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Isotope shift in the sulfur electron affinity: Observation and theory
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The sulfur electron affinities eA(S) are measured by photodetachment microscopy for the two isotopes 32S
and 34S (16 752.975 3(41) and 16 752.977 6(85) cm−1, respectively). The isotope shift in the electron affinity is
found to be more probably positive, eA(34S) − eA(32S) = +0.0023(70) cm−1, but the uncertainty allows for the
possibility that it may be either “normal” [eA(34S) > eA(32S)] or “anomalous” [eA(34S) < eA(32S)]. The isotope
shift is estimated theoretically using elaborate correlation models, monitoring the electron affinity and the mass
polarization term expectation value. The theoretical analysis predicts a very large specific mass shift (SMS) that
counterbalances the normal mass shift (NMS) and produces an anomalous isotope shift eA(34S) − eA(32S) =
−0.0053(24) cm−1, field shift corrections included. The total isotope shift can always be written as the sum of
the NMS (here +0.0169 cm−1) and a residual isotope shift (RIS). Since the NMS has nearly no uncertainty, the
comparison between experimental and theoretical RIS is more fair. With respective values of −0.0146(70) cm−1

and −0.0222(24) cm−1, these residual isotope shifts are found to agree within the estimated uncertainties.
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I. INTRODUCTION

Photodetachment microscopy, which is the analysis of
the electron interference pattern naturally produced when
photodetachment occurs in the presence of an electric field
[1,2], was applied to a beam of 32S− ions and allowed to
measure the detachment thresholds corresponding to different
fine-structure levels of the negative ion S− and the neutral
atom S [3]. The electron affinity of sulfur, at 2.077 eV, is well
suited for detachment by a tunable dye laser, which provides a
third way of measuring neutral S fine structure, besides VUV
spectroscopy of S I lines and direct fine-structure resonance
spectroscopy. Dye laser photodetachment of S− was also used
as a probe of microwave-induced transitions of hyperfine-split
Zeeman transitions, which lead to a measurement of the hyper-
fine structure of 33S− [4]. The fine structures of S− and neutral
S, with the definition of the six “fine-structure detachment
thresholds,” labeled A, B, C, D, E, and F (in the order of
increasing excitation energy) are displayed in Fig. 1. In the
present work, photodetachment microscopy is used to measure
the electron affinity eA (threshold C) of the even isotopes 32
and 34 of sulfur. The sensitivity of the method made it possible
to record a significant number of 34S detachment events, even
though sulfur was produced from a chemical compound with
no isotopic enrichment and detachment occurred at very low
energies above threshold (namely in the sub-meV range).
The accuracy of photodetachment-microscopy-based electron
affinity measurements makes it possible to get an estimate of
the isotope shift, precise enough to make comparison with
theory significant.

On the theoretical side, the ab initio calculation of electron
affinities is a challenge. Various methods for evaluating
electron binding energies and affinities are discussed by
Lindgren [5], presenting five different techniques, from the
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Koopmans-theorem method, up to the density-functional the-
ory. Lindgren’s survey focuses on the many-body perturbation
approach and only mentions, without further discussion, a
sixth method that can always be used: separate many-body
calculations for the initial and final states, using some elaborate
variational technique, like multiconfiguration or configuration-
interaction methods. This approach can indeed be successful
for small systems (see for instance Ref. [6] for 7Li) and is
precisely the one attempted in the present work, although the
correlation balance is more difficult to achieve for a large
number of electrons.

The electron affinity of sulfur has been estimated, after
the pioneering work of Clementi et al. [7], by Woon and
Dunning [8] who treated the second row atoms through
multireference single and double excitation configuration-
interaction calculations and by Gutsev et al. [9] using the
coupled-cluster method. In a benchmark study of ab initio and
density-functional calculations of electron affinities covering
the first- and second-row atoms, de Oliveira et al. [10]
concluded that the best ab initio results agree, on average,
to better than 0.001 eV with the most recent experimental
results. For heavy systems, the relativistic effects become
crucial [11,12] and an accuracy better than 0.04 eV (10%)
was difficult to achieve for the electron affinity of lead in the
full relativistic approach [13].

The search for a possible variation of the fine-structure
constant α has renewed interest in developing reliable ab initio
computational methods for atomic spectra [14,15]. Theory
versus experiment comparisons of atomic isotope shifts can
serve as sensitive tests of our computational ability for
some important electronic factors. Stimulated by photodetach-
ment experiments [16,17], theoretical calculations on isotope
shifts in electron affinities have been attempted for oxygen
[18,19], using the numerical multi-configuration Hartree-Fock
(MCHF) approach. Beryllium was another interesting target
[20], but ab initio calculations remain scarce, requiring the cal-
culation of two properties—the electron affinity and its isotope
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FIG. 1. S− fine-structure detachment thresholds. Energies mea-
sured with wavenumbers in m−1 (figure taken from [3]).

shift—both highly sensitive to correlation effects. For these
systems, the limited population and the restricted active space
concepts were used to build the configuration spaces. Adopting
similar correlation models for the S/S− system becomes
prohibitive and efficient reduction strategies need to be found.

In the present work, various single- and double-
multireference valence expansions sets are explored for a
full nonrelativistic variational optimization of the wave func-
tion through the MCHF procedure. Core excitations from
these multireference sets are included afterward through
configuration-interaction. Computational strategies are inves-
tigated and developed by monitoring the electron affinity and
the mass polarization expectation values difference between
the neutral atom and the negative ion.

The experimental work and theoretical calculations are
presented in Secs. II and III, respectively. The comparison
of observation and theory is discussed in Sec. IV.

II. EXPERIMENTAL MEASUREMENT OF
THE ISOTOPE SHIFT

A. Experimental setup

1. Ion beam and isotope selection

Photodetachment microscopy was performed on a beam of
S− produced by a hot cathode discharge in a mixture of 98%
Ar and 2% CS2. This commercial mixture had no isotopic
enrichment, so the isotopes of sulfur were produced with their
natural abundance, which meant only 4% [21] of 34S− (i.e.,
only a few pA). With such a barely measurable ion current, all
the electrostatic settings of the ion beam and the alignment of
the laser in the interaction region had to be done with our Wien
velocity filter set on mass 32. Then the electric field applied in
the Wien filter was reduced by the factor 4/

√
17 appropriate for

shifting from mass 32 to mass 34. We checked that the electron

interferograms obtained with this setting were not a residue
of the 32S− signal on the wing of the maximum of mass-32
transmittance. A primary observation was that the peaks of the
mass spectrum, when recorded on the total ion current signal
(including a very visible contribution of SH− at mass 33)
appeared well separated, which meant a mass resolution of 70
at least. A more quantitative limit of the possible admixture of
the 32 signal at mass 34 was given by setting the velocity filter
at mass 33, and observing that this actually let no photoelectron
signal emerge from the background of the electron image, even
though we recorded the impacts on the detector for a time
longer than the one needed to reconstruct visible interference
rings at mass 34. One mass unit away from its maximum, the
32S− current was thus much lower than the 34S− maximum
current. Since isotope 32 is 22 times more abundant than iso-
tope 34, this means a factor of attenuation of 100 at least. Two
units away from the 32 maximum, the attenuation must be even
more complete, so the few 32S− detachment events remaining
at mass 34 are certainly negligible with respect to the electron
background due to parasitic collisions of the ion beam with
the diaphragms or the residual gas and to the 34 signal itself.

2. Laser photodetachment

As in previous photodetachment microscopy experiments
on sulfur [3,22], laser excitation was provided by a CW
ring dye laser (Spectra-Physics 380A [23]) operating with
Rhodamine 590 in 5% methanol and 95% ethylene-glycol.
Single-mode operation was achieved by means of a pair of
intracavity Fabry-Perot etalons. The cavity length is servo-
locked by means of an external sigmameter [24]. Thanks to
stabilization of the sigmameter itself on the wavelength of
a dual-polarization stabilized He-Ne laser, the frequency of
the tunable laser can remain stable within a few MHz for
the typically 20 minutes needed to record every photoelectron
interferogram. The wavenumber of the laser is measured by an
Ångstrom WS-U lambdameter, with an accuracy better than
10−3 cm−1.

B. Experimental data

1. Photodetachment interferograms

Figure 2 gives an example of a pair of interferograms
obtained from a double pass of the laser beam on the ion beam.
This double pass makes it possible to obtain Doppler-free
measurements, by averaging the responses of both spots,
for they correspond to symmetric residual deviations from
90◦ of the laser-ion intersection angle (cf. [25]). Due to the
rarity of 34S, even after an accumulation time of 2000 s, the
number of electrons counted per pixel is eight at its maximum.
Nevertheless, this is enough for the fitting program to find the
center and contour of each spot, and to calculate a histogram
of the average number of electrons counted per pixel at a given
distance from the center. The obtained radial profile, as shown
on Fig. 3, gives a much less noisy picture of the interference
pattern and shows its excellent correspondence with theory
[even though the actual fitting procedure is done on the
two-dimensional (2D) electron distribution]. The phase (i.e.,
2π times the number of oscillations in the interferogram) is the
essential parameter for determining the initial kinetic energy
of the electron. The interferometric accuracy so obtained, of
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FIG. 2. Double interferogram obtained from 34S− at a wavelength
λ = 596.89056(2) nm, in an electric field 291 V/m, for an accumu-
lation time of 2000 s. The grey scale indicates the total number of
electrons counted in each pixel. The data are recorded by means of a
Quantar Technology Inc. particle detector of the series 3391 with the
2251 Image-TrakTM enhanced software. The presented image was
reprocessed with MicrocalTM Origin R©.
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FIG. 3. Average number of electrons counted per pixel, in the
lower spot of Fig. 2. The continuous line is the radial profile
calculated with the best-fitting parameters (as provided by an
adjustment algorithm applied to the original 2D data). One among
these parameters is the initial kinetic energy of the electron, here found
to be 0.5819(37) cm−1 (but the 1σ error bar given here assumes no
uncertainty at all on the electric field itself).

the order of a few 10−3 cm−1, is orders of magnitude better
than what a measurement of the spot diameter would provide.
The latter would actually pertain to the domain of classical
electron spectrometry, the accuracy of which is seldom better
than 1 meV, or a few cm−1.

2. Data analysis

In principle, photodetachment microscopy does not require
a series of photodetachment images to be recorded to get a
measure of the electron affinity eA. Calculating the difference
between the photon energy and the measured electron kinetic
energy in a single experiment will give the result. However,
any discrepancy between the expected and actual values of the
electric field in the photodetachment region is able to produce
a systematic shift of the measured photoelectron energies. This
being a constant relative error, extrapolating the measured
electron affinity down to zero initial kinetic energy (i.e., to
the detachment threshold) provides a method for avoiding
the electric-field uncertainty [22,26]. A series of measured
electron affinities obtained both for isotope 32 and isotope 34
are represented in Fig. 4.

Extrapolation of the measured eA values down to zero being
the leading idea, we had to admit that the few experimental
points obtained would not be enough to determine the slope
of the linear regression, for the 34S case, with a satisfying
accuracy. The idea was thus to make 32S and 34S measurements
in similar experimental conditions, and make the linear
regression with a constraint of similarity on the slopes, to
set the 34S slope with improved accuracy. The experimental
data shown in Fig. 4 for 32S were actually taken during the
same runs as the 34S ones. The difference between the 34S and
32S slopes may thus be constrained by a normal distribution
with a characteristic width of 0.5%, which is an estimate (on
the larger side) of the typical slope variations observed in
past experiments done in similar conditions. As a matter of
fact, fitting the data with this constraint yields nearly identical
slopes of 0.18% and 0.16% for 32S and 34S, respectively, the
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FIG. 4. Comparison of electron affinity measurements made in
common series of experiments for 32S (circles) and 34S (squares),
with the average trend for each isotope (dashed line is 32, continuous
line is 34), assuming similar dependencies of the apparent electron
affinity as a function of the average electron kinetic energy. The data
shown in Fig. 2 produce the experimental 34S point at 0.509 cm−1.
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visual consequence of this result being that the two regression
lines drawn in Fig. 4 appear nearly parallel.

3. Experimental results

The electron affinities eA(S), which are the ordinates at zero
energy of the two lines drawn on Fig. 4, are 16 752.975 3(41)
and 16 752.977 6(85) cm−1 for 32S and 34S, respectively. The
error bars given here take the statistical distribution of the data
into account at a 2σ level together with a possible ±10−3 cm−1

systematic error on wavenumber measurements. The value
of eA(32S) incorporates all our previous work that led to the
published result of 16 752.976 0(42) cm−1 [3]. The subsequent
discovery that transverse magnetic-field effects were actually
negligible [27] was applied to these former data, but accounts
only for −0.0001 of the −0.0007 revision of the most probable
value of eA(32S) down to 16 752.975 3(41) cm−1; eA(32S)
remains the most accurately known of all electron affinities.

The isotope shift eA(34S)-eA(32S) is found to be
+0.0023(70) cm−1. Having a better accuracy on the difference
than on the least well known of both electron affinities
is a logical consequence of the experimental method. The
direct comparison of the apparent electron affinities at similar
detachment energies naturally provides a good accuracy on the
isotope shift, even though the linear regression to the actual
value of eA suffers from additional experimental unknowns.
The strong covariance of the electron affinities is reinforced
by the inclusion of the possible systematic error on wavelength
measurements, which is, by definition, the same in both cases.
Numerically, the final correlation found between the obtained
variances of the electron affinities is +0.57.

III. THEORY AND AB INITIO CALCULATIONS

A. Theoretical isotope shift

Adopting the (A′ > A) convention where A is the mass
number, the isotope shift on the electron affinity defined as

IS(A′, A) = δ eA ≡ eA(A′) − eA(A), (1)

is expressed as the sum of the normal mass shift (NMS),
specific mass shift (SMS), and field shift (FS) contributions

IS(A′, A) = δeANMS + δeASMS + δeAFS. (2)

Introducing M for the nuclear mass and X for the chemical
element, the two first terms that constitute the mass shift can
be written in atomic units (me = 1 and h̄ = 1) as

δeANMS + δeASMS =
[

M ′

1 + M ′ − M

1 + M

]
eA(∞)

+
[

M ′

(1 + M ′)2
− M

(1 + M)2

]
�SSMS,

(3)

where

�SSMS = SSMS(X) − SSMS(X−), (4)

with

SSMS = −〈�∞|
N∑

i<j

∇i · ∇j |�∞〉. (5)

This expression is correct to first order in µ/M , where
µ = meM/(me + M) is the reduced mass of the electron with
respect to the nucleus. For a positive �SSMS difference, the
NMS and SMS interfere negatively due to the relative signs of
the mass factors in Eq. (3) [20]. It is easy to show that the degree
of cancellation between NMS and SMS is basically governed
by the mass-independent difference [eA(∞) − h̄2

me
�SSMS]. The

two atomic masses of 32S (31.972 071 00 u) and 34S (33.967
866 90 u), taken from the AME2003 compilation of Audi
et al. [28] are converted into nuclear masses by subtracting the
electron mass contribution (0.027%) [29].

The FS can be estimated from

δeAFS = (hc)4π
[
ρ(0)XNR − ρ(0)X

−
NR

] a3
0

4Z
f (Z)AA′

× [〈r2〉A′ − 〈r2〉A], (6)

where ρ(0)NR is the nonrelativistic spin-less total electron
density ρ(r) (in a−3

0 ) calculated at r = 0 [30]. The factor
f (Z)32−34 = 0.014 823 cm−1/fm2 is taken from Aufmuth
et al. [31] and corrects for the fact that we use the nonrel-
ativistic electronic density for a point nucleus. The 〈r2〉1/2

32 =
3.2608(18) fm and 〈r2〉1/2

34 = 3.2845(21) fm values are taken
from Angeli [32].

Note from Eq. (6) that with a positive variation of the rms
nuclear charge radii (i.e., δ〈r2〉AA′ ≡ 〈r2〉A′ − 〈r2〉A � 0) the
FS has the same sign as the NMS if and only if the electron
detachment (X− → X) is accompanied by an increase of the
electron density at the nucleus (�ρ(0) � 0). For a system like
sulfur, the FS is expected to be much smaller than the mass
shift. Therefore, our computational strategy is dictated by the
description of the electron affinity and �SSMS, although the
FS is taken into account in the present analysis (see Sec. IV).

B. Computational method

We use the numerical MCHF approach describing the
atomic wave function as

� =
∑

i

ci	(γiLS), (7)

where {	(γiLS)} is an orthonormal set of configuration state
functions (CSF) that are symmetry adapted linear combina-
tions of Slater determinants [33,34]. In this method, the radial
functions {Pnl(r)} defining the orbital active set and the mixing
coefficients {ci} are variational. The configuration-interaction
(CI) method solves the eigenvalue problem in a CSF basis built
with a fixed preoptimized orbital set.

For any differential property that is estimated from the
difference between two calculated diagonal properties using
the variational approach, much care must be taken to obtain
a good balance between the two states. It becomes even
more difficult when the latter belong to systems with different
numbers of electrons. In such situations, the ATSP2K package
[35] is an efficient tool thanks to its flexibility. In particular, the
fully implemented limited population (LP) and multi-reference
(MR) [36,37] approaches for building the configuration
space offer systematic ways of including and monitoring
correlation. While the LP configuration space is built by
allowing single (S)-, double (D)-, triple (T)-, and possibly
higher excitations, from a single reference configuration state
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function, restricted by orbital occupation, the MR method
is usually limited to SD excitations from a larger set of
configuration states. The LP method has been successfully
used to calculate the isotope shifts in the oxygen electron
affinity [18,19]. Although both the LP and MR correlation
models have been explored, the present theoretical discussion
is limited to the multireference calculations.

C. The experimental electron affinity as a guideline

In our approach, the experimental electron affinity is used
as a guideline to set efficient pathways in the variational
configuration spaces. Our nonrelativistic approach targets
electron correlation. In this context, it is useful to get a
reference nonrelativistic eA value. Introducing the observed
average energy levels

E =
∑

J (2J + 1)EJ∑
J (2J + 1)

, (8)

for both S 3p4 3P and S− 3p5 2P o, the average experimental
electron affinity that would be measured if not resolving the
fine-structure thresholds, is estimated from

eAAV
exp = E(S 3P ) − E(S− 2P ◦)

= (E0 + 3E1 + 5E2)

9
− (2E1/2 + 4E3/2)

6
. (9)

This average energy can be rewritten in terms of some
deviation to the observed electron affinity eAexp = (E2 − E3/2)
(arrow C in Fig. 1)

eAAV
exp = eAexp + 3(E1 − E2) + (E0 − E2)

9
− (E1/2 − E3/2)

3
.

(10)

Using eAexp = 16 752.975 3(41) cm−1 reported in Sec. II B3
for 32S and the observed fine structures of S and S− [3],
the Sulfur average experimental electron affinity eAAV

exp =
16 787.55 cm−1 = 2.081 391 eV = 0.076 489 702 Eh is ob-
tained from Eq. (10).

When adopting a Breit-Pauli description [34,38] of atomic
structures, the total binding energy E(LSJ ) of a level is
expressed in first-order perturbation theory as

E(LSJ ) = ENR
LS + ENF

LS + EF
LSJ, (11)

that is, as the summation of the nonrelativistic total energy
(ENR), the non-fine-structure relativistic shift (ENF) and the
J -dependent fine-structure correction (EF). Since the fine
structures of both S 3p4 3P and S− 3p5 2P o are washed out
by the averaging process (10) to get eAAV

exp, a reference non-
relativistic electron-affinity eANR

ref is estimated by subtracting
the corresponding theoretical non-fine-structure contribution
�ENF = ENF(S) − ENF(S−), from the above experimental
average electron affinity

eANR
ref = eAAV

exp − �ENF. (12)

The non-fine-structure contribution calculated in the sin-
gle configuration Hartree-Fock approximation, �ENF

HF =
−5.362 51 10−4 Eh, produces a nonrelativistic electron-
affinity value of eANR

ref = 0.077 026 Eh. Note that the latter
value is in line with the estimation of the “nonrelativistic

experimental” electron-affinity (0.076 939 Eh) calculated from
the scalar contribution of de Oliveira et al. [10], who found an
excellent general agreement for electron affinities of first- and
second-row atoms.

D. The multireference approach

1. MR-MCHF calculations

In the multireference approach, one first defines a zeroth-
order set of CSF’s labeled MR

MR ≡ {	1(γ1LSπ ),	2(γ2LSπ ), . . . , 	m(γmLSπ )}, (13)

that includes the dominant interacting terms in the description
of a given atomic state. This zeroth-order set is then expanded
to capture major correlation effects. Useful expansions are
built by allowing all single and double excitations from a
multireference (MR-SD) set within a given orbital active
space. From a practical point of view, these expansions are
generated using LSGEN [39] that produces the desired list of
configurations, containing the complete set of CSF’s for a
given LSπ -total symmetry.

A good valence correlation MR-SD expansion for S− is
based on the multireference set

MR(S−) = {1, 2}10{3s, 3p}5{3, 4}2. (14)

The notation is inspired from the LP approach: the multiref-
erence set (14) is composed of all CSF’s having the required
symmetry (here 2P o), with ten electrons {1, 2}10 forced to
occupy the n = 1 and n = 2 shells (i.e., a 1s22s22p6 closed
core). In the MR space, the seven valence electrons should
describe the dominant configuration 3s23p5, but they are also
free to reorganize themselves in the n = 3 and n = 4 subshells
with only one occupation constraint: a minimum of five
electrons should be either 3s, or 3p, as explicitly stated through
the notation {3s, 3p}5. But even with a closed core {1, 2}10,
the computational effort is gigantic. Introducing the 	nmaxlmax

notation for the orbital active set, the size of the expansion
generated with six correlation layers (MR-SD	9k
) reaches
1 895 416 CSF’s. Moreover, such a strategy is not efficient, a
large number of components being negligible. An interesting
approach uses the “multireference interacting” (MR-I) CSF-
space defined as the union of the original set of CSF’s that
belong to the MR, and all CSF’s that directly interact with at
least one component of the MR, that is,

	i(γi LS) ∈ MR-I

⇔ ∃	k ∈ MR with 〈	i(γi LS)|H |	k(γk LS)〉 �= 0,

(15)

for any one-electron radial function basis set {Pnl(r)}. This
selection constraint depends on the coupling ordering of the
subshells. The conventional coupling hierarchy is a sequential
one corresponding to the coupling of each subshell angu-
lar momenta to the previous intermediate coupling angular
momenta, from left to right [40], for the natural subshell
ordering (n and l increasing). But this is not always the most
efficient representation. It is indeed common knowledge that
the most strongly interacting momenta should be coupled first
to get the best physical picture of the resulting levels pattern.
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On this basis, we use the reverse order of orbitals, coupling
sequentially the subshells by decreasing n and l.

Like the MR-SD space, the MR-I configuration set includes
at most double excitations with respect to the reference, but
the building rule (15) reduces drastically the size of the
expansions in comparison with the MR-SD sets. For example,
the list of 1 895 416 CSF’s discussed previously is reduced
to 525 111 CSF’s in the MR-I	9k
 model. The corresponding
configuration reduction is much smaller (18 576 → 13 973)
since this reduction only arises from the intermediate coupling
constraints associated with (15) and not from additional orbital
occupation number selection rules. From a practical point of
view, the MR-SD expansions are reduced according to the
building rule (15) to produce the desired MR-I lists using the
LSREDUCE code integrated in the ATSP2K package [35].

Similar to (14), we explore the MR set

MR1(S) = {1, 2}10{3s, 3p}4{3}2, (16)

for S. To discuss the delicate balance between the negative
ion and the neutral atom, we introduce for the latter a second
model, more correlated, based on the following MR set

MR2(S) = {1, 2}10{3s, 3p}4{3}1{3, 4}1. (17)

The orbital active sets are extended up to n = 9, limited to
l � 7 (i.e., k orbitals). We use multireference sets with at most
two excitations in the 3d subshell. Allowing more than one
3d electron is indeed necessary for all important intermediate
couplings to appear in the set of CSF’s satisfying (15).

The MR set (14) contains 157 CSF’s. Some sublists of
this complete configuration space are selected according to
their impact on the energy, mass polarization, and density at
the nucleus and used to check the consistency of our results.
By investigating the impact of a seventh correlation layer
(10k) using multireference subsets for S−, this extra layer
is estimated to contribute less than 5 × 10−5 Eh to both eA and
h̄2

me
�SSMS.
With the valence correlation expansions based on MR’s

(14), (16), and (17), we choose to vary all orbitals in the MCHF
approach, the frozen-core approximation being considered a
priori artificial. The mean radii of the spectroscopic orbitals
of S and S− are reported in Table I and compared with
the HF ones. As expected, we observe an overall stability
of the n = 2 orbitals and a larger variation for the (n = 3)
valence shells, while the 1s orbital remains very similar in all
calculations. Even if the (1s22s22p6) core is kept closed in
the MCHF expansions, some correlation orbitals extend into
the inner region of the atom to improve the description of
the total wave function. In the sulfur MR2-I	9k
 calculation,
for example, the MCHF optimization involves 39 numerical
correlation orbitals from which the resulting 6p, 7d, 8s, and
9f functions can be qualified as “inner” orbitals by looking
at their mean radius (〈r〉nl < a0). Although they still describe
the (inner region) valence correlation, they lie in the correct
region for estimating core-valence correlation effects through
configuration-interaction, as presented in the next section.

TABLE I. Mean radius of spectroscopic orbitals in atomic units
of length (units of a0) obtained for S− and S with MR1 and MR2
including six correlation layers (9k).

S 3p4 3P S− 3p5 2P o

nl HF MR1-I 	9k
 MR2-I 	9k
 HF MR-I 	9k

1s 0.097 15 0.097 15 0.097 15 0.097 15 0.097 15
2s 0.475 77 0.472 45 0.472 48 0.475 85 0.472 76
2p 0.441 04 0.440 61 0.440 61 0.441 06 0.440 37
3s 1.720 72 1.714 39 1.610 71 1.776 72 1.778 63
3p 2.060 72 2.029 42 1.845 93 2.323 69 2.253 55

2. Open-core configuration-interaction calculations

We add to the valence configuration lists, core-valence
mono- and multireference SD expansions (MR-CV-SD)
created by allowing at most one hole in the core but keeping
the 1s shell closed and inactive. Core-valence excitations
generate much larger lists of configurations than equivalent
valence expansions.

For keeping the size of the expansions tractable we use
the following procedure. First we sort the configurations of
the original MR-I valence eigenvectors into decreasing order
by their configuration weights. The latter is defined as the
weighted contribution of the CSF’s belonging to it

w =
√ ∑

	i∈{config}
c2
i , (18)

and are reported in Table II, for S− and for the two
valence models (MR1 and MR2) used for S. Following this
hierarchy, we define p reference subsets MRp containing the
first p configurations in the sorted list. Second, we build
the corresponding MRp-CV-SD spaces and keep only the
CSF’s interacting directly with the complete MR. We denote
unambiguously the open-core CI calculations—all performed
with six correlation layers—MR-I/CVp.

Table III reports the electron affinity theoretical values
calculated with the MR (S−) and MR2 (S) models. The
largest configuration-interaction calculation remains feasible
for sulfur (MR2-I/CV15), but the computational limits are
definitely exceeded in the negative ion (MR-I/CV31). For
S− indeed, a larger calculation than MR-I/CV14 requires
truncating the expansions [41]. To construct the MR-I/CVp

spaces for p = 20 and p = 31, we first omit the CSF’s with a
|ci | < 1.10−6 in the preceding expansions (p = 14 and 20),
with an impact smaller than 10−6 Eh on both energy and
h̄2

me
�SSMS. These lists are then completed by adding the CV

expansions of configurations 15–20, and 21–31, respectively.
Table III displays smooth convergence trends along its

diagonal, but the largest expansions used for both S and
S− definitely underestimate the nonrelativistic experimental
electron affinity (eANR

ref = 0.077026 Eh), indicating that the
neutral system is too correlated with respect to the negative ion.
We do not report the corresponding table for MR(S−)/MR1(S)
models (having 4 columns instead of 15) that displays a good
convergence toward eANR

ref .
For a given correlation model, the �SSMS parameter is

calculated with the wave function expansions that bring the
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TABLE II. Weights (w) of the configurations composing MR1, MR2 of S and the MR of S− in the corresponding MR-I	9k
 wave functions.
# denotes the configuration index.

S 3p4 3P S− 3p5 2P o

MR1-I 	9k
 MR2-I 	9k
 MR-I 	9k

Config. w Config. w # Config. w # Config. w

3s23p4 0.9567 3s23p4 0.9151 1 3s23p5 0.9382 16 3p53d2 0.0296
3s3p43d 0.1605 3s23p34p 0.2652 2 3s23p33d2 0.1773 17 3s23p33d4s 0.0292

3s23p23d2 0.1568 3s3p43d 0.1573 3 3s23p34p2 0.1249 18 3s23p34s2 0.0291
3p43d2 0.0498 3s23p23d2 0.1508 4 3s3p53d 0.1045 19 3p53d4d 0.0288

3s3p44s 0.1256 5 3s23p44p 0.1030 20 3s23p34s4d 0.0287
3s3p33d4f 0.0655 6 3s3p44s4p 0.0748 21 3p64p 0.0252
3s3p33d4p 0.0632 7 3s23p33d4d 0.0664 22 3p54p2 0.0239
3s23p34f 0.0531 8 3s3p43d4f 0.0647 23 3p54d2 0.0203

3p43d2 0.0492 9 3s3p43d4p 0.0626 24 3p54s2 0.0200
3p54p 0.0310 10 3s3p44p4d 0.0599 25 3s23p34p4f 0.0173

3s23p23d4d 0.0247 11 3s23p44f 0.0537 26 3p54f 2 0.0124
3p43d4s 0.0142 12 3s3p54d 0.0447 27 3s3p54s 0.0074
3s3p44d 0.0127 13 3s23p34d2 0.0439 28 3p53d4s 0.0021
3p43d4d 0.0085 14 3s23p34f 2 0.0401 29 3p54s4d 0.0020

3s23p23d4s 0.0030 15 3s3p44d4f 0.0322 30 3p54p4f 0.0018
31 3s3p44s4f 0.0010

theoretical electron affinity value as close as possible to the
eANR

ref reference value. This approach is supported by the strong
correlation observed between the total energy and the SSMS

parameter, as discussed in the following. When adding config-
urations, one by one, in the MRp of neutral S, we look for the
corresponding model in S− that gives the best energy balance.
These values are underlined in Table III and only appear in the
first three columns corresponding to MR2-I/CVp (p = 1 − 3),
all larger p � 4 values underestimating the electron affinity,
even for the largest MR-I/CV31 S− calculation. The three
associated S− correlation models correspond to MR-I/CV1
(mono-reference), MR-I/CV6 and MR-I/CV31, respectively.
For the approach based on the less correlated model for S
(MR1), we select, using the same criteria, the calculations

MR-I/CV4, MR-I/CV6, MR-I/CV12, and MR-I/CV31 of S−
for the four MR1-I/CVp (p = 1 − 4) of S, respectively.

3. Valence and core-valence results

Table IV reports in two blocks the electron affinities and
SSMS differences for the valence correlation models and for
their open-core extensions, using the sulfur MR1 and MR2
models, respectively. In the upper half of Table IV, we compare
the results of the valence correlation calculations using the
MR1-I	9k
 model (see Sec. III D1), with the values obtained
from the four CI calculations based on the core-excited
correlation models. In the MR(p, p′) adopted notation, p refers
to the model used for S while p′ refers to S−. According to our
approach, the theoretical electron affinity values are forced to

TABLE III. Electron affinity (eA, in units of Eh) versus the number of configurations (p, p′) in MR2p for S and MRp′ for S−. The absolute
energy and total number of CSF’s (NCSF) of each model MR-I/CVp is given in the first lines and columns of the table. The configurations are
taken in the order of increasing weight (see Table II). Underlined are the values of eA in reasonable agreement with eANR

ref = 0.077026 Eh.

p′\p S 1 2 3 4 · · · 15

NCSF 235 971 355 354 537 163 681 582 · · · 2 407 805
S− E(in Eh) −397.718 278 −397.722 125 −397.723 707 −397.724 631 · · · −397.726 165

1 541 780 −397.794 996 0.076 718 0.072 871 0.071 289 0.070 366 · · · 0.068 832
3 864 954 −397.797 229 0.078 951 0.075 104 0.073 522 0.072 598 · · · 0.071 064
4 982 233 −397.797 780 0.079 501 0.075 654 0.074 073 0.073 149 · · · 0.071 615
5 1 088 076 −397.798 944 0.080 666 0.076 819 0.075 237 0.074 313 · · · 0.072 779
6 1 210 344 −397.799 173 0.080 895 0.077 048 0.075 466 0.074 542 · · · 0.073 008
10 2 623 506 −397.799 929 0.081 651 0.077 804 0.076 222 0.075 298 · · · 0.073 764
12 2 854 430 −397.800 229 0.081 951 0.078 104 0.076 522 0.075 598 · · · 0.074 064
14 3 175 092 −397.800 372 0.082 094 0.078 247 0.076 665 0.075 741 · · · 0.074 207
20a 3 839 474 −397.800 532 0.082 254 0.078 407 0.076 825 0.075 901 · · · 0.074 367
31a 4 339 910 −397.800 667 0.082 389 0.078 542 0.076 960 0.076 037 · · · 0.074 504

aThese lists are truncated (see text). The actual CSF numbers are 2 089 778 and 2 058 776 for p = 20 and 31, respectively.
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TABLE IV. Number of CSF’s (NCSF), total energy (E, in units of Eh) and SSMS parameters (in units of a−2
0 ) for S and S−. The last two

columns report the corresponding electron affinity (eA, in units of Eh) and �SSMS (in units of a−2
0 ). The two sets of results correspond to

the zeroth-order multireferences MR1 and MR2 used for S (see text). For each set, the results from the valence models (MR-I	9k
) and the
open-core CI calculations [MR(p, p′)] are reported.

S 3p4 3P S− 3p5 2P o �(S − S−)

Model NCSF E SSMS NCSF E SSMS
eA �SSMS

MR1-I	9k
 43 276 −397.673 394 −67.017 49 525 111 −397.751 017 −67.106 00 0.077 62 0.088 5
MR1(1,4) 66 280 −397.720 746 −66.647 70 982 233 −397.797 780 −66.731 63 0.077 03 0.083 9
MR1(2,6) 181 851 −397.722 224 −66.615 36 1 210 344 −397.799 173 −66.711 28 0.076 95 0.095 9
MR1(3,12) 268 647 −397.723 184 −66.603 45 2 854 430 −397.800 229 −66.695 88 0.077 05 0.092 4
MR1(4,31) 408 152 −397.723 563 −66.591 50 4 339 910 −397.800 667 −66.693 35 0.077 10 0.101 8

MR2-I	9k
 209 553 −397.674 938 −67.018 97 525 111 −397.751 017 −67.106 00 0.076 08 0.087 0
MR2(1,1) 235 971 −397.718 278 −66.689 18 541 780 −397.794 996 −66.785 70 0.076 72 0.096 5
MR2(2,6) 355 354 −397.722 125 −66.652 12 1 210 344 −397.799 173 −66.711 28 0.077 05 0.059 2
MR2(3,31) 537 163 −397.723 707 −66.611 43 4 339 910 −397.800 667 −66.693 35 0.076 96 0.081 9
MR2(4,31) 681 582 −397.724 631 −66.597 15 0.076 04 0.096 2
MR2(15,31) 2 407 805 −397.726 165 −66.583 03 0.074 50 0.110 3

NR expt.a 0.077 03

aNonrelativistic electron affinity eANR
ref defined in Sec. III C.

align with the nonrelativistic experimental value through the
(p, p′) selection, but there is no such constraint on �SSMS.
Opening the core through the added CV expansion affects
the �SSMS by up to 12%. Since the MR1(4,31) calculation
corresponds to the complete models, the extracted �SSMS is a
priori reliable. We observed that the results are well aligned,
for each system, when plotted in a total energy versus SSMS

diagram. Furthermore, the relation is similar for S and S−. A
close analysis of the convergence patterns of the MR1(p, p′)
results leads to a 10% uncertainty estimation on the calculated
�SSMS.

The second half of Table IV displays the corresponding
results using MR2 for sulfur. A good consistency with the
MR1 �SSMS values is found for the valence and first open-
core [MR2(1,1)] models, but the two larger core-excited
CI calculations MR2(2,6) and MR2(3,31) bring unfortunate
variations. The effect of the truncation at p = 3 of the
sulfur MR2-I/CV15 model is estimated by the MR2(4,31)
configuration-interaction calculation that slightly underesti-
mates the NR electron affinity. One observes that this extension
affects the �SSMS value by more than 15%. Furthermore, the
complete calculation MR2(15,31) is unreliable, given its large
underestimation of eANR

ref .
From all these observations, we reject the open-core CI

models based on MR2. Indeed, the sulfur model includes much
more correlation than the one built for S−. If one goes from
a complete model [MR2(15,31)] that strongly underestimates
eA to a balanced model that adjusts the electron affinity, it
must be through a too-large truncation of the S expansions.
The problem of underestimating the S− correlation energy
with respect to the neutral atom’s one is then transferred onto
another problem, which is the lack of convergence for the latter
system (S).

The breakdown of the proposed open-core procedure using
the MR2 model for S is probably due to the different nature
of the total wave functions obtained for S− and S. The MR1
approach produces more comparable wave functions for sulfur

and its negative ion, respecting the needed balance. Signs for
a large difference between the MR1 and MR2 sulfur wave
function appear in the analysis of their representation, through
the comparison of their respective spectroscopic orbital mean
radii (see Table I) and of their configuration weights (see
Table II).

E. Theoretical fine structures

The fine-structure splittings are estimated by performing
Breit-Pauli configuration-interaction calculations, including
the orbit-orbit interaction. The results are presented in
Table V. At the Hartree-Fock level of approximation, a large
discrepancy between theory and observation (�30 cm−1)
is found for 2P o

1/2−3/2 of S− and 3P1−2 of S. Exploring
various models for building the zeroth-order nonrelativistic
wave function, we observe that the inclusion of term-mixing
due to LS-breakdown does not improve the fine-structure
splittings. Valence correlation is definitely insufficient to get a
satisfactory agreement, as reflected by the splittings reported in
[42]. A “simple” correlation model—denoted SD in Table V—
based on single and double excitations up to 6g from a single
configuration and allowing at most one hole in the 2p subshell
(i.e., keeping 1s and 2s closed), improves significantly the
agreement between the theoretical and observed fine-structure
splitting values. Unfortunately, this agreement is destroyed

TABLE V. Comparison of Breit-Pauli fine-structure splittings
(cm−1) with observation.

S− HF SD MR-I/CV31 Observed [3]
2P o

1/2−3/2 −453.03 −482.07 −471.16 −483.54

S HF SD MR1-I/CV4 Observed [3]
3P1−2 −366.91 −394.82 −395.22 −396.06
3P0−1 −181.89 −174.82 −169.93 −177.54
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TABLE VI. Experimental and theoretical electron affinity, total isotope shift (IS) and residual isotope
shifts (RIS). For the ab initio calculations, the specific mass shift (SMS), the total mass shift (MS) and the
field shift (FS) contributions are reported separately. All values in 10−2 cm−1.

eA IS RIS

Observation
Expt. 16 752 98 +0.23(70) −1.46(70)
NR exp.a 16 905 24

Theoryb

SMS MS FS
Valencec 16 867(169) 10+2 −1.94(2) −0.25(2) 0.036(6) −0.22(3) −1.91(3)
+ core-valenced 16 922(21) 10+2 −2.25(23) −0.56(23) 0.038(7) −0.53(24) −2.22(24)

aNonrelativistic electron affinity eANR
ref defined in Sec. III C.

bAdopting the experimental NMS.
cAveraging the MR1-I	9k
 and MR2-I	9k
 results (see text).
dUsing the MR1(4,31) results of Table IV.

when progressively extending the reference space to our
more elaborate correlation model, illustrating the difficulty
of getting reliable ab initio fine-structure splittings.

IV. ISOTOPE SHIFT IN THE ELECTRON AFFINITY:
COMPARISON OBSERVATION-THEORY

The observed and theoretical isotope shifts in the sulfur
electron affinity, both determined in the present work, are
compared in Table VI. The observed isotope shift (IS) on the
electron affinity of sulfur is found to be more probably positive,
eA(34S) − eA(32S) = +0.0023(70) cm−1, but the uncertainty
implies that it may be either “normal” [eA(34S) > eA(32S)]
or “anomalous” [eA(34S) < eA(32S)]. The normal mass shift
(NMS) is easy to estimate from the first term of Eq. (3),
NMS = 0.016898 cm−1, using the observed electron affinity.
The experimental value of the residual isotope shift (RIS)
is obtained by subtracting the NMS contribution to the total
isotope shift [i.e., RIS = −0.0146(70) cm−1].

As far as theory is concerned, two sets of results are
reported, omitting or including the core-valence excitations,
as described in Sec. III D3. For each set, the electron affinity,
the specific mass shift (SMS), the total mass shift (MS =
NMS + SMS), the field shift (FS), the total isotope shift (IS =
MS + FS), and the residual isotope shift (RIS = IS − NMS)
are reported. The electron affinities are compared with the
experimental nonrelativistic electron affinity (eANR

ref ) estimated
as explained in Sec. III C, and reported in the same table. The
field shift is estimated from Eq. (6) by calculating the change in
the electronic densities at the nucleus �ρ(0)NR with the
DENSITY program [30]. The error bars of the FS values arise
from the uncertainty in the root mean squares of the nuclear
charge distributions, converted in a 17% variation of δ〈r2〉AA′

.
For the valence calculations, convergence with respect to

the number of correlation layers is achieved in both MR1
and MR2 correlation models. The results reported in the
“valence” line are obtained by averaging the MR1-I	9k

and MR2-I	9k
 electron affinities and �SSMS parameters
reported in Table IV. Their uncertainty is estimated as half the

difference between the two averaged values. The theoretical
residual isotope shift [RIS = −0.0191(3) cm−1] compares
satisfactorily with the experimental residual isotope shift value
(IS − NMS) = −0.0146(70) cm−1.

Opening the core is a very difficult task in the MCHF
procedure. The presented open-core CI results are limited
to the MR1-based models, due to the breakdown of MR2.
The 0.12% and 10% error bars reported on the electron
affinity and the SMS values, respectively, are estimated from
the convergence of the MR1(p, p′) sequence of results (see
Table IV). The resulting calculated residual isotope shift of
−0.0222(24) cm−1, remains compatible with the experimental
RIS and its error bars, but the theory-observation agreement is
tenuous. Core excitations affect the SMS contribution by 15%,
increasing the total isotope shift by a large factor (2.4). The
field shift constitutes a small fraction (∼2%) of the residual
shift (SMS + FS) but constitutes an important contribution to
the total isotope shift (IS).

Both theory and experiment agree with a strong cancellation
between the specific mass shift (SMS) and the normal mass
shift (NMS) contributions. Although the normal or anomalous
character of the isotope shift in the sulfur electron affinity
cannot be strictly confirmed from the present work, the ab
initio calculations are definitely in favor of an anomalous IS.
One should keep in mind, however, that the theoretical error
bars are estimated from an objective analysis of the correlation
models but do not take into account core-correlation and
relativistic effects that are systematically neglected.
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