω = gSµBB

h̄
. (8)

Here gS = 2.00231 is the g value of the electron, µB =
9.2741 × 10−21 erg gauss−1 is the Bohr magneton, and
2πh̄ = h = 6.6262 × 10−27 erg s is Planck’s constant. The
hypothetical atom has two energy sublevels with azimuthal
quantum numbers µ = α = 1/2 or µ = β = −1/2

Sz|α〉 = α|α〉 = 1
2 |α〉, and Sz|β〉 = β|β〉 = − 1

2 |β〉.
(9)

We describe the optically pumped Na atoms with a velocity-
dependent density matrix

φ =
∑
µν

|µ〉φµν〈ν|. (10)

The density matrix φ = φ(v, t) of Eq. (10) depends on time
t and on the velocity v of the atom along the direction of the
light beam. We assume that the components of the velocity
transverse to the laser beam have a Maxwellian distribution
at the local atmospheric temperature T . The density matrix of
the atoms with velocities between v and v + dv is dρ = φdv.

If we integrate over all velocity groups, we get the familiar
spin density matrix

ρ =
∫ ∞

−∞
φdv. (11)

For the hypothetical atom, we can group the elements of the
density matrix φµν as a 2 × 2 matrix φ in Schrödinger space

φ =
[

φαα φαβ

φβα φββ

]
=

∑
µν

|µ〉〈ν|φµν, (12)

or as a 4 × 1 column vector |φ) in Liouville space

|φ) =

⎡
⎢⎢⎢⎣

φαα

φβα

φαβ

φββ

⎤
⎥⎥⎥⎦ =

∑
k

|k)(k|φ). (13)

The column vector |φ) of Eq. (13) is formed from the matrix
φ of Eq. (12) by placing each column of φ below the
one to its left. The Schrödinger-space basis operators |µ〉〈ν|
are in one-to-one correspondence with the Liouville-space
basis vectors |k), with (k|φ) = Tr[(|µ〉〈ν|)†φ] = φµν . For our
simple, hypothetical atom there is little reason to use the
Liouville-space representation of Eq. (13) in preference to the
conventional representation of Eq. (12). For real 23Na atoms,
with many more sublevels, some of the substantial advantages
of Liouville space are:

1. The equations describing spin relaxation look simpler
for Liouville space.

2. Both isentropic processes, like the evolution of atoms
under the influence of a common Hamiltonian and pro-
cesses like spin relaxation or optical pumping that increase
or decrease the spin entropy are described by analogous
superoperators in Liouville space.

3. It is easier to write and debug computer code based
on the Liouville-space formalism, since the coding statements
look very similar to theoretical equations in the text.

We will therefore continue our discussion using the
Liouville-space formalism, the first example of which is
Eq. (13).

Following traditional Dirac notation, we use a ket, for
example |α〉, to denote a column vector in Schroedinger space,
and we use a bra, for example 〈α|, to denote the Hermitian
conjugate of the ket—a row vector. In like manner we use
right parenthesis, for example |φ), to denote a column vector in
Liouville space, and we use a left parenthesis, for example (φ|,
to denote the Hermitian conjugate of the column vector—a row
vector. Later we will encounter non-orthonormal basis vectors
|γk) for Liouville space, analogous to the non-orthnormal basis
vectors for crystal lattices. We denote the “reciprocal basis
vectors,” with a double left parenthesis, for example ((γk|.
When we use the double-parenthesis notation, it is implied
that ((γk| is not the same as (γk|. The two row vectors may
point in different directions. Further discussion of these and
related issues can be found in the book, Optically Pumped
Atoms, by Happer, Jau, and Walker [10]

a. Evolution due to the Hamiltonian. The Hamiltonian will
cause the density matrix φ to evolve at the rate

∂

∂t
φ = 1

ih̄
[H,φ]. (14)

The Liouville-space version of Eq. (14) is

∂

∂t
|φ) = 1

ih̄
H c©|φ). (15)

The “commutator superoperator” is the difference of
Kronecker products,

H c© = 1{g} ⊗ H − HT ⊗ 1{g}. (16)

042703-3



STEVEN W. MORGAN AND WILLIAM HAPPER PHYSICAL REVIEW A 81, 042703 (2010)

Here HT is the transpose of H and the unit operator for ground-
state atoms is

1{g} =
∑

µ

|µ〉〈µ|. (17)

There is a clear introduction to superoperators in Principles
of Magnetic Resonance in One and Two Dimensions by Ernst,
Bodenhausen, and Wokaun [11]. Unlike our convention, where
we construct the column vector |φ) from the columns of φ,
Ernst et al. constructed |φ) from the rows of φ. This causes
some minor changes in the definitions of the superoperators.
For the hypothetical atom and its simple Hamiltonian (8) we
have

H c© = h̄ω

⎡
⎢⎢⎢⎣

0 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦ . (18)

b. Evolution due to spin relaxation. We assume that the
longitudinal and transverse spin-relaxation rates are equal
and given by the S-damping rate �sd. Then S-damping
collisions cause the amplitudes φµν to change at the
rate

φ̇αα = 1
2�sd(φββ − φαα),

φ̇βα = −�sdφβα,
(19)

φ̇αβ = −�sdφαβ,

φ̇ββ = 1
2�sd(φαα − φββ).

This can be written as the matrix equation

∂

∂t
|φ) = −�sdAsd|φ). (20)

The dimensionless, S-damping matrix is

Asd = 1

2

⎡
⎢⎢⎢⎣

1 0 0 −1

0 2 0 0

0 0 2 0

−1 0 0 1

⎤
⎥⎥⎥⎦ . (21)

The S-damping rate is

�sd = [N ]v̄σsd, (22)

v̄ is the mean relative velocity between an Na atom and an
atmospheric constituent—like an N2 or O2 molecule or an O
atom—of total number density [N ]. The mean spin-relaxation
cross section is σsd. The rate coefficients v̄σsd for collisions of
Na atoms with O2 molecules or O atoms, both with unpaired
spins, will be on the order of v̄σsd ≈ 10−9 cm3 s−1, similar to
the rate coefficients for spin-exchange collisions between pairs
of alkali-metal atoms [12]. For diamagnetic species like N2 or
Ar, the rate coefficients will be many orders of magnitude
smaller [12], typically v̄σsd ≈ 10−18 cm3 s−1. So the mean
rate coefficient will be determined by the fraction of the
atmospheric particles that are O2 molecules or O atoms. This
fraction will depend on altitude and on upper atmospheric
“weather,” but a representative fraction will be about 0.3, so a
representative S-damping rate (22) will be �sd = 3 × 104 s−1.

c. Evolution due to velocity-changing collisions. As men-
tioned in connection with Eq. (1), we assume that the evolution

of the density matrix due to velocity-changing collisions can
be written as

∂

∂t
φ(v) = −

∫
(v|K|v′)φ(v′)dv′. (23)

We make the simplifying assumption that the collisional
change in spin is uncorrelated with the collisional change
in velocity. There are theoretical reasons to question this
independence [8] and experimental tests are needed to see
how well this simplifying assumption works for Na atoms
under guidestar conditions.

Let χ (v)dv be the probability to find atoms with velocities
between v and v + dv where

χ (v) = Tr[φ(v)]. (24)

The mean velocity of the atoms along the laser beam is then

〈v〉 =
∫

vχ (v)dv. (25)

For the models we consider in this article, velocity-changing
collisions will cause 〈v〉 to decay exponentially at the
“velocity-damping rate”

�vd = − d

dt
ln 〈v〉 = 1

〈v〉
∫

v(v|K|v′)χ (v′)dv′. (26)

d. Weak velocity-changing collisions. We begin by dis-
cussing weak, velocity-changing collisions, where the velocity
increments per collisions are so small that it makes sense
to use the concept of diffusion in velocity space. We will
defer our discussion of strong collisions until we explain the
basic physics associated with weak collisions. The sum of the
diffusion current density −Dv∂|φ)/∂v and the drift current
density −�vdv|φ) gives the total current density

j |φ), with j = −Dv

∂

∂v
− �vdv. (27)

The diffusion coefficient in velocity space is Dv . The viscous
damping rate of the velocity will be

�vd = [N ]v̄σvd. (28)

If l is the mean free path of an Na atom, we know that
we should have �vd ≈ v̄/ l. Estimating l from measured
diffusion coefficients of Na atoms in N gas [12] we find
that a representative rate coefficient for velocity damping is
v̄σvd = 10−10 cm3 s−1, about a factor of 3 smaller than the rate
coefficient �sd of Eq. (22) for S-damping. The exact values of
�vd and �sd are not important, but the fact that they are of the
same order of magnitude is unusual, since in conventional gas
cells, where the buffer gas contains no paramagnetic species
like O2 molecules or O atoms, �sd is many orders of magnitude
smaller than �vd.

Substituting Eq. (27) into the equation of continuity

∂

∂t
|φ) + ∂

∂v
j |φ) = 0, (29)

we find the evolution equation for weak collisions

∂

∂t
|φ) = Dv

∂2

∂v2
|φ) + �vd

∂

∂v
v|φ). (30)
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From Eqs. (30) and (2) we see that the kernel for weak
collisions is

(v|K|v′) = −
(

Dv

∂2

∂v2
+ �vd

∂

∂v
v

)
δ(v − v′). (31)

In steady state ∂|φ)/∂t = 0 and Eq. (30) implies that the
velocity dependence of |φ) is

∂

∂v
j |φ) = 0, or j |φ) = constant. (32)

There can be no current of atoms with infinite velocity, so the
constant, steady-state current of Eq. (32) must be j |φ) = 0.
Then we can integrate Eq. (32), with j given by Eq. (27), to
find a normalized distribution

|φ1) = |ρ1)
e−v2/2σ 2

v√
2πσ 2

v

, where σ 2
v = Dv

�vd
. (33)

In view of Boltzmann statistics, we must also have σ 2
v =

kBT /M , where M is the mass of the atom, kB is Boltzmann’s
constant, and T is the absolute temperature. For 23Na guidestar
atoms, with a representative temperature T = 180 K, the
standard deviation is

σv = 2.55 × 104 cm s−1. (34)

Equating the velocity variance of Eq. (33) to that demanded
by Boltzmann statistics we find the Einstein-Smoluchowski
relation [13]

MDv = �vdkBT . (35)

e. Optical pumping. For simplicity we suppose that the
hypothetical atom is pumped by D1 light to the 2P1/2 state.
The key parts of the discussion in the following do not change
if we consider D2 pumping to the 2P3/2 state or pumping of a
real Na atom. Let the spectrally resolved energy flux of the light
with optical frequencies between ν = ω/(2π ) and ν + dν be
F (ν)dν (typical units of F are mW cm−2 MHz−1). Integrating
over all optical frequencies ν, we find the total energy flux I

(typical units of I are mW cm−2), and the mean frequency ν0

are

I =
∫

F (ν)dν, and ν0 = 1

I

∫
F (ν)νdν. (36)

The mean optical pumping rate of unpolarized atoms with
velocity v along the light beam is

�op(v) = 1

h̄ωop

∫ ∞

0
σop(v, ν)F (ν)dν. (37)

The absorption cross section is

σop(v, ν) = 2πrecf γ2

γ 2
2 + (ω − ωop[1 + v/c])2

. (38)

Here ωop = 2πc/λop is the resonance optical absorption
frequency for pumping atoms at rest into the excited state.
The corresponding wavelength is λop = 589.8 nm. The speed
of light is c = 3 × 1010 cm s−1, the classical electron radius
is re = 2.82 × 10−13 cm, and f = 0.322 is the oscillator
strength. The homogeneous “1/T2” linewidth of the optical
absorption line is

γ2 = 1

2τ
+ γc, (39)

where τ = 16.23 ns is the spontaneous radiative lifetime of the
excited state and γc = v̄σc[N ] is the collisional broadening of
the optical line. For a representative optical line-broadening
coefficient v̄σc = 2 × 10−9 cm3s−1 and a number density
[N ] = 1014 cm−3, we will have γc = 2 × 105 s−1, compared
to 1/(2τ ) = 3.1 × 107 s−1. So the homogeneous optical ab-
sorption linewidth of Na guidestar atoms is almost completely
due to the natural spontaneous lifetime of the atoms, with a
contribution from collisions of only about 1%. We note the
area identities for the cross section∫

σop(v, ν)dν = πrecf, and
∫

σop(v, ν)dv = πrecf λop.

(40)

We define a resonant velocity by

v0 =
∫

�opvdv∫
�opdv

. (41)

The resonant velocity v0 can be used to define a dimensionless
lineshape function g = g(v)

g = �op(v)

�op(v0)
, with g(v0) = 1. (42)

We define a velocity width �v

�v =
∫

gdv. (43)

It will be useful to define a saturation flux Is , at which the
optical pumping rate �op(v0) is equal to the spontaneous decay
rate 1/τ of an excited atom

Is = I

�op(v0)τ
. (44)

f. Gaussian spectral profiles. For modeling it will be
convenient to take a Gaussian spectral profile for the pumping
light

F (ν) = Ie
− (ν−νo )2

2σ2
ν√

2πσ 2
ν

. (45)

The peak frequency is ν0 = ω0/2π and the variance is σ 2
ν .

Substituting Eq. (45) into Eq. (37) we find that the lineshape
function (42) becomes

g = Re

(
Z(z)

Z(zo)

)
= Re

(
w(z)

w(zo)

)
. (46)

Here Z is the plasma dispersion function and w is the closely
related Faddeeva function [14], both discussed in more detail
in Sec. IV D. Both have the same complex arguments

z = 1

2πσν

√
2

(ωop[1 + v/c] − ωo + iγ2),

(47)
and zo = iγ2

2πσν

√
2
.

The resonant velocity of Eq. (41) becomes

vo = c(ωo/ωop − 1). (48)
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The velocity width (43) and the saturation flux (44) become

�v = λopσν

√
2π

w(zo)
, and Is = 4h̄γ2�v

reλ2
opf

. (49)

In the monochromatic limit when σν → 0 and |zo| 
 1, we can
use the asymptotic expression (200) of the Faddeeva function
to show that

�v → λopγ2

2
, and Is → 2h̄γ 2

2

reλopf
,

(50)
for σν � γ2.

The monochromatic limit (50) gives the minimum saturation
flux, which has the value

Is = 38 mW cm−2, (51)

for the D1 line of Na and negligible collisional broadening. For
nonzero spectral widths, the saturation flux is larger. When the
spectral width σν is large enough that |zo| � 1, we can use
Eq. (198) with Eq. (49) to show that

�v → λopσν

√
2π, and Is → h̄σνγ2

√
32π

reλopf
,

(52)
for σν 
 γ2.

In subsequent discussions, we will assume laser intensities
I � Is, so that we can neglect the effects of saturation and
stimulated emission by excited atoms. Accounting for satura-
tion does not lead to any qualitative changes in our discussion
of the combined effects of velocity-changing collisions and
depolarization processes.

g. Spin evolution due to optical pumping. For pumping
to the 2P1/2 state, the light can only pump out of the spin-
down ground-state sublevel |β〉 of the hypothetical atom. The
amplitudes φµν will change at the rate

φ̇αα = 2
3�opφββ,

φ̇βα = −�opφβα,
(53)

φ̇αβ = −�opφαβ,

φ̇ββ = −2�opφββ + 4
3�opφββ.

The terms on the right of Eq. (53) with negative signs describe
depopulation pumping at a mean rate �op = �op(v), which
will depend on how close the velocity v is to the resonant
velocity c(ω/ωop − 1), picked out by the light of frequency ω.
The terms on the right of Eq. (53) with positive signs describe
repopulation pumping, with 2/3 of the atoms pumped out of
the spin-down sublevel |β〉, returned by spontaneous decay,
and the other 1/3 transferred to the spin-up sublevel |α〉.
Depopulation pumping destroys the coherences ρβα and ραβ

at the mean pumping rate and no coherence is returned by
repopulation pumping. Note that we can write Eq. (53) as a
special case of the matrix equation

∂

∂t
|φ) = −�opAop(n)|φ), (54)

which describes pumping of the atoms into the 2P1/2 excited
state by light that is right-circularly polarized along the
direction of propagation n. Comparing Eq. (53) with Eq. (54)

we see that the dimensionless pumping matrix is

Aop(z) = 1

3

⎡
⎢⎢⎢⎣

0 0 0 −2

0 3 0 0

0 0 3 0

0 0 0 2

⎤
⎥⎥⎥⎦ . (55)

For guidestars the pumping light is seldom parallel to the
geomagnetic field, which we have taken to define the z axis
of our coordinate system. We need an expression analogous
to Eq. (55) for an arbitrary direction of propagation. To find
such an expression, we generate row and column vectors for
Liouville space from the unit operator and the Pauli spin
matrices of Schrödinger space

1{g} =
[

1 0

0 1

]
, |1{g}) =

⎡
⎢⎢⎢⎣

1

0

0

1

⎤
⎥⎥⎥⎦ ,

(56)
(1{g}| = [1 0 0 1],

Sx = 1

2

[
0 1

1 0

]
, |Sx) = 1

2

⎡
⎢⎢⎢⎣

0

1

1

0

⎤
⎥⎥⎥⎦ ,

(57)
(Sx | = 1

2
[0 1 1 0],

Sy = 1

2i

[
0 1

−1 0

]
, |Sy) = 1

2i

⎡
⎢⎢⎢⎣

0

−1

1

0

⎤
⎥⎥⎥⎦ ,

(58)
(Sy | = − 1

2i
[0 − 1 1 0],

Sz = 1

2

[
1 0

0 −1

]
, |Sz) = 1

2

⎡
⎢⎢⎢⎣

1

0

0

−1

⎤
⎥⎥⎥⎦ ,

(59)
(Sz| = 1

2
[1 0 0 − 1].

Using Eqs. (56) through (59), we can write Eq. (55) as

Aop(z) = 2
3 {3|S) · (S| − |Sz)(Sz| − |Sz)(1{g}|}. (60)

We note that

|S) · (S| = |Sx)(Sx | + |Sy)(Sy | + |Sz)(Sz| = 1
2Asd, (61)

with the S-damping matrix given by Eq. (21). It is clear that
if the light is propagating along the unit vector n instead of
along the unit vector z that Eq. (60) becomes

Aop(n) = 2
3 {3|S) · (S| − |n · S)(n · S| − |n · S)(1{g}|}. (62)

For example, if the light is propagating along the x axis
(perpendicular to the direction of the magnetic field) so n = x,
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we find

Aop(x) = 1

6

⎡
⎢⎢⎢⎣

3 0 0 −3

−2 5 −1 −2

−2 −1 5 −2

−3 0 0 3

⎤
⎥⎥⎥⎦ . (63)

h. Absorption per atom. From inspection of Eq. (53) we
see that the absorption rate (depopulation pumping rate) of
atoms with velocities between v and v + dv is

2�opφββdv = (�dp|φ)dv. (64)

The total absorption rate from polarized atoms of all velocities
is

〈δ�〉 =
∫

(�dp|φ)dv. (65)

As shown in Eq. (64), only atoms in the spin-down sublevel |β〉
can absorb right-circularly polarized light propagating along
the z axis. Generalizing Eq. (64) with arguments similar to
those previously, we see that the absorption per polarized atom
of light propagating along the unit vector n can be represented
by the row vector

(�dp| = �op{(1{g}| − 2(n · S|}. (66)

In experiments, one often observes the change, �I , in the
intensity of the pumping light. Since each absorbed photon
removes an energy quantum, h̄ωop, from the pumping beam,
the intensity change is

�I = −h̄ωop[Na]
∫

〈δ�〉dV. (67)

Here the integral extends over the volume elements, dV , of
the illuminated vapor and [Na] is the number density of Na
atoms.

i. Relaxation modes. Adding the evolution due to the
Hamiltonian (15), spin-changing collisions (20), velocity-
changing collisions (30), and optical pumping (54), we find
that the net evolution of the density matrix in the limit of weak
velocity changing collisions

∂

∂t
|φ) = Dv

∂2

∂v2
|φ) + �vd

∂

∂v
v|φ) − �|φ) − �opAop|φ).

(68)

The evolution due to the Hamiltonian and collisional spin
relaxation is described by the operator

� = �sdAsd + i

h̄
H c© = � =

m∑
j=1

γj |γj )((γj |. (69)

The damping matrix � has eigenvalues γj and right and left
eigenvectors, |γj ), and ((γj |, defined by

�|γj ) = γj |γj ), and ((γj |� = ((γj |γj . (70)

We assume that the eigenvectors are linearly independent and
that we can normalize them such that

((γj |γk) = δjk and
m∑

j=1

|γj )((γj | = 1, (71)

where m = 4(2I + 1)2 is the number of polarization modes of
an alkali-metal atom with nuclear spin quantum number I .

We can use Eqs. (21) and (18) to write Eq. (69) as

� = �sd

2

⎡
⎢⎢⎢⎣

1 0 0 −1

0 2 0 0

0 0 2 0

−1 0 0 1

⎤
⎥⎥⎥⎦ + iω

⎡
⎢⎢⎢⎣

0 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦ .

(72)

Using Eqs. (70) through (72) we write the eigenvalues and
eigenvectors of Eq. (72) as

γ1 = 0, |γ1) = 1
2 |1{g}), ((γ1| = (1{g}|, (73)

γ2 = �sd, |γ2) = |Sz), ((γ2| = 2(Sz|. (74)

The column vectors |1{g}) and |Sz) were given by Eqs. (56)
and (59). The remaining eigenvalues and eigenvectors are

γ3 = �sd − iω, |γ3) = |S−) =

⎡
⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎦ ,

(75)
((γ3| = (S−| = [0 1 0 0],

and

γ4 = �sd + iω, |γ4) = |S+) =

⎡
⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎦ ,

(76)
((γ4| = (S+| = [0 0 1 0].

The raising and lowering operators for the electron spin are
S± = Sx ± iSy , so Eqs. (75) and (76) follow from Eqs. (57)
and (58).

For real atoms with nonzero nuclear spins and more
complicated spin relaxation mechanisms, the slowest mode
will still have γ1 = 0 and eigenvectors |γ1) and ((γ1| analogous
to those of Eq. (73)—provided that the collisions do not destroy
atoms—for example, by irreversible chemical reactions.

j. Dimensionless quantities. For further analysis it will
be convenient to introduce dimensionless versions of the
quantities in Eq. (68). We measure time in units of the mean
time between velocity-changing collisions

θ = �vdt. (77)

Where no confusion is likely we will denote the dimensionless
time θ with the same symbol t as the time in seconds. We
measure velocity in units of a characteristic velocity vD

x = v

vD

. (78)

It is convenient to let the characteristic velocity be
√

2 times
larger than the standard deviation of Eq. (33)

vD = σv

√
2, or vD = 3.61 × 104 cm s−1. (79)

The dimensionless version of the density matrix is

|�) = vD|φ), with projections �k = ((γk|�). (80)
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The dimensionless version of the current operator j of Eq. (27)
for weak collisions is

J = j

�vdvD

= −1

2

∂

∂x
− x,

(81)
with projections Jk = ((γk|J |�).

The characteristic optical pumping rate p is

p = �op(v0)

�vd
= I

Ip

, where Ip = Is�vdτ. (82)

This is the pumping rate (in units of �vd) of atoms with
resonant absorption frequencies that were Doppler shifted to
the center of the spectral profile of the pumping light. The
characteristic intensity Ip is the light intensity required to
make p = 1. Values of p on the order of 1 or greater are
needed to impart high spin polarization to an atom before
a velocity-changing collision shifts the atomic absorption
frequency out of resonance with the pumping light. The factor
�vdτ that occurs in the definition (82) of Ip is normally
much smaller than 1. For example for a representative rate
of velocity-changing collisions �vd = 2 × 104 s−1 and τ =
16.23 ns, we will have �vdτ = 3.2 × 10−4. This means that
light intensities large enough to cause many photon scattering
cycles in the time intervals between velocity changing colli-
sions can be far below optical saturation intensities Is, which
will cause populations of excited atoms comparable to those
of ground-state atoms.

With these dimensionless quantities, Eq. (68) has the form
of Eq. (1)

∂

∂t
�k = −Krk

�k + Sk. (83)

The damping operator Krk
for weak collisions is

Krk
= −1

2

∂2

∂x2
− ∂

∂x
x + rk, (84)

where the dimensionless damping rate of the mode k is

rk = γk

�vd
. (85)

In 1891, Rayleigh [15] wrote down Eq. (83) and its impulse-
response function (4)

(x|Tr (τ )|x ′) = e−rτ√
π (1 − e−2τ )

exp

{
− (x − x ′e−τ )2

1 − e−2τ

}
,

(86)

which one can verify by substitution into Eq. (83). This
is the earliest mention of these important equations that
we know of. Rayleigh’s interest was the same as ours, the
evolution of velocity distributions due to weak collisions. In
1916 Smoluchowski, apparently unaware of Rayleigh’s earlier
work, also stressed the importance of Eqs. (83) and (86)—see
Eqs. (50) and (51) on pages 93 and 94 of Ref. [16]. There
were many subsequent discussions of these equations, for
example in 1930 by Uhlenbeck and Ornstein [17] and by other
more recent authors. Equation (83) with Sk = 0 is one of
the simplest Fokker-Planck equations. A clear summary of
Fokker-Planck physics can be found in Risken’s book, The
Fokker-Planck Equation [18].

The dimensionless source rate for the mode k of Eq. (83) is

Sk = ((γk|S) = −pg

m∑
l=1

Ckl�l, (87)

where the mode coupling matrix is

Ckl = ((γk|Aop|γl) or Aop =
∑
lk

|γl)Clk((γk|. (88)

Representative mode-coupling matrices for D1 light propagat-
ing along the z and x axes, with optical pumping matrices (55)
and (63), are

C(z) = 1

3

⎡
⎢⎢⎢⎣

0 0 0 0

−2 2 0 0

0 0 3 0

0 0 0 3

⎤
⎥⎥⎥⎦ ,

(89)

and C(x) = 1

6

⎡
⎢⎢⎢⎣

0 0 0 0

0 6 0 0

−2 0 5 −1

−2 0 −1 5

⎤
⎥⎥⎥⎦ .

From Eq. (89) we see that

C1j = 0. (90)

Equation (90) is true, in general, since it expresses the fact that
atoms are neither created nor destroyed by optical pumping.

From Eq. (3) we see that the solution to Eq. (83) is

�k(x, t) =
∫ ∞

0
dτ

∫ ∞

−∞
dx ′(x|Trk

(τ )|x ′)Sk(x ′, t − τ ).

(91)

For pumping with unmodulated light, atoms will quickly reach
a steady state with time-independent amplitudes, given for
k = 2, 3, . . . , m by Eq. (5) as

�k(x) =
∫ ∞

−∞
(x|Grk

|x ′)Sk(x ′)dx ′. (92)

Integrating Eq. (92) over all relative velocities x and using the
area theorem (136) with Eq. (87) we find, for k = 2, 3, . . . , m,∫

�k(x)dx + p

rk

m∑
l=1

Ckl

∫
g(x)�l(x)dx = 0. (93)

The identity (93), valid for weak or strong collisions, is useful
for checking numerical work.

For k = 1 and rk = 0 the amplitude is the dimensionless
version of Eq. (33)

�1 = e−x2

√
π

. (94)

Substituting Eq. (87) into Eq. (92) we find the coupled integral
equations for k = 2, 3, . . . , m

m∑
l=2

∫
(x|Vkl|x ′)�l(x

′)dx ′ = Fk(x). (95)

This is a (vector) Volterra equation with the kernel

(x|Vkl|x ′) = δklδ(x − x ′) + pCkl(x|Grk
|x ′)g(x ′), (96)
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and with the source

Fk(x) = −pCk1

∫
(x|Grk

|x ′)g(x ′)�1(x ′)dx ′. (97)

If we represent the mode amplitudes �k(x) as vectors with
n evenly spaced sample points xj in velocity space, then the
Volterra equation (95) is simply a set of n(m − 1) simultaneous
linear equations, which can readily be solved by modern
computer software like MATLAB, even if there are hundreds
of coupled equations.

Having found the mode amplitudes �k from Eq. (94)
and the solution of Eq. (95), we can write the full, velocity
dependent density matrix, Eq. (80), as

|�) = 1
2 |1{g})�1 + |Sz)�2 + |S−)�3 + |S+)�4. (98)

We can characterize the steady-state spin distributions with the
velocity-dependent expectation values of |�)

(1{g}|�) = �1, (99)

(Sx |�) = 1

2
(�3 + �4) = Re(�3), (100)

(Sy |�) = 1

2i
(�3 − �4) = Im(�3), (101)

(Sz|�) = 1

2
�2. (102)

From Eq. (66) we see that the the photon absorption rate of
atoms with velocities between v and v + dv is

(�dp|�) = �vdp g{�1 − nz�2−2nxRe(�3) − 2nyIm(�3)}.
(103)

The total absorption per atom, Eq. (65), becomes

〈δ�〉 = �vdp{〈�1〉 − nz〈�2〉 − 2nxRe〈�3〉 − 2nyIm〈�3〉},
(104)

where the spectrally averaged mode amplitudes are

〈�j 〉 =
∫

g�jdx. (105)

III. EXAMPLES

The key mathematical tool for solving Eq. (95) is the
Green’s function Gr that is needed to construct both the
kernel (96) and the source (97). Expansions of the Green’s
functions on Hermite polynomials Hn are given by Eq. (260)
for strong collisions, or by Eq. (236) for weak collisions.
In practice, these expansions converge slowly because the
maximum spatial frequencies (for velocity space) associated
with Hn(x) are of order

√
n, unlike the familiar Fourier series,

where the spatial frequencies of einx , the analog of Hn(x), are
n. So inconveniently large values of n are needed to represent
rapid variations of (x|Gr |x ′) with x or x ′. Beterov et al. [19]
used Eq. (6) with Eq. (86) for weak collisions to evaluate the
Green’s function (x|G1/2|x ′); they display some examples in
their Fig. 2. In all of the examples of this section we used the
closed-form Green’s functions (263) for strong collisions, or
Eq. (132) for weak collisions.

Representative polarizations generated by monochromatic
pumping light and by nonmonochromatic light with a Gaussian
spectral profile are shown in Figs. 2 through 5. These

FIG. 2. (Color online) The spin polarization generated by
monochromatic pumping light that excites a velocity group with
x0 = 1. The polarization is discontinuously transferred to all other
velocity groups by strong collisions. The relative optical pumping rate
is p = 20. The light propagates along the unit vector n, with Cartesian
projections [nx, ny, nz] = [1, 0, 1]/

√
2. The relative damping rate is

r = 0.01 + i, that is, the atoms have a relatively small spin-damping
rate �sd/�vd = Re (r) = 0.01 and a relatively large Larmor frequency
ω/�vd = Im(r) = 1, about the z axis. Because of the finite number,
Eq. (121), of sample points along the x axis, the apparent widths of
the lineshape function g and the resonant polarization amplitudes
are exaggerated, and the amplitudes of the resonant polarization
amplitudes are suppressed.

polarizations were calculated by direct solution of the Volterra
equation (95), with 121 evenly spaced sample points along the
x axis. For monochromatic light, this is not enough sample
points to adequately represent narrow lineshape function g,
and before using g in the numerical calculation (the solution of
121 simultaneous linear equations) we made the replacement

gi → g(xi)�x∫
g(x)dx

. (106)

Here
∫

g(x)dx is the discrete approximation to the integral
over g (we used the trapezoidal approximation). This ensures
that the discrete approximation of the modified lineshape
function (103) has the area �x = �v/vD , which we evaluate
analytically from Eq. (49). The discretized δ-function for the

FIG. 3. (Color online) The spin polarization generated by
monochromatic pumping light that excites a velocity group with
x0 = 1. The polarization is diffusively transferred to neighboring
velocity groups by weak collisions. The parameters p, n, �sd/�vd,
and ω/�vd have the same values as for Fig. 2. The longitudinal spin
polarization has a Maxwellian velocity distribution and is similar to
that for strong collisions, but the transverse polarizations are much
larger and have a different, non-Maxwellian velocity distribution.
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FIG. 4. (Color online) The spin polarization generated by pump-
ing light with a Gaussian spectral profile for which the mean
frequency excites a velocity group with x0 = 1. The spectral profile
g of the pumping light has a mean standard deviation σx = 0.1 in
velocity space. The polarization is discontinuously transferred to
all other velocity groups by strong collisions. The parameters p, n,
�sd/�vd, and ω/�vd have the same values as for Fig. 2. The overall
features are similar to the situation for monochromatic light shown in
Fig. 2, but the sharp features for near-resonant velocities are smoothed
out. Near the edges of the spectral profile, there is less suppression
of (Sy |�), which is generated by precession of (Sx |�) around the
z axis, by fast optical pumping in the x and z directions.

strong-collision Green’s function (263) is δ(x − x ′) = δij /dx

where x = xi , x ′ = xj and dx = x2 − x1.
k. Alternate approach. For monochromatic pumping and

weak collisions, there is a simpler approach that does not
require a solution of the Volterra equation (95). Setting g(x) =
�xδ(x − x0), where �x = �v/vD with vD given by Eq. (79)
and �v by Eq. (50), we find from Eqs. (95) through (97) that

�k(x) = −p�x(x|Grk
|x0)

m∑
l=2

Clk�l(x0),

(107)
for k = 2, 3, . . . , m.

So for monochromatic pumping at velocity x0, the mode
k has the same spatial dependence as the Green’s function

FIG. 5. (Color online) The spin polarization generated by pump-
ing light with a Gaussian spectral profile for which the mean
frequency excites a velocity group with x0 = 1. The spectral profile
g of the pumping light has a mean standard deviation σx = 0.1
in velocity space. The polarization is diffusively transferred to
neighboring velocity groups by weak collisions. The parameters p,
n, �sd/�vd, and ω/�vd have the same values as for Fig. 2. The overall
features are similar to the situation for monochromatic light shown in
Fig. 3, but the sharp features for near-resonant velocities are smoothed
out.

(x|Grk
|x0). Setting x = x0 in Eq. (107), we see that the

mode amplitudes �k(x0) are determined by the coupled linear
equations

m∑
k=2

Mjk�k(x0) = Nj, for j = 2, 3, . . . , m. (108)

The elements of the (m − 1) × (m − 1) matrix M and the
(m − 1) × 1 source vector follow from Eq. (107) and are

Mjk = δjk + p�x(x0|Grj
|x0)Cjk,

(109)
and Nj = −p�x(x0|Grj

|x0)Cj1�1(x0).

The solution to Eq. (108) is

�k(x0) =
m∑

j=2

M−1
kj Nj . (110)

Using Eq. (110) in Eq. (107) gives the complete solution to
the problem. For weak collisions, polarizations calculated with
this efficient alternative method cannot be distinguished from
those obtained by solving the Volterra equation (95). For strong
collisions the simple procedure outlined previously needs to be
modified to give accurate results because of the δ functions that
occur in the polarizations and in the Green’s function (263).

A. White-light pumping

“White-light” pumping is a limiting case where the spectral
profile of the light is equally intense for any velocity group.
This will seldom be encountered for laser pumping, but optical
pumping by sunlight will be of this type. We can assume
that all polarization modes for white-light pumping have a
Maxwellian velocity distribution so the mode amplitudes can
be written as

�j = ((γj |ρ)�1. (111)

The velocity-independent density matrix ρ = ∫
�dx was

defined by Eq. (11). We will show that the assumption (111)
is consistent with the Volterra equation (95).

We can let the pump lineshape function be velocity
independent over the Maxwellian velocity distribution of �1,
and given by

g → ḡ = 1. (112)

Substituting Eqs. (111) and (112) into Eq. (95) and making
use of the “weighted area theorem,” Eq. (138), we find

rk((γk|ρ) = pḡ
∑

Ckl((γl|ρ) = 0. (113)

Multiplying Eq. (113) by
∑

k |γk), and using Eqs. (69) and
(88) we find

L|ρ) = 0, (114)

where the net damping operator for polarized atoms with a
Maxwellian velocity distribution is

L = i

h̄
H c© + �sdAsd + �̄opAop. (115)

Here the mean optical pumping rate is �̄op = p�vd/w. We
recognize Eq. (114) as the steady-state solution of the
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conventional evolution equation for optical pumping

∂

∂t
|ρ) = −L|ρ). (116)

So for white-light pumping, the assumption (111) that all
polarization amplitudes of the density matrix have the same
Maxwellian distribution is valid. The density matrix is the
solution of Eq. (116) if we are interested in transients, or the
solution of Eq. (114) if we are interested in steady states.
This happens for both strong or weak collisions and whether
the relative damping rates rj are large or small. This is not
surprising, since a weak or strong velocity-changing collision
moves the atom to a new velocity group, which experiences
the same pumping rate from the “white light.”

B. Fast v-Damping

For conventional laboratory experiments, where alkali-
metal atoms are pumped in weakly depolarizing buffer
gases, the rate of velocity-changing collisions is orders of
magnitude faster than spin relaxation rates, and usually orders
of magnitude faster that Larmor precession rates. In this case
too, all polarization modes of the atom assume a Maxwellian
velocity distribution, and as for white-light pumping, the mode
amplitudes will be given by Eq. (111). Substituting Eq. (111)
into Eqs. (95) through (97) and using the limiting expression
(264) for rj → 0 we once again find Eq. (113), but with a
mean pumping lineshape function

ḡ =
∫

�1g dx = 〈�1〉. (117)

In the previous section we summarized how to solve Eq. (113).
In summary, for very fast v-damping, and with either

strong or weak collisions, all of the polarization modes
have Maxwellian distributions of velocity, just as in the
case of white-light pumping. However, the reasons are very
different. The light can have an arbitrary spectral profile g for
very fast v-damping. The polarizations acquire a Maxwellian
velocity distribution because of motional averaging in velocity
space. Since |rj | = |γj |/�vd � 1, the atom can be Doppler
shifted into and out of resonance many times before there is
appreciable spin relaxation, so the atom behaves as though it
experiences a constant, velocity-averaged pumping rate.

IV. MATHEMATICS

We already alluded to the long history of this problem,
which seems to have begun no later than Rayleigh’s [15]
work in 1891. The subsequent literature is scattered through
various fields of physics, chemistry, and other disciplines.
Some very useful results, like the closed-form expression (132)
for the Green’s function for weak collisions, seem not to be
known. We therefore devote the remainder of this article to
the mathematical tools that we found useful for analyzing
problems like optical pumping of Na guidestar atoms. We
begin by discussing weak collisions, where the damping
operator Kr is given by Eq. (84), and for which the identity
(6) can be written as

KrGr =
(

−1

2

∂2

∂x2
− ∂

∂x
x + r

)
(x|Gr |x ′) = δ(x − x ′).

(118)

FIG. 6. (Color online) Representative functions Rr (x). The
relative damping rates r , of Eq. (118) have the values r =
0, 0.25, 0.5, 0.75, and 1. The function Rr (x) is purely real when
r is a real number.

To construct the Green’s function with Eq. (118) we find
“right” functions Rr , defined to within a normalizing factor
by

KrRr = 0, with − 1

2

d

dx
Rr −xRr → 0, as x → ∞.

(119)

The boundary condition means that the current JRr of
Eq. (81) vanishes as quickly as possible as x → ∞. Numerical
values for the right functions can be found from the integral
representation (149) or from the power series (164), which is
particularly convenient for fairly small values of x. Examples
of Rr (x) are shown in Fig. 6 for representative real parameters
r , and in Figs. 7 and 8 for representative imaginary values of
r . Similarly, the left function Lr is defined by

KrLr = 0, with − 1

2

d

dx
Lr −xLr → 0, as x → −∞.

(120)

For most values of r , Lr and Rr are linearly independent and
it is possible to let

Lr (x) = Rr (−x). (121)

The Wronskian for Lr and Rr is

Wr = L′
rRr − LrR

′
r , (122)

FIG. 7. (Color online) The real parts Re (Rr (x)), of the functions
Rr (x). The imaginary parts are shown in Fig. 8. The relative damping
rates are r = 0, 0.25i, 0.5i, 0.75i, and i.
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FIG. 8. (Color online) The imaginary parts of the functions Rr (x),
for which the real parts are shown in Fig. 7. The relative damping
rates are r = 0, 0.25i, 0.5i, 0.75i, and i.

where

L′
r = dLr

dx
and R′

r = dRr

dx
. (123)

Using Eqs. (119) and (120) we find that the Wronskian (122)
satisfies the differential equation

dWr

dx
= −2xWr. (124)

The solution to Eq. (124) is

Wr (x) = Wr (0)e−x2
. (125)

The solutions Lr and Rr can be used to construct the Green’s
function defined by Eq. (132). We write the Green’s function
in terms of the left and right functions of the previous section
as

(x|Gr |x ′) =
{

A(x ′)Lr (x) for x < x ′

B(x ′)Rr (x) for x > x ′ . (126)

To find the functions A(x ′) and B(x ′), we assume that the
Green’s function is continuous at x = x ′, so we must have

A(x)Lr (x) − B(x)Rr (x) = 0. (127)

If we integrate Eq. (118) over dx from x = x ′ − ε to x =
x ′ + ε, with ε being a small positive parameter we find

−1

2

∂

∂x
(x|Gr |x ′)

∣∣∣∣
x=x ′+ε

+ 1

2

∂

∂x
(x|Gr |x ′)

∣∣∣∣
x=x ′−ε

+ r

∫ x ′+ε

x ′−ε

(x|Gr |x ′)dx − (x ′ + ε)(x ′

+ ε|Gr |x ′) + (x ′ − ε)(x ′ − ε|Gr |x ′) = 1. (128)

Using Eq. (126) in Eq. (128) and taking the limit for ε → 0
we find

A(x)L′
r (x) − B(x)R′

r (x) = 2. (129)

Solving Eqs. (127) and (129) simultaneously we find

A = 2Rr

Wr

, and B = 2Lr

Wr

, (130)

where the Wronskian was given by Eq. (122) or Eq. (125).
Then Eq. (126) becomes

(x|Gr |x ′) = 2Lr (x<)Rr (x>)

Wr (x ′)
. (131)

FIG. 9. (Color online) The Green’s function (x|Gr |x ′) of
Eq. (132). The damping parameter is r = 0.1, corresponding to a
situation where ω = 0 and �sd = �vd/10. Polarized atoms are created
at the dimensionless source velocities x ′ = 0, 1, and 2.

Finally, one can use Eqs. (121), (125), and (160) to write
Eq. (131) as

(x|Gr |x ′) = 2r

√
π

�(r)ex ′2
Rr (−x<)Rr (x>). (132)

Here x< is the lesser of x and x ′, and x> is the greater. The
symbol �(r) denotes the Euler � function (see Abramowitz
and Stegun [20], Ch. 6) for the possibly complex damping
rate r . Some representative Green’s functions evaluated with
Eq. (132) are shown in Figs. 9 through 11.

A. Areas

We define the “observation area” Ir (x ′), of (x|Gr |x ′) as the
area of (x|Gr |x ′) above the x axis. Using Eq. (131) we find

Ir (x ′) =
∫ ∞

−∞
(x|Gr |x ′)dx

=
∫ x ′

−∞
(x|Gr |x ′)dx +

∫ ∞

x ′
(x|Gr |x ′)dx

= 2Rr (x ′)
Wr (x ′)

∫ x ′

−∞
Lr (x)dx + 2Lr (x ′)

Wr (x ′)

∫ ∞

x ′
Rr (x)dx.

(133)

FIG. 10. (Color online) The Green’s function (x|Gr |x ′) of
Eq. (132). The damping parameter is r = 1 + i, corresponding to a
situation where �sd = �vd and ω = �vd. Polarized atoms are created
at the dimensionless source velocities x ′ = 0, 1, and 2.

042703-12



OPTICALLY PUMPED ATOMS WITH VELOCITY- AND . . . PHYSICAL REVIEW A 81, 042703 (2010)

FIG. 11. (Color online) The Green’s function (x|Gr |x ′) of
Eq. (132). The damping parameter is r = 0.1i, corresponding to a
situation where ω = �vd/10, and �sd = 0. Polarized atoms are created
at the dimensionless source velocities x ′ = 0, 1, and 2.

Integrating Eq. (120) from −∞ to x ′ we find∫ x ′

−∞
Lr (x)dx = 1

2r
[L′

r (x ′) + 2x ′Lr (x ′)]. (134)

Similarly, integrating Eq. (119) from x ′ to ∞ we find∫ ∞

x ′
Rr (x)dx = − 1

2r
[R′

r (x ′) + 2x ′Rr (x ′)]. (135)

Substituting Eqs. (134) and (135) back into Eq. (133) we find

Ir (x ′) =
∫ ∞

−∞
(x|Gr |x ′)dx = 1

r
. (136)

The area is independent of the velocity x ′ at which the
polarization is created.

We define the “weighted source area” by

Īr (x) =
∫ ∞

−∞
(x|Gr |x ′)e−x ′2

dx ′

=
∫ x

−∞
(x|Gr |x ′)e−x ′2

dx ′ +
∫ ∞

x

(x|Gr |x ′)e−x ′2
dx ′

= 2Rr (x)

Wr (0)

∫ x

−∞
Lr (x ′)dx ′ + 2Lr (x)

Wr (0)

∫ ∞

x

Rr (x ′)dx ′.

(137)

Using Eqs. (134) and (135) in Eq. (137) we find

Īr (x) =
∫ ∞

−∞
(x|Gr |x ′)e−x ′2

dx ′ = e−x2

r
. (138)

Unlike the observation area Ir of Eq. (136) that depends only
on r , the weighted source area, Īr (x), of Eq. (138) depends on
both r and x.

Although derived previously for weak collisions, where the
Green’s function is given by Eq. (131), exactly the same area
formulas, Eqs. (136) and (138), are found for the Green’s
function, Eq. (263), of strong collisions.

B. Contour Integrals for Rr

Following the methods outlined in the Mathematical Ap-
pendix of Landau and Lifschitz’s, Quantum Mechanics [21],
we assume that we can write the solution to Eq. (119) as the

Laplace transform,

Rr =
∫

C

V exsds. (139)

Here C is a contour in the complex s plane that begins at an
initial point s = si and ends at a final point s = sf . The contour
is independent of x. The integrand V = V (s) is a function of s

that is independent of x, but which may depend on the complex
parameter r . We will choose the contour C to ensure that the
function (139) satisfies the boundary condition of Eq. (119).

Substituting Eq. (139) into Eq. (119) we find∫
C

[P + xQ]V exsds = 0. (140)

The functions P and Q are

P = 2(1 − r) + s2, and Q = 2s. (141)

Integrating Eq. (140) by parts we find

[QV exs]sf
− [QV exs]si

+
∫

C

[PV ds − d(QV )]exsds = 0.

(142)

This will be valid if the following two criteria are satisfied:
1. The value of the function QV exs is the same at the initial

point si and the final point sf of the contour C, so the first two
terms of Eq. (142) cancel;

2. The third term of Eq. (142) is zero, which will be true if

PV ds−d(QV ) = 0, or V = Nr

Q
exp

(∫
P

Q
ds

)
.

(143)

For reasons that will become apparent in the following we
will take the constant of integration to be

Nr = i√
π (−1)r

. (144)

Using the values of P and Q from Eq. (141) in Eq. (143) we
find

V = Nre
s2/4

2sr
. (145)

Substituting Eq. (145) into Eq. (139) we find

Rr = i

2
√

π

∫
C

exs+s2/4ds

(−s)r
. (146)

The function

QV exs = Nre
s2/4

sr−1
, (147)

must have the same value at both end points si and sf of the
contour C. Unless r is an integer, the function (147) is multiple
valued; it has a branch point at s = 0. As we shall presently
show, we can make Eq. (146) represent the right function Rr

if we choose the contour C to be a vertical line in the complex
s plane, between initial and final points

si = a + i∞, and sf = a − i∞. (148)

Here a can be any negative real number. This ensures that the
contour C passes by the singularity at s = 0 on the left. Making
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the substitution s = −2iu − 2x, in Eq. (146), we obtain

Rr (x) = e−x2

√
π

∫ ∞

−∞

e−u2

(2x + 2iu)r
du. (149)

Here the path of integration is parallel to the real axis of
the complex u plane and below the singularity at u = ix.
Equation (149) is convenient for numerical evaluation of
Rr (x). For r = 0 one can readily find from Eq. (149) or from
Eq. (146) that

R0(x) = e−x2
. (150)

l. Formulas for: dRr/dx; JRr ; xRr . Differentiating Eq. (146)
with respect to x and using the normalization coefficient (144)
we find

− d

dx
Rr = Rr−1. (151)

Similarly, multiplying Eq. (146) by x, integrating by parts and
using Eq. (144) we find

xRr = 1
2Rr−1 − rRr+1. (152)

Combining Eqs. (151) and (152) we obtain

JRr = rRr+1, (153)

where the current operator is given by Eq. (81). Integrating
Eq. (151), we find

Rr (x) =
∫ ∞

x

Rr−1(u)du. (154)

1. Values of Rr (0), Wr (0) and (0|Gr |0)

Recall that we can represent the inverse of Euler’s
� function—see Abramowitz and Stegun [20] 6.1.4—with
Hankel’s contour

1

�(z)
= i

2π

∫
C

e−t

(−t)z
dt. (155)

Here the path of integration C starts at +∞ on the real axis of
the complex t plane, encircles the origin in a counterclockwise
direction, and returns to +∞. Setting x = 0 in Eq. (146),
making the substitution s2/4 = −t , and using Eq. (155) we
find

Rr (0) =
√

π

2r�
(

1
2 + r

2

) . (156)

Setting r → r + 1 and x = 0 in Eq. (154) we find∫ ∞

0
Rrdx = Rr+1(0). (157)

Alternatively, if we take x ′ = 0 in Eq. (135) we find∫ ∞

0
Rrdx = −R′

r (0)

2r
. (158)

Equating Eq. (157) to Eq. (158) we find

R′
r (0) = −2rRr+1(0), and L′

r (0) = 2rLr+1(0). (159)

From Eqs. (122), (156), and (159) we find

Wr (0) = 2r[Lr+1(0)Rr (0) + Lr (0)Rr+1(0)]

= 4rRr (0)Rr+1(0) = 2πr

22r�( 1
2 + r

2 )�(1 + r
2 )

= 2
√

π

2r�(r)
. (160)

In reducing the product of the two � functions in the
denominator of Eq. (159) to a single � function, we used
the Gauss multiplication formula (Legendre’s formula) [20].
We can also use Eq. (131) with Eqs. (156) and (160) to write

(0|Gr |0) = �
(

r
2

)
2�

(
r
2 + 1

2

) . (161)

2. Complex Conjugates

With the definition (149) one can verify that the complex
conjugate of Rr (x) is given by

[Rr (x)]∗ = Rr∗ (x∗). (162)

From Eqs. (162) and (132) we can also verify that for real x

and x ′

(x|Gr |x ′)∗ = (x|Gr∗ |x ′). (163)

a. Power series for Rr . From inspection of Eqs. (146) or
(149) we see that Rr (z) is an entire function of z with no
singularities in the finite part of the complex z plane. It can
therefore be written as the power series, convergent for all
finite z

Rr (z) =
∞∑

n=0

1

n!

dnRr

dzn
(0)zn =

∞∑
n=0

(−1)n

n!
Rr−n(0)zn

=
∞∑

n=0

√
π (−z)n

n!2r−n�
(

1
2 + r

2 − n
2

) . (164)

We used Eqs. (151) and (156) in evaluating the explicit
coefficients of the power series.

b. Asymptotic expressions for Rr (x) at large |x|. We can
use Eq. (149) to see that for x → ∞, the asymptotic value of
Rr for x → ∞ along the real axis is

Rr ∼ e−x2

(2x)r
, for x 
 1, (165)

so the function (149) satisfies the boundary condition of
Eq. (119). The analogous asymptotic value of Rr for x → −∞
along the real axis is

Rr ∼
√

π

�(r)
(−x)r−1, for x � −1. (166)

To derive Eq. (166), one can choose the integration contour
for t in Eq. (149) to have the segments: (a) −∞ → 0,
(b) 0 → ix + iε, (c) a complete, counterclockwise circle of
radius ε around the branch point at t = ix, (d) ix + iε → 0,
and (e) 0 → ∞. All of the segments except (c) are straight
lines. For x → −∞ the contributions to the integral from
(a) and (e) vanish. For ε → 0 and r < 1, the contribution
from (c) vanishes. For ε → 0, and x → −∞, the remaining
contributions (b) and (d) give Eq. (166). One can use the
identity (151) to show that Eq. (166) is valid for r � 1.

c. Asymptotic expressions for Rr and Gr at large |r|. To
evaluate the inverse Laplace transform or Eq. (208), we need
to know asymptotic expressions for Rr (x) and (x|Gr |x ′) for
|r| → ∞. We will use the method of steepest descent to find
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these expressions. We write Eq. (149) as

Rr (x) = e−x2

√
π

∫ ∞

−∞
eλr du, (167)

where the exponent is

λr = −u2 − r ln(2x + 2iu). (168)

The rate of change of λr with u is

∂λr

∂u
= −2u − ir

x + iu
. (169)

Solving Eq. (169) for ∂λr/∂u = 0 we find the summit locations
of the two “passes”

u± = i

2
(x ±

√
x2 + 2r). (170)

Substituting Eq. (170) back into Eq. (168) we find that the
value of the exponent at the lower summit is

λr (u−) = 1

2
[r − x

√
x2 + 2r + x2 − 2r ln(

√
x2 + 2r + x)]

∼ 1

2
[r − r ln 2r − 2x

√
2r + x2], as r → ∞.

(171)

The rate of change of the exponent (168) at the lower summit
is

∂2λr

∂u2
(u−) = −2 − 4r

(x + √
x2 + 2r)2

∼ −4, as r → ∞.

(172)

Then we can approximate the integral (167) by the maximum
value of the integrand at the top summit, times the integral
over a Gaussian function with unit amplitude at u− and with a
curvature consistent with Eq. (172)

Rr (x) ∼ 1√
π

exp[−x2 + λr (u−)]
∫ ∞

−∞
exp −2(u − u−)du,

(173)

or

ln Rr (x) ∼ 1

2
(r − r ln 2r − ln 2 − 2x

√
2r − x2),

with (|arg r| < π ). (174)

Evaluating Eq. (132) with Eq. (174) and with Stirling’s well-
known asymptotic limit—see Abramowitz and Stegun [20]
(6.1.37)—for the � function

ln �(r) ∼ (r − 1/2) ln r − r + 1
2 ln 2π,

with (|arg r| < π ), (175)

we find the asymptotic expression,

ln(x|Gr |x ′) ∼ 1

2
(x ′2 − x2 − 2|x − x ′|

√
2r − ln 2r),

with (|arg r| < π ). (176)

For large values of |r|, for example, |r| = 10 and | arg r| < π ,
one can hardly tell the difference between plots of the asymp-
totic expressions (174) or (176) and the exact expressions (149)
and (132). Larger values of |r| are needed for large values of
|x| or |x ′| for Eq. (176) to be a good approximation.

C. Integer r

The function Rr reduces to well-known functions for values
of r that are positive or negative integers, or zero. We already
mentioned that R0(x) = e−x2

in Eq. (150). Using Eq. (154)
with Eq. (150) we conclude that

R1(x) =
∫ ∞

x

e−x2
dx =

√
π

2
erfc(x). (177)

Generalizing Eqs. (177) and (154) we conclude that for n =
0, 1, 2, 3, . . . ,∞

Rn(z) =
√

π

2
(in−1erfcz) =

√
π

2
erfcn−1(z),

(178)
for n = 0, 1, 2, 3 . . . ,∞,

where in erfc z is the “Repeated Integral of the Error Function,”
discussed in Section 7.2 of Abramowitz and Stegun [20]. In
using the function, in erfc z, it is important not to interpret
it as the product of the nth power of the imaginary number
i, and the complementary error function, erfc z. As indicated
in Eq. (178), some authors use the less ambiguous notation
erfcn(x), and the less ambiguous name, “the repeated erfc
integral.”

Using the expression (149) for nonnegative integers n =
0, 1, 2, . . . , we find,

R−n(x) = e−x2
Hn(x), (179)

where

Hn(x) = 1√
π

∫ ∞

−∞
(2x + 2iu)ne−u2

du (180)

is a Hermite polynomial [20], H0(x) = 1, H1(x) = 2x, and
so on. To prove that the function Hn(x) given by Eq. (180)
is indeed a Hermite polynomial we note: Eq. (180) can be
readily verified for n = 0 or n = 1; the polynomials are even
or odd functions of x depending on whether n is even or
odd; for even n the x-independent term is (−1)n/2n!/(n/2)!
as for Hermite polynomials; differentiating Eq. (180) we find
dHn(x)/dx = 2nHn−1(x), a well-known identity for Hermite
polynomials, from which we can prove Eq. (180) by induction.
We will refer to the functions R−n as the eigenfunctions of Kr .
Noting that Kr = K0 + r we see that

KrR−n(x) = (K−n + r + n)R−n = (r + n)R−n, (181)

so the eigenvalues are (r + n). The eigenfunctions R−n have
currents, JR−n that, according to Eq. (153), are identically zero
for n = 0 or that vanish (for n > 0) as xn−1e−x2

for x → ±∞.
For all other values of r , one can use Eqs. (166) and (153) to
show that the current diverges as (−x)r for x � −1. It was
known for a long time that the Hermite functions (179) are
eigenfunctions of Kr , for example, see Snider [22] or Risken
[18].

From Eq. (179) we see that L−n(x) = (−1)nR−n(x)
and therefore L−n is not independent of R−n for n =
0, 1, 2, 3, . . . ,∞. We can get a solution Q−n of the equation
K−nQ−n = 0 that is linearly independent of R−n by using an
appropriately revised contour for the Laplace transform (139).
We write

A−n = 1

i
√

π(−1)r

∫
C

snexs+s2/4ds. (182)
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Here the contour C starts at the origin of the complex s plane
and goes up the imaginary axis to infinity. The initial and final
points of this contour are

si = 0, and sf = i∞. (183)

The function (147) is zero for these values of si and sf , as
required for the validity of Eq. (139). With the substitution

s = ik, (184)

Eq. (182) becomes

A−n(x) = (−i)n√
π

∫ ∞

0
kneixk−k2/4dk =

(
− ∂

∂x

)n

A0.

(185)

We write the function A−n as the sum of real and imaginary
parts

A−n(x) = R−n(x) + iQ−n(x), (186)

where it will turn out that the R−n of Eq. (186) is identical to
the right function R−n that was defined by Eq. (149). Thought
of as a Fourier integral on the “phasors” eikx , the function A−n

of Eq. (185) is seen to have nonzero Fourier amplitudes only
for nonnegative frequencies k > 0. In the signal-processing
literature, A−n(x) will therefore be called an “analytic” signal.
Except for sign, the real and imaginary parts of A−n will be
Hilbert transforms of each other, for example,

Q−n(x) =
∫ ∞

−∞
(x|H|x ′)R−n(x ′)dx ′,

(187)
with (x|H|x ′) = P

π (x − x ′)
.

HereP denotes the Cauchy principal part. For n = 0, Eq. (185)
becomes

A0(x) = 1√
π

∫ ∞

0
eixk−k2/4dk = e−x2

erfc(−ix) = w(x),

(188)

where w(x) is the Faddeeva function, which we discuss in
Sec. IV D. For real x,

Re[A0(x)] = Re[w(x)] = e−x2 = R0(x), (189)

in agreement with Eq. (186). Taking the real part of Eq. (185)
with Re (A0) given by Eq. (189) we find

R−n(x) =
(

− ∂

∂x

)n

e−x2 = Hn(x)e−x2
, (190)

in agreement with Eq. (179).
Differentiating Eq. (185) we find the analog of Eq. (151)

− d

dx
A−n = R−n−1. (191)

Similarly, the analog of Eq. (153) is

JA−n = − i√
π

δn0 − nA−n+1, (192)

where the current operator is given by Eq. (81). Combining
Eqs. (191) and (192) we find the analog of Eq. (152)

xA−n = i√
π

δn0 + 1

2
A−n−1 + nA−n+1. (193)

Combining the well-known asymptotic expression for the
Faddeeva function, w(x) ∼ i/(

√
πx) with Eq. (185), we find

A−n(x) ∼ in!√
πxn+1

or Q−n(x) ∼ n!√
πxn+1

. (194)

For large |x| the amplitude of the in-phase signal R−n is
negligibly small compared to that of the quadrature signal
Q−n, which falls off as the power law (194).

In summary, we see that the right functions Rr (x) =
(
√

π/2) erfcr−1 can be be thought of as defining a general-
ization of the repeated erfc integral, so that the subscript n

of erfcn = (2/
√

π )Rn+1 can be any finite complex number,
|n| < ∞, and need not be restricted to n = 0, 1, 2, 3, . . . ,∞.
For the eigenvalues r = −n with n = 0, 1, 2, 3, . . . ,∞, where
the right function, R−n = e−x2

Hn(x) is no longer independent
of the left function, L−n(x) = R−n(−x), the second solution
can be taken to be Eq. (187), the Hilbert transform, Q−n, of
R−n – or the “quadrature signal.”

D. The plasma dispersion and Faddeeva functions

Here we briefly summarize properties of the plasma
dispersion function

Z(z) = 1√
π

∫ ∞

−∞

e−t2
dt

t − z
for Im(z) � 0. (195)

The closely related Faddeeva function—see Abramowitz and
Stegun [20] (7.1.3)—is defined by

w(z) = e−z2
erfc(−iz) = 1√

π

∫ ∞

0
eizu−u2/4du. (196)

The definition (196) works for all finite z. The integral extends
for u = 0 to u = ∞ along the positive real axis. The plasma-
dispersion function is proportional to the Faddeeva function,
so a more general definition of Z than Eq. (195), which only
works for Im (z) � 0, is

Z(z) = i
√

πw(z). (197)

The Faddeeva function can be evaluated with a convenient
MATLAB code due to Wiedeman [23], so we use w rather than
Z in our computer codes. We note that

Z(0) = i
√

π, and w(0) = 1. (198)

The “areas” of the functions Z and w are∫
C

Z(z)dz = iπ, and
∫

C

w(z)dz = √
π. (199)

The contour C extends along the real axis of the complex
z plane from z = −∞ to z = +∞. For |z| 
 1 the values of
Z and w approach the asymptotic limits

Z(z) ∼ −1

z
, or w(z) ∼ i

z
√

π
, for |z| 
 1. (200)

E. Expansions on Hermite polynomials

Rayleigh’s transient (86), the Green’s function (132),
and the damping operator (84) can be expanded on the
eigenfunctions (179). To see this we take the conventional
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Laplace transform of Eq. (1) with respect to time to find

sŷr − yr (x, 0) = −Krŷr + Ŝr ,
(201)

with ŷr = ŷr (x, s) =
∫ ∞

0
yr (x, t)e−st dt.

Assume that Sr (x, t) = 0 for t � 0 so we can write the Laplace
transform of the source as

Ŝr (x, s) =
∫ ∞

0
Sr (x, t)e−st dt =

∫ ∞

−∞
Sr (x, t)e−st dt. (202)

Assuming no initial polarization yr (x, 0) = 0, and noting that
Kr + s = Kr+s , we see that Eq. (201) becomes

Kr+s ŷr = Ŝr . (203)

Equation (203) is the steady-state version of Eq. (1), for which
the solution was given by Eq. (5) as

ŷr (x, s) =
∫ ∞

−∞
dx ′(x|Gr+s |x ′)Ŝr (x ′, s). (204)

Using Eq. (132) we find

(x|Gr+s |x ′) = 2r+s

√
π

�(r + s)ex ′2
Rr+s(−x<)Rr+s(x>). (205)

Inverting the Laplace transform (204) to return to the time
domain, and using Eq. (202), we find

yr (x, t) = 1

2πi

∫ a+i∞

a−i∞
ds est

∫ ∞

−∞
dx ′(x|Gr+s |x ′)Ŝr (x ′, s)

=
∫ ∞

−∞
dx ′

∫ ∞

−∞
dt ′(x|Tr (t − t ′)|x ′)Sr (x ′, t ′).

(206)

In the first line of Eq. (206), the path of integration in the
complex s plane is vertical and is a distance a (a real number)
to the right of the imaginary axis of the complex s plane. The
value of a must be big enough that all singularities of the
integrand are to the left of the path of integration. As we shall
show in the following, this requires that

Re(a) > −Re(r). (207)

The impulse-response function is the time-dependent kernel

Tr (τ ) = 1

2πi

∫ a+i∞

a−i∞
ds esτGr+s . (208)

We see from Eq. (205) that the function Gr+s of Eq. (208)
contains the factor �(r + s), which has poles at s = −n − r ,
where n = 0, 1, 2, 3, . . . ,∞. The other s-dependent factors of
the integrand, 2r+s , Rr+s(x<), Rr+s(x>) are all entire functions
of s with no poles in the finite part of the complex s plane, but
with singularities at s = ∞. We evaluate the integral (208) by
picking a large circular path of integration, centered on s = a.
As one can see from the asymptotic limit (176), the integrand
Gr+s of Eq. (208) approaches zero on this circular path except
near the negative real axis, where we can ensure negligible
values by making the path pass between adjacent poles of Gr+s .
The vertical path of integration of Eq. (208), from a − i∞
to a + i∞, will cut the large circle twice. We can close the
contour of integration for τ < 0 by integrating around the half
circle to the right. Since the contribution from the semicircular

part of the path is zero, the closed contour integral will have
the same value as the integral (208). There are no poles of the
integrand in the closed contour, so Cauchy’s residue theorem
implies that Tr (τ ) = 0 for τ < 0. For τ > 0 we can close the
contour by integrating around the half circle to the left.
The contribution to the integral from the semicircular part of
the path will approach zero as the circle radius approaches
infinity. Then Tr (x, x ′, τ ) will be equal to the sum of the
residues inside the closed contour. Recall that ε�(−n + ε) →
(−1)n/n! as ε → 0, so we can write Eq. (208) as

(x|Tr (τ )|x ′) =
∞∑

n=0

(−1)nex ′2
R−n(−x<)R−n(x>)e−(n+r)τ

2nn!
√

π

=
∞∑

n=0

e−x2
Hn(x)Hn(x ′)e−(n+r)τ

2nn!
√

π
, for τ > 0.

(209)

We used Eq. (179), and we noted that Hn(−x) = (−1)nHn(x)
to convert to a series over Hermite polynomials.

For r = 0, the eigenvalue expansion (209) was given by
Eqs. (5.46) and (5.64) of Risken [18]. But since the right
functions Rr are little known and play such a central role in
our analysis, we thought it would be useful to include the
alternate derivation of Eq. (209) from the Green’s function Gr

of Eq. (205). As pointed by Eq. (5.65) of Risken [18], one
can sum the series (209) with the following identity, valid for
−1 < Re (u) < 1,

∞∑
n=0

Hn(x)Hn(y)un

2nn!

= 1√
1 − u2

exp −
{

u2x2 − 2uxy + u2y2

1 − u2

}
, (210)

to show that Eq. (209) is identical to Rayleigh’s transient,
Eq. (86). Equation (210) is a special case of of Eq. 49.6.1 from
Hansen [24]. Using Eq. (209) with Eq. (6) we find

(x|Gr |x ′) =
∞∑

n=0

e−x2
Hn(x)Hn(x ′)

2nn!
√

π (n + r)
. (211)

The series (209) and (211) converge rather slowly to their
closed-form limits, Eqs. (86) and (132), which are more
practical for numerical work.

Using the differential form (84) for Kr , one can readily
verify that

Kre
−x2

Hn(x) = (n + r)e−x2
Hn(x). (212)

Multiplying Eq. (211) on the left by Kr and using Eq. (212)
we find

Kr (x|Gr |x ′) =
∞∑

n=0

e−x2
Hn(x)Hn(x ′′)
2nn!

√
π

= δ(x − x ′′), (213)

the well-known completeness property of Hermite functions,
and one possible representation of Eq. (6).

Using Eq. (213) and any function y(x) we can write

y(x) =
∞∑

n=0

e−x2
Hn(x)

2nn!
√

π

∫ ∞

−∞
dx ′Hn(x ′)y(x ′). (214)
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Multiplying Eq. (214) by Kr and using Eq. (212) we find

Kry(x) =
∞∑

n=0

(n + r)e−x2
Hn(x)

2nn!
√

π

∫ ∞

−∞
dx ′Hn(x ′)y(x ′).

(215)

From inspection of Eq. (215) we see that instead of writing Kr

as the differential operator (84) we can write it as the kernel

(x|Kr |x ′) =
∞∑

n=0

(n + r)e−x2
Hn(x)Hn(x ′)

2nn!
√

π
. (216)

V. OPERATOR ALGEBRA

As one might surmise from the fact that the weak-collision
physics discussed previously is equivalent to forced drift and
diffusion of particles in a harmonic-oscillator well, many of
the concepts that proved so useful for coherent states [25] of
oscillators have analogs for the weak-collision problem. To see
these analogies, we define an abstract right eigenvector |n), of
Kr by

Kr |n) = (n + r)|n), where (x|n) = R−n = e−x2
Hn(x).

(217)

In like manner, we can define an abstract left eigenvector

((n|Kr = ((n|(n + r) where ((n|x) = Hn(x)

2nn!
√

π
. (218)

Since Kr is not a Hermitian operator, the left eigenvector is
not simply the Hermitian conjugate of the right eigenvector,
((n|x) �= (x|n)∗, as is obvious from Eqs. (217) and (218).
Instead, ((n|x) is a polynomial eigenfunction of the transpose
operator KT

r

KT
r ((n|x) = (n + r)((n|x). (219)

The transpose operator is

KT
r = K†∗

r = −1

2

∂2

∂x2
+ x

∂

∂x
+ r. (220)

The basis vectors |x) and (x ′| = |x ′)† for velocity space are
normalized such that

(x ′|x) = δ(x ′ − x). (221)

The left and right vectors are complete and orthonormal, that
is,

∞∑
n=0

|n)((n| = 1, and ((n|n′) = δnn′ . (222)

We can write Eqs. (154) and (153) as

− d

dx
|n) = |n + 1), and − J |n) = n|n − 1), (223)

where the current operator J was given by Eq. (81). In operator
form, we can write Eq. (223) as

− d

dx
=

∞∑
n=0

|n + 1)((n|, and − J =
∞∑

n=0

(n + 1)|n)((n + 1|.

(224)

We see that the operators −d/dx and −J play a role analogous
to that of raising and lower operators for spin states or oscillator
states in ordinary quantum mechanics. Since we are dealing

with non-Hermitian systems −d/dx and −J cannot be chosen
to be Hermitian conjugates of each other. One can readily
verify the commutation relation[

J,
d

dx

]
= 1. (225)

The damping operator is

Kr = d

dx
J + r. (226)

d. Coherent states. In analogy to the discussion of oscil-
lators we will define coherent state |α〉 as the solution of the
eigenvalue equation

J |α〉 = α|α〉. (227)

We use the completeness property (222) to write

|α〉 =
∞∑

n=0

|n)((n|α〉. (228)

Substituting Eq. (228) into Eq. (227) and using Eq. (223), we
readily find that the coefficients are

((n|α〉 = (−α)n

n!
, assuming that ((0|α〉 = 1. (229)

Substituting Eq. (229) back into Eq. (228) and summing the
series we find that the coherent state is

|α〉 = exp

(
α

d

dx

)
|0), or (x|α〉 = (x + α|0) = e−(x+α)2

.

(230)

e. Time dependence of a coherent state. The coherent
state |α〉 is simply the Maxwellian distribution |0〉 shifted to
be centered at x = −α in velocity space. Forced drift and
diffusion, together with a velocity-independent damping rate
r will cause the coherent state to change at the rate

d

dt
|α〉 = −Kr |α〉. (231)

Substituting Eq. (228) into Eq. (231) and using Eq. (217), we
readily see that if the coefficients have the value (229) at time
t = 0, they will have the value

((n|α〉t = (−αe−t )n

n!
e−rt (232)

at time t , so that Eq. (230) becomes

|α〉t = e−rt exp

(
αe−t d

dx

)
|0〉, or

(233)
(x|α〉t = e−rt (x + αe−t |0〉 = e−(x−αe−t )2−rt .

The centroid velocity, x̄ = −αe−t of the coherent state decays
exponentially from its initial value x̄ = −α at t = 0 to x̄ = 0
at late times. The distribution remains Gaussian with constant
variance σ 2 = 1/2.

f. Fundamental operators. We can use the left and right
eigenvectors of Eqs. (217) and (218) to write the fundamental
operators as

Kr = d

dx
J + r =

∞∑
n=0

(n + r)|n)((n|, (234)
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Tr (τ ) = e−Krτ =
∞∑

n=0

|n)((n|e−(n+r)τ , (235)

Gr = 1

Kr

=
∞∑

n=0

|n)((n|
n + r

. (236)

We see from Eq. (234) that the damping rate of the mode
|n) of velocity space has a contribution n from drift and
diffusion and a contribution r from velocity-independent
damping, for example, from collisional spin relaxation or
Larmor precession. Large-n modes damp more quickly than
small-n modes because it is easier for drift and diffusion to
damp distributions that vary rapidly in velocity space than
distributions that vary slowly. Drift and diffusion cause no
damping at all of the lowest mode (x|0) because diffusion is
exactly canceled by drift.

As discussed by Risken [18], Sec. 5.5.1, it is possible to
transform the Fokker-Planck equation for a parabolic potential
into the Schrödinger equation for a harmonic oscillator so
that one can use left and right eigenvectors that are Hermitian
conjugates of each other. The equivalent approach earlier, with
left and right eigenvectors that are not Hermitian conjugate
pairs, obviates the need for this transformation.

VI. KEILSON-STORER MODEL

The preceding discussion was focused on weak collisions,
where the velocity change per collision is small compared
to the thermal velocity vD . Na has a mass of approximately
23 amu, so for experiments with a light gas like He with a mass
of 4 amu per atom or H2 with a mass of 2 amu per molecule,
the weak-collision limit should be a very good approximation.
However, the masses of Na collision partners in the upper
atmosphere, N2, O2, and O, are approximately 28, 32, and
16 amu. One will expect that there will be many “head-on”
collisions that change the velocity by an amount comparable to
the thermal velocity and we will be dealing with a substantial
fraction of strong collisions in the Na layer.

To describe strong collisions, we will use the convenient,
phenomenological, Keilson-Storer (KS) model [26]. Starting
with the work of Rautian and Sobel’man [9,27], the KS model
was widely used to analyze related problems [7–9,19,27]. We
will also discuss little-known expansions of the KS model
as infinite series in Hermite polynomials. We write the KS
kernel [26] in dimensionless units as

(x|Kr |x ′) = 1

1 − α
{δ(x − x ′) − (x|W |x ′)} + rδ(x − x ′),

(237)

where

(x|W |x ′) = e(x−αx ′)2/�x2

�x
√

π
, with �x2 = 1 − α2. (238)

The real parameter α, with 0 � α < 1 parameterizes the
strength of the collision, with α → 1 giving the weak-collision
limit—the same as the Fokker-Plank limit we discussed
previously, and with α = 0 giving the strong-collision limit.
For α → 1, the distribution (x|W |x ′) of final velocities x has
a very narrow spread, �x � 1, and the distribution centroid
αx ′ is nearly the same as the initial velocity x ′. For α = 0,

every collision creates a Maxwellian distribution of final
velocities. Kolchenko et al. [28] used the descriptive term
“memory” parameter for α, since α is the fraction of the
initial velocity x ′ “remembered” by the final velocities x. The
velocity independent damping rate r was given by Eq. (85).

Using Eq. (201) we find

(x|W |x ′) =
∞∑

n=0

αne−x2
Hn(x)Hn(y)un

2nn!
, (239)

or

W =
∞∑

n=0

αn|n)((n|. (240)

We discussed the left and right eigenvectors, ((n| and |n) in
connection with Eqs. (217) and (218). Using Eq. (239) we can
write the KS kernel (237) as

Kr =
∞∑

n=0

(
r + 1 − αn

1 − α

)
|n)((n|. (241)

Taking matrix elements of Eq. (241) we find

(x|Kr |x ′) =
∞∑

n=0

(
r + 1 − αn

1 − α

)
e−x2

Hn(x)Hn(x ′)
2nn!

√
π

. (242)

Exponentiating the kernel Kr of Eq. (241) to get the impulse-
response function of Eq. (4) we find

Tr (τ ) =
∞∑

n=0

e−[(r(1−α)+1−αn]τ ′ |n)((n|. (243)

The time τ in units of the velocity damping time 1/�vd is
related to the “dilated time,” τ ′ by

τ = (1 − α)τ ′. (244)

Taking matrix elements of Eq. (243) we find

(x|Tr (τ )|x ′) =
∞∑

n=0

e−[(r(1−α)+1−αn]τ ′
e−x2

Hn(x)Hn(x ′)
2nn!

√
π

.

(245)

The expansion (245) of the KS impulse-response function as
an infinite series in Hermite polynomials seems little known.

Inserting the power-series expansion, eαnτ =∑
q(αnτ ′)q/q!, into Eq. (243) and changing the order

of summation over n and q we find

Tr (τ ) = e−[(r(1−α)+1]τ ′
∞∑

q=0

(τ ′)q

q!
Wq, (246)

where the partial kernels are

Wq =
∞∑

n=0

αqn|n)((n|. (247)

A special case of Eq. (247) is q = 0 where the matrix elements
of the partial kernel are

(x|W0|x ′) = δ(x − x ′). (248)
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For q �= 0 the matrix elements of the partial kernels are

(x|Wq |x ′) = e(x−αqx ′)2/�x2
q

�xq

√
π

, where �x2
q = 1 − α2q .

(249)

The partial kernels satisfy area identities reminiscent of
Eqs. (136) and (138)∫

(x|Wq |x ′)dx = 1, and
∫

(x|Wq |x ′)e−x ′2
dx ′ = e−x2

.

(250)

Taking matrix elements of Eq. (246) we find

(x|Tr (τ )|x ′) = e−[(r(1−α)+1]τ ′
∞∑

q=0

(τ ′)q

q!
(x|Wq |x ′). (251)

With minor notational differences, the expression (251) of the
impulse-response function as an infinite series of Gaussians
was given by Keilson and Storer [7,26].

Taking the inverse of Eq. (241) in accordance with Eq. (6)
we find the KS Green’s function

Gr = 1

Kr

=
∞∑

n=0

(1 − α)|n)((n|
r(1 − α) + 1 − αn

. (252)

Taking matrix elements of Eq. (252) we write the KS Green’s
function as an infinite series of Hermite polynomials

(x|Gr |x ′) =
∞∑

n=0

(1 − α)e−x2
Hn(x)Hn(x ′)

2nn!
√

π [r(1 − α) + 1 − αn]
. (253)

Alternately, we can use Eq. (251) with Eq. (6) to find the KS
Green’s function as an infinite series of Gaussians

(x|Gr |x ′) =
∞∑

q=0

(1 − α)(x|Wq |x ′)
[r(1 − α) + 1]q+1

. (254)

In practice, Eqs. (253) or (254) must be truncated after a finite
number of terms. For a given number of retained terms, the
errors induced by truncation are comparable for the two series.

From inspection of Eq. (253) one can readily verify that the
KS Green’s functions have the same area identities, Eqs. (136)
and (138), as the Fokker-Planck Green’s functions∫ ∞

−∞
(x|Gr |x ′)dx = 1

r
,

(255)

and
∫ ∞

−∞
(x|Gr |x ′)e−x ′2

dx ′ = e−x2

r
.

The areas (255) are independent of α.
g. The limit α → 1. For the weak-collision limit of the KS

model we write
α = 1 − ε, with ε > 0. (256)

Taking the limit of Eq. (241) as ε → 0,

Kr = lim
α→1

∞∑
n=0

(
r + 1 − αn

1 − α

)
|n)((n|

= lim
ε→0

∞∑
n=0

(
r + 1 − (1 − nε + · · ·)

ε

)
|n)((n|

=
∞∑

n=0

(r + n)|n)((n|. (257)

This is the same as the expansion (234). For the limit α → 1 the
KS model gives exactly the same results as the weak-collision
model of forced diffusion in velocity space.

h. The limit α → 0. Taking the limit α → 0 in Eqs. (241),
(245), and (252), and noting that α0 = 1 for all α > 0 so
α0 → 1 as α → 0, we find the fundamental operators

Kr =
∞∑

n=1

(1 + r)|n)((n| + r|0)((0|, (258)

Tr (τ ) =
∞∑

n=1

|n)((n|e−(1+r)τ + |0)((0|e−rτ , (259)

Gr =
∞∑

n=1

|n)((n|
1 + r

+ |0)((0|
r

. (260)

Noting that (x|0) = e−x2
and ((0|x) = 1/

√
π , we can use the

completeness property (222) with (221) to find nonseries ex-
pressions for the matrix elements of Eqs. (258) through (260),

(x|Kr |x ′) = (1 + r)δ(x − x ′) − 1√
π

e−x2
, (261)

(x|Tr (τ )|x ′) = e−rτ

[
δ(x − x ′)e−τ + 1√

π
e−x2

(1 − e−τ )

]
,

(262)

(x|Gr |x ′) = δ(x − x ′)
1 + r

+ e−x2

r(1 + r)
√

π
. (263)

The damping operator (261) is the strong-collision version
of the differential damping operator (84) for weak collisions,
Eq. (262) is the strong-collision version of Rayleigh’s
transient (86), and Eq. (263) is the strong-collision version of
the Green’s function (132) for weak collisions.

i. The limit r → 0. From inspection of Eqs. (236) and
(252), we see that for both the Fokker-Planck model or for the
KS model with any value of α the Green’s functions approach
the same limit as r → 0,

(x|Gr |x ′) → e−x2

r
√

π
, as r → 0. (264)

If both the spin relaxation and spin-precession rates be-
come very small compared to the rate of velocity-changing
collisions, so r → 0, a unit source at any velocity x ′ will
build up a large polarization amplitude with a Maxwellian
distribution of velocities x. Steady-state experiments for which
r is known to be very small will not be sensitive to whether
the velocity-changing collisions are weak or strong, since the
limiting Green’s function, Eq. (264), is the same in both cases.

VII. SUMMARY

We show how to calculate optical pumping phenomena in
an unusual regime where: (a) the collision rates of optically
pumped atoms with atoms or molecules of the background
gas are small enough that individual velocity groups are
preferentially excited, (b) the collision rates are still fast
enough to partially transfer the spin polarization to other
velocity groups, and (c) there are nonnegligible losses of
polarization due to collisional spin relaxation and Larmor
precession. This regime is similar to that of optically pumped
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23Na atoms of the Earth’s upper atmosphere. But the conditions
(a), (b), and (c) are seldom fulfilled at the same time in
laboratory experiments with alkali-metal atoms. For example,
in the work of Shimkaveg et al. [29] on optically pumped Li,
at very low buffer-gas pressures, the conditions (a) and (b)
were satisfied, but since the buffer gases of these experiments
caused almost negligible spin relaxation and no transverse
spin polarization was generated, there were negligible losses
of spin polarization and condition (c) was not satisfied.

In Sec. II we show how to write the basic evolution
equations in the Liouville space of the polarized atoms so
that the evolution due to velocity-changing collisions at a
rate �vd, Larmor precession at the frequency ω, collisional
spin relaxation at the rate �sd, and optical pumping are
clearly recognizable. We define weak collisions as those for
which the velocity change in a single collision is very small
compared to the mean thermal velocity vD . In strong velocity-
changing collisions the velocity change in a single collision is
comparable to or larger than vD . The fundamental evolution
equation, Eq. (68), for weak collisions is a Fokker-Planck
equation, apparently first written down by Rayleigh [15] in
1891. We show that for either weak or strong collisions, a
simple and effective way to find the steady-state solution
is with the Green’s function (x|Gr |x ′) that determines how
much of the polarization generated by optical pumping at
the “source” velocity v′ = x ′vD is transferred by collisions
to the “observation” velocity v = xvD . We assume that the
polarization has a velocity-independent damping rate �sd =
r�vd. The approach we outline is completely general and
is applicable to real 23Na atoms with nuclear spin quantum
number I = 3/2. But to keep this article to a manageable
length, we illustrated the key concepts with a simpler model:
optical pumping, with circularly polarized D1 light, of a
hypothetical Na atom with I = 0.

In Sec. III we show examples of longitudinal and transverse
spin polarization produced by optical pumping at low gas pres-
sures and with strong or weak velocity-changing collisions.
Whether the collisions are strong or weak makes little qualita-
tive difference for longitudinal spin polarization, but the trans-
verse spin polarization can be strikingly different for strong or
weak collisions. We also show that, in the limit of white-light
pumping or very fast velocity-changing collisions, all polar-
ization components have Maxwellian velocity distributions.

We devoted about half of this article to the mathematical
methods that we found most useful. In Sec. IV, which is
devoted to weak collisions, we introduce “right functions,”
Rr (x), of Eq. (149) from which we construct the Green’s
function Gr for weak collisions. The index r is normally a
complex number with the real part representing a spin damping
rate, and the imaginary part representing a spin-precession
rate or Bohr frequency of some atomic coherence. The right
functions Rr (x) are entire functions of r or x (that is, with no
poles for finite r or x). We show that for −r = n with n =
0, 1, 2, 3, . . . ,∞ the right functions are R−n(x) = Hn(x)e−x2

,
where Hn(x) is a Hermite polynomial.

In Sec. V we show that the right functions R−n for n =
0, 1, 2, . . . can be used to construct right and left eigenvectors,
|n) and ((n| of the damping kernel Kr and of the other
fundamental operators Tr (τ ) and Gr . The eigenfunctions
are similar to those of a harmonic oscillator, perhaps not
surprisingly, since the theory of weak collisions is that of
diffusive motion in a parabolic potential well. Since we are
discussing a dissipative, non-Hermitian system, the right and
left eigenvectors are not simply Hermitian conjugates of each
other. Introducing right and left eigenvectors allows one to
analyze the effects of velocity-changing collisions with much
the same algebraic methods as those that have become so
familiar for coherent states of a harmonic oscillator [25].

Finally, in Sec. VI we show that the right and left
eigenvectors for weak collisions are well suited for describing
the KS model [26] of velocity-changing collisions. We give
explicit expressions for the fundamental operators Kr , Tr (τ ),
and Gr for arbitrary values of the memory parameter α, and
of the velocity-independent damping rate r . Weak collisions
are modeled with α → 1, where the KS model and the
Fokker-Planck model give identical results. Strong collisions
are modeled with α = 0.
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