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We investigate high-lying doubly excited nonautoionizing states of helium with total angular momentum
L = 1,2, . . . ,9 with the help of a configuration interaction approach. We provide highly precise nonrelativistic
energies of these states and discuss the properties of the wave functions with respect to the particle exchange
operator.
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I. INTRODUCTION

Early spectroscopic experiments [1–3] have revealed the
existence of a sharp line at a wavelength of 32.039 nm in
the emission spectrum of helium. This line was tentatively
ascribed by Kruger to a radiative transition between the 2p2 3P

and 1s2p 3P states. This interpretation was soon confirmed by
Wu [4] on the basis of strong theoretical arguments. In addition
and in the same article, Wu also made the correct assumption
that the 2p2 3P state is not subject to autoionization. In fact,
owing to the conservation requirements on parity and angular
momenta, this doubly excited state (DES) has no interaction
with the adjacent continuum. When relativistic interactions are
taken into account, it acquires an autoionization lifetime, but
it is still several orders of magnitude longer than the mean
radiative lifetime of the allowed electric dipole transitions.
Later on, the existence of this 2p2 3P state of unnatural parity
was confirmed by a series of experiments [5–8].

In helium, series of DES of unnatural parity exist. These
correspond to a given value of the total angular momentum L.
All the states of unnatural parity lying between the first and the
second ionization thresholds do not autoionize. By contrast,
in H−, the 2p2 3P state is the only one that is not subject to
autoionization. Note that as far as we know, this state has not
been observed to date, the problem being the lack of an initial
state from which it could be reached [9].

The knowledge of accurate values of the energy and radia-
tive lifetimes of nonautoionizing DES in helium is important in
various fields such as astrophysics [10,11] and plasma physics
[12–16]. Since the conventional variation procedure does
apply in a straightforward way to nonautoionizing DES [17], it
is not surprising that the large majority of the calculations are
based on variational approaches. See the recent article of Saha
and Mukherjee [18] for a comprehensive list of the existing
variational calculations. In this article, we calculate the energy
of nonautoionizing DES of total angular momentum L ranging
from 1 to 9. The calculations are performed by means of a

spectral approach of configuration interaction (CI) type which
is not variational. Our approach, which is described in detail
in [19,20], combines the complex rotation method with an
appropriate expansion of the atom wave function in a basis
of products of Coulomb-Sturmian functions of the electron
radial coordinates with independent dilation parameters for
the two electrons and bipolar spherical harmonics of the
angular coordinates. The values of the energies and the widths
are obtained within a single diagonalization of the atomic
Hamiltonian.

This method turned out to be very efficient to calculate
both the energy and the width of very asymmetrically singly
and doubly excited states of natural parity in helium. It is also
extremely well adapted to the calculation of high-lying helium
nonautoionizing DES of high angular quantum numbers.
Although the complex rotation of the atomic Hamiltonian is,
in the present case, unnecessary, it is performed in order to
check the accuracy of the results. In addition, the convergence
of all these results versus the basis size is systematically
analyzed.

This article is divided into two main sections. The first
is devoted to a brief description of the relevant aspects of
our theoretical approach. In Sec. II, we present and discuss
benchmark results for the energy of nonautoionizing DES
of total angular momentum L ranging from 1 to 9. Two-
dimensional graphs of the probability density of some states
are also shown. Unless stated otherwise, atomic units (a.u.) are
used throughout this document.

II. THEORETICAL APPROACH

A detailed description of our approach has already been
given elsewhere [19–22]. We will thus give only a brief review
of its most relevant aspects. For a detailed numerical treatment,
the interested reader is referred to [20].
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A. Hamiltonian

The nonrelativistic Hamiltonian H for the helium atom—
under the assumption of an infinitely heavy nucleus—reads

H = �p 2
1

2
+ �p 2

2

2
− Z

r1
− Z

r2
+ 1

r12
, (1)

where the nuclear charge Z = 2 and �pi , ri , and r12 are the
momentum and the distance of the electron i to the nucleus
and the distance between the two electrons, respectively.

B. Spectral representation

The eigenstate wave function of the helium atom with a
total angular momentum L of projection M and total energy
Eα satisfies the time-independent Schrödinger equation

(H − Eα)�L,M
α (�r1,�r2) = 0. (2)

In our configuration interaction approach [19–21], the solu-
tions of Eq. (2) are expanded in Coulomb-Sturmian functions
S

(ki )
ni ,li

(ri) [23,24] with independent dilation parameters for
both electrons for the radial coordinates coupled by bipolar
spherical harmonics �

L,M
l1,l2

(r̂1,r̂2) [25]:

�L,M
α (�r1,�r2) =

∑

l1,l2

∑

s

∑

n1,n2

ψ
l1,l2,L,M
k1s ,k2s ,n1,n2,α

× A
S

(k1s )
n1,l1

(r1)

r1

S
(k2s )
n2,l2

(r2)

r2
�

L,M
l1,l2

(r̂1,r̂2) , (3)

where ψ
l1,l2,L,M
k1s ,k2s ,n1,n2,α

is the expansion coefficient and A is an
operator for the projection on singlet or triplet states.

Within a CI approach, the interelectronic distance 1/r12 is
not directly accessible. Instead, one has to exploit the multipole
expansion of the electron-electron repulsion:

1

r12
=

∞∑

q=0

q∑

p=−q

4π

2q + 1

r
q
<

r
q+1
>

Y ∗
q,p(r̂1)Yq,p(r̂2), (4)

with r< = min(r1,r2) and r> = max(r1,r2).
The fact that we allow the dilation parameters and the num-

ber of the Coulomb-Sturmian functions associated to electrons
1 and 2 to be different leads to the introduction of a set of
Coulomb-Sturmian functions {S(k1s )

n1,l1
(r1), S(k2s )

n2,l2
(r2)} associated

with electrons 1 and 2, which is characterized by the combina-
tion [k1,s ,N

min
1,s ,Nmax

1,s ,k2,s ,N
min
2,s ,Nmax

2,s ] with l1 + Nmin
1,s � n1 �

l1 + Nmax
1,s and l2 + Nmin

2,s � n2 � l2 + Nmax
2s . Moreover, more

than one and different sets—labeled by the subscript s—may
be selected for any angular configuration (l1,l2).

In order to obtain states of unnatural parity, the L-S coupled
individual angular momenta of the electrons have to satisfy
(−1)L+1 = (−1)l1+l2 . To avoid redundancies in expansion (3),
the orbital angular momenta are restricted to l1 � l2, and if
l1 = l2 and k1s = k2s , to n1 � n2. Be aware that because of the
restriction to l1 � l2, each set of Coulomb-Sturmian functions
[k1,s ,N

min
1,s ,Nmax

1,s ,k2,s ,N
min
2,s ,Nmax

2,s ] should be accompanied by
[k2,s ,N

min
2,s ,Nmax

2,s ,k1,s ,N
min
1,s ,Nmax

1,s ] in the case of k1s �= k2s and
l1 �= l2. The reason for this is that, for example, sets with
k1,s > k2,s would explicitly favor a smaller extent of the l1
orbital than for the l2 orbital. The inclusion of this additional
set leads to a significant reduction of the basis size when
angular configurations (l1,l2) with l1 �= l2 are used.

By choosing appropriate sets of Coulomb-Sturmian func-
tions, the description of a given energy regime, that is, below
a certain ionization threshold, is possible with a rather small
number of basis functions [20].

C. Complex rotation

Complex rotation (or dilation) [26–31] is widely used
to extract the energy and decay rates of resonance states.
However, as explained in Sec. III, it can also be used as an
additional convergence test (together with the variation of the
basis size and of the dilation parameters k1s ,k2s).

Effectively complex rotation is given by a rotation of
the position and momentum operators in the complex plane
according to

�r → �r exp(ıθ ),
(5)�p → �p exp(−ıθ ),

which leads to a non-Hermitian Hamiltonian with complex
eigenvalues. The spectrum of the rotated Hamiltonian has the
following important properties [27,29,31]:

(i) The bound spectrum of H is invariant under the complex
rotation.

(ii) The continuum states are located on half-lines, rotated
by an angle −2θ around the ionization thresholds of the unro-
tated Hamiltonian into the lower half of the complex plane. In
the specific case of the unperturbed helium Hamiltonian (1),
the continuum states are rotated around the single ionization
threshold IN = −2/N2 [32], with N ∈ N.

(iii) There are isolated complex eigenvalues Ei,θ = Ei −
ı�i/2 in the lower half-plane, corresponding to resonance
states. These are stationary under changes of θ , provided the
dilation angle is large enough to uncover their positions on the
Riemannian sheets of the associated resolvent [32,33]. The as-
sociated resonance eigenfunctions are square integrable [30],
in contrast to the resonance eigenfunctions of the unrotated
Hamiltonian. The latter are asymptotically diverging, outgoing
waves [30,34,35].

III. RESULTS

For total angular momentum L, individual angular mo-
menta of the electrons satisfy the relation (−1)L+1 = (−1)l1+l2

for unnatural parity states. As a consequence of this and of
the triangular condition for the addition of angular momenta,
the single-particle angular momentum cannot be zero (li �=
0,i = 1,2), the total angular momentum is at least 1, and the
lower electron excitation must be at least ni = 2. Therefore the
series of bound states of unnatural parity states converges to
the second ionization threshold. Energies of singlet and triplet
nonautoionizing helium DES of unnatural parity, 2pnl, for
L = 1, . . . ,9 are presented in Tables I and II. These have been
obtained after diagonalization of the matrix representation of
(2) in the basis described in Sec. II. We have used up to 26
angular configurations (l1,l2), which lead to matrix dimensions
up to 16 000 × 16 000 (most of the results presented here
converge with a 10× smaller basis). The presented data
have been tested for convergence with respect to variation of
the complex rotation angle θ , the dilation parameters, and the
number of angular configurations. In particular, these energies
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FIG. 1. (Color online) Probability density after integration over the angles of (left) the lowest lying 1P e state and (right) the lowest lying
3P e state. In contrast to the states of natural parity, singlet states exhibit a vanishing radial density along r1 = r2, while the maximum of the
density of triplet states has a maximum along this line. This apparent contradiction is an artifact of the angular integration.

are invariant with respect to θ in an exact representation. The
variations of the eigenvalues with respect to θ induced by the
truncation of the basis are used to find the converged digits. In
our calculations, we have used the values of the rotation angle
θ ∈ {0.0,0.005,0.01,0.025,0.05}. Only converged digits are
shown in Tables I and II. Note that all values presented in each
one of these tables have been obtained with one optimized
basis choice.

Low-lying P , D, and F unnatural parity states have been
calculated within different approaches [36–40]. In Table I,
we reproduce the energies of these states and present more
benchmark results for further excited states. Table II displays
energies of states with total angular momentum L = 4, . . . ,9.1

As in the case of natural parity states [41], exchange effects can
be neglected for sufficiently large values of L. For instance,
the singlet-triplet splitting for n = 10 goes exponentially fast
to zero as exp(−4.9L).

For symmetric excitation of both electrons, our approach
suffers from the influence of the Kato cusp [42], which is a
discontinuity of the derivative of the wave function at r12 = 0
that is not resolvable within our approach. The effect can easily
be spotted in our tables as the precision of our results increases
with increasing excitation of the outer electron.

Figure 1 shows the radial density integrated over the angles
of the lowest lying 1P e and 3P e states, respectively. The
density plot for the triplet state shows the same behavior
as the helium ground state; that is, the density plot exhibits
a maximum along the axis r1 = r2. However, this behavior
would be expected for singlet states. This apparent contra-
diction is a consequence of the integration on the angular
coordinates that introduces a sign change. This can be easily
understood from the properties of the projectorA of Eq. (3) and
of the Clebsch-Gordon coefficients. The projector A of Eq. (3)
is written as A = (1 + εP )/

√
2, with P being the operator

1Notice that Mihelič [40] has also calculated singlet unnatural parity
states up to n = 15 and up to L = 10, which are in good agreement
with our results (not included in our tables).

that exchanges [n1,l1,k1s ⇀↽ n2,l2,k2s] and ε = ±1. From the
relation 〈l2 m2 l1 m1|LM〉 = (−1)l1+l2−L〈l1 m1 l2 m2|LM〉, it
follows that the wave function (3) is symmetric (antisymmet-
ric) for ε(−1)l1+l2−L = 1 [ε(−1)l1+l2−L = −1]. On the one
hand, singlet (triplet) unnatural parity states are characterized
by ε = −1 (ε = +1), that is, exactly the opposite situation as
for natural parity states. On the other hand, integration over
the angle coordinates of �L,M

α eliminates the sign (−1)l1+l2−L.
Thus the structure of the density plots depends exclusively on
ε, which finally explains the apparent contradiction in Fig. 1.

IV. SUMMARY

A CI expansion of the two-electron wave function in terms
of Sturmian functions with independent nonlinear parameters
has been used to calculate the energies of nonautoionizing
doubly excited helium states for total angular momentum
L = 1,2, . . . ,9. Autoionizing P states of unnatural parity are
treated elsewhere [43]. Our results are in perfect agreement
with existing data for low-lying P , D, and F states. We
have also provided insight into the structure of the probability
density of such states, and we have discussed an apparent
exchange of the symmetry properties with respect to the
particle exchange operator as compared with natural parity
states.
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EIGLSPERGER, PIRAUX, AND MADROÑERO PHYSICAL REVIEW A 81, 042527 (2010)

[1] K. T. Compton and J. C. Boyce, J. Franklin Inst. 205, 497 (1928).
[2] P. G. Kruger, Phys. Rev. 36, 855 (1930).
[3] R. Whiddington and H. Priestley, Proc. R. Soc. London Sect. A

145, 462 (1934).
[4] T.-Y. Wu, Phys. Rev. 66, 291 (1944).
[5] P. Burrow and G. Shulz, in Proceedings of the Sixth International

Conference on the Physics of Electronic and Atomic Collisions,
edited by I. Amdur (MIT Press, Cambridge, 1969).

[6] J. L. Tech and J. F. Ward, Phys. Rev. Lett. 27, 367 (1971).
[7] H. G. Berry, I. Martinson, L. J. Curtis, and L. Lundin, Phys. Rev.

A 3, 1934 (1971).
[8] P. Baltzer and L. Karlsson, Phys. Rev. A 38, 2322 (1988).
[9] M. Bylicki and E. Bednarz, Phys. Rev. A 67, 022503 (2003).

[10] A. B. C. Walker and H. R. Rugge, Astrophys. J. 164, 181
(1971).

[11] G. A. Doschek, J. F. Meekins, R. W. Kreplin, T. A. Chubb, and
H. Friedman, Astrophys. J. 164, 165 (1971).

[12] N. J. Peacock, R. J. Speer, and M. G. Hobby, J. Phys. B 2, 798
(1969).

[13] A. Gabriel and C. Jordon, Nature 221, 947 (1969).
[14] T. Fujimoto and T. Kato, Astrophys. J. 246, 994 (1981).
[15] S. Kar and Y. Ho, Int. J. Quantum Chem. 106, 814 (2006).
[16] A. Sil, S. Bhattacharyya, and P. Mukherjee, Int. J. Quantum

Chem. 107, 2708 (2007).
[17] E. Holøien, Nucl. Instrum. Methods 90, 229 (1970).
[18] J. K. Saha and T. K. Mukherjee, Phys. Rev. A 80, 022513

(2009).
[19] E. Foumouo, G. L. Kamta, G. Edah, and B. Piraux, Phys. Rev.

A 74, 063409 (2006).
[20] J. Eiglsperger, B. Piraux, and J. Madroñero, Phys. Rev. A 80,
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[40] A. Mihelič, Doktorska disertacija, Univerza v Ljubljani, 2006.
[41] R. El-Wazni and G. W. F. Drake, Phys. Rev. A 80, 064501 (2009).
[42] C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys. 32, 194

(1960).
[43] J. Eiglsperger, B. Piraux, and J. Madroñero, Phys. Rev. A 81,
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