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The dynamic dipole polarizabilities for Li atoms and Be+ ions in the 2 2S and 2 2P states are calculated
using the variational method with a Hylleraas basis. The present polarizabilities represent the definitive values
in the nonrelativistic limit. Corrections due to relativistic effects are also estimated. Analytic representations of
the polarizabilities for frequency ranges encompassing the n = 3 excitations are presented. The recommended
polarizabilities for 7Li and 9Be+ are 164.11 ± 0.03 a3

0 and 24.489 ± 0.004 a3
0 , respectively.
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I. INTRODUCTION

The advent of cold-atom physics has lead to increased
importance being given to the precise determination of atomic
polarizabilities and related quantities. One very important
source of systematic error in the new generation of atomic
frequency standards is the blackbody radiation (BBR) shift
[1–3]. The differential Stark shifts caused by the ambient
electromagnetic field leads to a temperature-dependent shift
in the transition frequency of the two states involved in the
clock transition. The dynamic polarizability is also useful in the
determination of the magic wavelength in optical lattices [4–7].
Another area where polarization phenomena is important is in
the determination of global potential surfaces for diatomic
molecules [8].

When consideration is given to all the atoms and ions
commonly used in cold-atom physics, the Li atom and the Be+
ion have the advantage that they have only three electrons. This
makes them accessible to calculations using correlated basis
sets with the consequence that many properties of these sys-
tems can be computed to a high degree of precision. The results
of these first-principles calculations can serve as atomic-based
standards for quantities that are not amenable to precision
measurement. For example, cold-atom interferometry has been
used to measure the ground-state polarizabilities of Li and Na
atoms [9,10]. However, the polarizability ratio αd (X)/αd (Li)
can be measured to a higher degree of precision than individual
polarizabilities [11]. Thus, measurements of this ratio, in
conjunction with a high-precision ab initio calculation, could
lead to a new level of accuracy in polarizability measurements
for the atomic species most commonly used in cold-atom
physics.

Calculations and measurements of Stark shifts are particu-
larly important in atomic-clock research since the BBR shift
is predominantly determined by the Stark shift of the two
levels involved in the clock transition. The best experimental
measurements of the Stark shift have been carried out for
the alkali-metal atoms, and accuracies better than 0.1% have
been reported [12,13]. Experimental work at this level of
accuracy relies on a very precise determination of the electric

field strength in the interaction region [13–15]. High-precision
Hylleraas calculations of the type presented herein provide
an invaluable test of the experimental reliability since they
provide an independent means for the calibration of electric
fields [16].

The dynamic Stark shift in oscillating electromagnetic
fields is also of interest. The so-called magic wavelength (i.e.,
the precise wavelength at which the Stark shifts for upper and
lower levels of the clock transition are the same) is an important
parameter for optical lattices. The present calculation is used
to estimate the magic wavelength for the Li 2 2S → 2 2P transi-
tion. The present calculations of the ac Stark shift potentially
provides an atomic-based standard of electromagnetic (EM)
field intensity for finite-frequency radiation.

There have been many calculations of the static polarizabil-
ities of the ground and excited states of Li atoms and Be+ ions
[17–23]. The most precise calculations on Li and Be+ are the
Hylleraas calculations by Tang and collaborators [17,23]. The
Hylleraas calculations were nonrelativistic and also included
finite-mass effects for Li. Large-scale calculations using fully
correlated Hylleraas basis sets can attain a degree of precision
not possible for calculations based on orbital basis sets
[19,24,25]. There have been many calculations of the dynamic
polarizability for Li [20,26–33], but fewer for Be+ [28,32].
The present calculation is by far the most precise calculation
of the dynamic polarizability that is based upon a solution
of the nonrelativistic Schrödinger equation. And the present
dynamic polarizabilities are obtained at real frequencies,
which is different from the work of Derevianko et al. [27]
who calculated the electric-dipole polarizabilities at imaginary
frequencies. One particularly noteworthy treatment is the
relativistic single-double all-order many-body perturbation-
theory calculation (MBPT-SD) by Safronova et al. [33]. This
calculation is fully relativistic and treats correlation effects to
a high level of accuracy, although it does not achieve the same
level of precision as the present Hylleraas calculation.

The present work computes the dynamic dipole polariz-
abilities of the Li atom and the Be+ ion in the 2 2S and 2 2P

levels using a large variational calculation with a Hylleraas
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basis set. This methodology allows for the determination of
the computational uncertainty related to the convergence of
the basis set. Analytic representations of the dynamic polar-
izabilities are made so they can subsequently be computed at
any frequency. Finally, the difference between the calculated
and experimental binding energies is used to estimate the
size of the relativistic correction to the polarizability. The
final polarizabilities should be regarded as the recommended
polarizabilities for comparison with experiment. All quantities
given in this work are reported in atomic units except where
indicated otherwise.

II. STRUCTURE CALCULATIONS

A. Hamiltonian and Hylleraas coordinates

The Li atom and Be+ ion are four-body Coulomb systems.
After separating the center-of-mass coordinates, the nonrela-
tivistic Hamiltonian can be written in the form [36]

H0 = −
3∑

i=1

1

2µ
∇2

i − 1

m0

3∑
i>j�1

∇i · ∇j

−
3∑

i=1

Z

ri

+
3∑

i>j�1

1

rij

, (1)

where rij = |ri − rj | is the distance between electrons i and
j , µ = m0me/(m0 + me) is the reduced mass between the
electron and the nucleus, and Z is the nuclear charge. In our
calculation, the wave functions are expanded in terms of the
explicitly correlated basis set in Hylleraas coordinates:

φ(r1,r2,r3) = r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3

×YLML

(�1�2)�12,�3
(r̂1,r̂2,r̂3)χ (1,2,3), (2)

where YLML

(�1�2)�12,�3
is the vector-coupled product of spherical

harmonics to form an eigenstate of total angular momentum L

and component ML:

YLML

(�1�2)�12,�3
(r̂1,r̂2,r̂3)

=
∑
all mi

〈�1m1�2m2|�12m12〉〈�12m12�3m3|LML〉

×Y�1m1 (r̂1)Y�2m2 (r̂2)Y�3m3 (r̂3), (3)

and χ (1,2,3) is the three-electron spin- 1
2 wave function.

The variational wave function is a linear combination of
antisymmetrized basis functions φ. With some truncations
to avoid potential numerical linear dependence, all terms in
Eq. (2) are included such that

j1 + j2 + j3 + j12 + j23 + j31 � �, (4)

where � is an integer. The computational details in evaluating
the necessary matrix elements of the Hamiltonian may be
found in [25]. The nonlinear parameters α, β, and γ in
Eq. (2) are optimized using Newton’s method.

The convergence for the energies and other expectation
values is studied by increasing � progressively. The basis sets
are essentially the same as two earlier Hylleraas calculations
of the static polarizabilities [17,23]. The maximum � used in
the present calculations is 12. The uncertainty in the final value

FIG. 1. (Color online) Low-lying energy levels of the Li atom.
The energy-level diagram for Be+ is similar.

of any quantity is usually estimated to be equal to the size of
the extrapolation from the largest explicit calculation.

Figure 1 is a schematic diagram showing the nonrelativistic
energy levels of the most important states of the Li atom.
The energy-level diagram for the low-lying states of Be+ is
similar.

The energies of the ground states for ∞Li and 7Li are
−7.478 060 323 91(5) and −7.477 451 930 65(5) a.u., respec-
tively. The respective energies for the ∞Be+ and 9Be+ ground
states are −14.324 763 176 9(3) and −14.323 863 494 2(3) a.u.
Table I gives the binding energies of the Li-atom and Be+-ion
systems with respect to the two-electron Li+ and Be2+ cores.
The Hylleraas basis was optimized to compute the 2 2S- and
2 2P -state polarizabilities, so some of the n = 4 state energies
have significant deviations from the experimental n = 4 state
energies. The states with significant energy differences can
be regarded as pseudostates. The uncertainties listed in Table I
represent the uncertainties in energy with respect to an infinite-
basis calculation. The actual computational uncertainty is
very small and there is no computational error in any of the
calculated digits listed in Table I.

With one exception, all the finite-mass binding energies
are less tightly bound than experiment. The differences from
experiment are most likely due to relativistic effects. The
exception where experiment is less tightly bound than the
finite-mass calculation is the 4 2F state of Li. This exception
was not investigated since the properties of this state do not
enter into any of the polarizability calculations.

B. Polarizability definitions

The dynamic polarizability provides a measure of the
reaction of an atom to an external electromagnetic field. The
dynamic polarizability at real frequencies can be expressed
in terms of a sum over all intermediate states, including the
continuum. The dynamic dipole polarizability is expressed in
terms of the dynamic scalar and tensor dipole polarizabilities,
α1(ω) and αT

1 (ω), which can be expressed in terms of the
reduced matrix elements of the dipole transition operator:

α1(ω) =
∑
La

α1(La,ω), (5)
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TABLE I. Comparisons of the binding energies in atomic units
(a.u.) of Li and Be+ in their low-lying states. The experimental
valence binding energies are taken from the National Institute of
Standards database [34]. The J -weighted average is used for states
with L � 1. The ground-state energies for the ∞Li+ and ∞Be2+

ions are −7.279 913 412 669 305 9 and −13.655 566 238 423 586 7
a.u., respectively [35]. The ground-state energies for 7Li+ and 9Be2+

are −7.279 321 519 815 674 4 and −13.654 709 268 282 791 7 a.u.,
respectively [35]. Underlining is used to indicate digits that have not
converged with respect to basis-set enlargement.

Theory Experiment

State ∞Li 7Li 6,7Li

2 2S −0.198 146 911 24 −0.198 130 410 84 −0.198 142
2 2P −0.130 243 119 63 −0.130 236 238 76 −0.130 236
3 2S −0.074 183 813 50 −0.074 177 770 25 −0.074 182
3 2P −0.057 237 698 23 −0.057 234 245 77 −0.057 236
3 2D −0.055 610 129 74 −0.055 605 785 43 −0.055 606
4 2S −0.037 528 709 57 −0.037 524 450 73 −0.038 615
4 2P −0.031 390 736 13 −0.031 388 143 90 −0.031 975
4 2D −0.031 275 884 44 −0.031 273 439 38 −0.031 274
4 2F −0.031 253 555 31 −0.031 251 112 02 −0.031 243

∞Be+ 9Be+ 9Be+

2 2S −0.669 196 938 47 −0.669 154 225 99 −0.669 247
2 2P −0.523 767 053 52 −0.523 750 653 65 −0.523 769
3 2S −0.267 205 491 76 −0.267 188 673 34 −0.267 233
3 2P −0.229 567 886 15 −0.229 558 220 05 −0.229 582
3 2D −0.222 487 819 72 −0.222 474 290 85 −0.222 478
4 2S −0.136 294 878 43 −0.136 280 823 70 −0.143 152
4 2P −0.122 229 244 51 −0.122 219 998 23 −0.128 134
4 2D −0.125 126 888 79 −0.125 119 269 08 −0.125 124
4 2F −0.125 015 467 11 −0.125 007 857 69 −0.125 008

αT
1 (ω) =

∑
La

W (L,La)α1(La,ω), (6)

where

α1(La,ω) = 8π

9(2L + 1)

∑
n


E0n|〈n0L‖T1‖nLa〉|2

E2

0n − ω2
, (7)

with T1 = ∑3
i=0 qiRiY10(R̂i) being the dipole transition oper-

ator, and

W (L,La) = (−1)L+La

√
30(2L + 1)L(2L − 1)

(2L + 3)(L + 1)

×
{

1 1 2
L L La

}
. (8)

In the above, |n0L〉 is the initial state with principal quantum
number n0, angular momentum quantum number L, and
energy E0. The nth intermediate eigenfunction |nLa〉, with
principal quantum number n and angular momentum quantum
number La , has energy En. The transition energy is 
E0n =
En − E0. The qi are the charges of the respective particles and
the Ri are defined in Ref. [36]. In particular, for the case of
L = 0,

α1(ω) = α1(P ,ω), (9)

αT
1 (ω) = 0; (10)

FIG. 2. (Color online) Dynamic dipole polarizability α1(ω) of a
ground-state Li atom. The singularities in the polarizability at the
2 2S → n 2P frequencies are marked.

and for L = 1,

α1(ω) = α1(S,ω) + α1(P ,ω) + α1(D,ω), (11)

αT
1 (ω)=−α1(S,ω) + 1

2α1(P ,ω) − 1

10
α1(D,ω). (12)

In Eqs. (11) and (12), α1(P ,ω) is the contribution from
the even-parity configuration (pp′)P . The scalar and tensor
polarizabilities can be easily related to the polarizabilities of
the magnetic sublevels, α1,M (ω):

α1,0(ω) = α1(ω) − 2αT
1 (ω),

(13)
α1,±1(ω) = α1(ω) + αT

1 (ω).

III. DYNAMIC POLARIZABILITY FOR ∞Li ATOMS
AND ∞Be+ IONS

A. Ground-state dynamic polarizabilities

Figure 2 shows the dynamic dipole polarizability of the Li
ground state as a function of photon energy. The chief errors
in the dynamic polarizability are related to the convergence
of the n 2P excited-state energies. The largest calculation
used a basis with dimensions (Ns,Np) = (6412,5761). The
difference between the α1(ω) and polarizability computed with
a basis (Ns,Np) = (4172,3543) would be barely discernible in
Fig. 2. The convergence of α1(ω) is best at photon energies far
from the discrete excitation energies of the n 2P excitations.
The polarizability is very susceptible to small changes in the
physical energies at photon energies close to the n 2P excitation
energies.

The uncertainties in the dynamic dipole polarizabilities of
the Li ground state as well as the polarizabilities themselves
are listed in Table II. All of the values listed are accurate
to about ±1 in the fifth digit for ω � 0.113 88 a.u. Some
of the alternate calculations of the α1(ω) polarizabilities [20,
26,28,29,33] are listed in Table II. Dynamic polarizabilities
from some less accurate calculations [30–32] have not been
tabulated.

One feature of Table II is the excellent agreement with the
MBPT-SD calculation of Safronova et al. [33]. The MBPT-SD
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TABLE II. The dynamic dipole polarizabilities α1(ω) (in a.u.) for the Li ground state. The results of the fourth column include
relativistic corrections. The numbers in parentheses for the second and third columns are the uncertainties in the last digits arising from
incomplete convergence of the basis set. The uncertainties in the recommended (Rec.) values reflect additional uncertainties related to the
relativistic correction.

Hylleraas TDGI CI-Hylleraas Model
ω ∞Li 7Li Rec. 7Li MBPT-SD [33] [26,28] [29] Potential [20]

0.000 00 164.112(1) 164.161(1) 164.11(3) 163.6 164.1 164.14
0.005 00 164.996(1) 165.045(1) 165.00(3) 164.5 165.0 165.03
0.010 00 167.707(1) 167.758(1) 167.71(3) 167.2 167.7 167.74
0.020 00 179.517(1) 179.574(1) 179.52(3) 178.9 179.5 179.55
0.029 31 201.242(2) 201.313(1) 201.24(3) 201.0(7)
0.030 00 203.438(1) 203.512(1) 203.44(3) 202.6 203.4 203.47
0.034 20 219.221(1) 219.307(1) 219.22(4) 219.0(8)
0.040 00 250.265(1) 250.376(1) 250.26(4) 248.8 250.3 250.29
0.046 24 304.278(1) 304.441(1) 304.26(5) 304.0(8)
0.050 00 356.077(1) 356.300(1) 356.05(6) 355.2 356.1 356.60
0.056 99 550.259(1) 550.790(1) 550.18(9) 549.7(1.1)
0.060 00 741.165(2) 742.126(1) 741.00(12) 729.2 740.73
0.065 07 1984.577(1) 1991.488(1) 1983.11(31) 1983(3)
0.070 00 −2581.603(2) −2569.994(2) −2584.54(40) −2895.3
0.075 92 −645.478(2) −644.749(1) −645.70(10) −645.9(1.3)
0.080 00 −415.067(1) −414.763(1) −415.17(7) −427.1
0.090 00 −211.518(2) −211.439(1) −211.55(3) −216.5
0.091 10 −199.941(1) −199.868(1) −199.97(3) −200.1(0.8)
0.100 00 −135.872(2) −135.838(1) −135.89(3) −0.819
0.113 88 −86.266(1) −86.249(1) −86.27(2) −86.4(0.8)
0.151 83 −38.210(9) −38.204(9) −38.22(1) −38.4(1.1)
0.160 00 −31.08(5) −31.06(5) −31.08(6)

calculation and the present Hylleraas calculation are in perfect
agreement when the MBPT-SD theoretical uncertainty is
taken into consideration. While the MBPT-SD calculation
is fully relativistic, its treatment of electron correlation
is less exact than the present calculation. The MBPT-SD
calculation also gives no consideration of finite-mass effects.
Relativistic effects would tend to decrease α1(ω) at low ω,
and the MBPT-SD calculation gives slightly smaller α1(ω) at
low ω.

The older CI-Hylleraas calculation of values of Pipin
and Bishop [29] compares excellently with the present,
more modern, calculation. All digits in α1(ω) from the
CI-Hylleraas calculation are in perfect agreement with the
present Hylleraas calculation. The model potential polariz-
abilities of Cohen and Themelis [20] are also very close to the
present dynamic polarizability. The Cohen-Themelis potential
was constructed using a Rydberg-Klein-Rees (RKR) inversion
method. The time-dependent gauge-invariant (TDGI) polariz-
abilities of Mérawa et al. [26,28] are only accurate to 0.5%
or larger. The moderate accuracy of TDGI calculations has
also been noted in calculations of the static polarizabilities
[17].

The static polarizabilities for Be+ in the infinite-mass
approximation have been presented recently [23]. The present
calculation represents an extension of this earlier calculation
since finite-mass effects are now included. The dynamic
dipole polarizabilities listed in Table III includes transition
frequencies that extend well into the ultraviolet region. The
most accurate of the few alternate calculations should be the

CI-Hylleraas calculation of Muszynska et al. [32]. However,
it gives an α1(ω) that is about 1% smaller than the present
polarizability. Space limitations precluded tabulation of the
TDGI polarizability [28]. The TDGI polarizability was of only
moderate accuracy with errors of about 2% for ω � 0.6 a.u.
The uncertainty in the present polarizability is about 10−4 a.u.
for photon energies lower than 0.40 a.u., but has increased to
10−2 a.u. at ω = 0.50 a.u.

The dynamic polarizabilities for the Li and Be+ ground
states are depicted in Figs. 2 and 3. There are obvious
similarities in shapes of the two α1(ω) curves but with the
Li polarizability being about 5–10 times larger in magnitude
at comparable values of ω/ω2s→2p. One difference between
the two curves is that Be+ has zeros in α1(ω) at a discernible
frequency difference before the 3 2P and 42P excitations while
the α1(ω) negative-to-positive crossovers for Li occur much
closer to the transition frequencies.

B. Excited-state dynamic polarizabilities

The scalar and tensor dipole polarizabilities for the excited
2 2P state of the Li atom are listed in Table IV. As far
as we know, the present calculations are the only dynamic
polarizabilities presented for this state. The structure of the
dynamic polarizability is complicated since both downward
and upward transitions leads to singularities. This is seen
most clearly in Fig. 4, which plots the polarizabilities for
photon energies up to 0.10 a.u. The tensor polarizability is
generally small except in the vicinity of the 2 2S, 3 2S, and
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TABLE III. Dynamic dipole polarizabilities α1(ω) (in a.u.) for
the Be+ ground state. The results of the fourth column incorporate
relativistic effects. The numbers in parentheses are the uncertainties
in the last digits arising from incomplete convergence of the basis set.
The recommended (Rec.) polarizabilities in the fourth column reflect
uncertainties other than purely computational.

Hylleraas CI-Hylleraas
ω (a.u.) ∞Be+ 9Be+ Rec. 9Be+ [32]

0.00 24.496 6(1) 24.506 4(1) 24.489(4) 24.3
0.01 24.608 8(1) 24.618 7(1) 24.601(4) 24.4
0.02 24.951 8(1) 24.962 0(1) 24.943(4) 24.7
0.04 26.429 1(1) 26.440 4(1) 26.419(4) 26.2
0.06 29.339 0(1) 29.352 8(1) 29.325(5) 29.1
0.08 34.735 8(1) 34.755 0(1) 34.715(6) 34.3
0.10 45.650 9(1) 45.683 6(1) 45.609(7) 44.9
0.12 74.785 7(1) 74.872 4(1) 74.656(12)
0.15 −367.870 8(2) −365.803 0(3) −371.860(60)
0.18 −43.203 8(1) −43.174 5(1) −43.273(7)
0.20 −25.319 5(1) −25.309 0(1) −25.348(4)
0.30 −5.796 7(1) −5.795 1(1) −5.801(2)
0.40 −0.291 2(1) −0.287 3(1) −0.2961(2)
0.50 −2.149(7) −2.161(7) −2.164(8)

3 2D transitions. The tensor polarizability can become large
when a single transition tends to dominate Eq. (12). The scalar
and tensor polarizabilities tend to be opposite in sign. The main
contribution to the polarizabilities comes from transitions to

FIG. 3. (Color online) The dynamic dipole polarizability α1(ω)
for the ground state of Be+. The singularities in the polarizability at
the 2 2S → n 2P frequencies are marked.

the S and D states. The coefficients in the sum rules, Eqs. (11)
and (12), for these terms are opposite in sign.

The dynamic polarizabilities for the Be+ 2 2P state are
also tabulated in Table IV and depicted in Fig. 5 for photon
frequencies below 0.40 a.u. There are three resonances in this
frequency range. The scalar and tensor dynamic polarizabil-
ities are similar in shape but with the opposite sign. As far
as we know, there has been no previous calculation of the
2 2P state dynamic polarizability.

TABLE IV. The dynamic dipole polarizabilities of the 2 2P state of Li and Be+. Both the scalar and tensor polarizabilities are tabulated.
The numbers in parentheses are the uncertainties in the last digits arising from incomplete convergence of the basis set. Values without
uncertainties have no numerical uncertainties in any of the quoted digits. The recommended (Rec.) polarizabilities in the sixth and seventh
columns have estimated corrections from relativistic effects. The recommended polarizabilities reflect uncertainties other than purely
computational.

∞Li 7Li Rec. 7Li

ω (a.u.) α1 αT
1 α1 αT

1 α1 αT
1

0.00 126.945 8(3) 1.621 4(3) 126.947 2(5) 1.635 1(2) 126.970(4) 1.612(4)
0.01 129.249 1(5) 1.403 5(2) 129.250 1(5) 1.417 8(2) 129.273(4) 1.393(4)
0.02 136.837 1(5) 0.530 2(3) 136.837 2(5) 0.546 3(5) 136.864(4) 0.518(4)
0.03 152.469(1) −2.091(1) 152.468(2) −2.070(1) 152.503(4) −2.106(4)
0.04 185.542(5) −11.722(5) 185.535(5) −11.691(5) 185.593(6) −11.747(6)
0.05 301.24(8) −82.33(9) 301.23(9) −82.27(8) 301.33(10) −82.38(10)
0.06 −119.1(5) 446.7(5) −119.3(5) 446.9(5) −119.0(6) 446.6(6)
0.07 1804.5(1) −904.2(2) 1801.2(1) −900.34(5) 1806.2(2) −905.2(2)
0.08 −593.1(2) −43.5(4) −592.7(3) −43.6(5) −592.6(5) −43.4(5)

∞Be+ 9Be+ Rec. 9Be+

0.00 2.024 76(1) 5.856 012(1) 2.023 19(1) 5.858 938(1) 2.028 5(10) 5.852 8(10)
0.01 1.997 55(1) 5.890 887(1) 1.995 95(1) 5.893 842(1) 2.001 3(10) 5.887 6(10)
0.02 1.913 89(1) 5.997 630(1) 1.912 21(1) 6.000 672(1) 1.917 8(12) 5.994 2(12)
0.05 1.231 44(1) 6.845 876(1) 1.229 05(1) 6.849 643(1) 1.236 3(13) 6.841 5(13)
0.10 −3.881 78(1) 12.617 90 −3.890 80(1) 12.628 42 −3.866 6(15) 12.603 3(13)
0.14 −94.714 54 104.485 95 −95.247 6 105.020 73 −93.787 3(16) 103.559 2(16)
0.20 26.150 5(1) −12.948 1(2) 26.149 9(1) −12.945 1(1) 26.161(17) −12.958(12)
0.25 48.59(5) −26.10(1) 48.61(5) −26.11(1) 48.62(6) −26.17(1)
0.28 52.09(1) −3.43(1) 52.10(1) −3.44(1) 52.07(1) −3.45(1)
0.32 −49.87(1) 4.413(1) −49.85(1) 4.412(1) −49.89(1) 4.40(1)
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FIG. 4. (Color online) The dynamic polarizabilities α1(ω) and
αT

1 (ω) (in a.u.) of the Li 2 2P state for photon frequencies below
0.10 a.u. The scalar polarizability is given by the solid line while the
tensor polarizability is given by the chain curve.

C. Static 2 2S → 2 2P Stark shift

The static Stark shift δG for the change in the 2 2S → 2 2P

energy interval in an electric field of strength F is written
as

δG2s-2p,M = − 1
2F 2(α2s − α2p,M )

− 1
24F 4(γ2s − γ2p,M ) + . . . , (14)

where γ is the hyperpolarizability. The Stark shift depends
on the magnetic quantum number M of the 2 2P state. The
relative size of 
α and 
γ determines the extent to which the
Stark shift is influenced by the hyperpolarizability at high field
strengths. The relative importance of 
α and 
γ is given by
the ratio

X = F 2(γ2s − γ2p,M )

12(α2s − α2p,M )
= F 2
γ

12
α
. (15)

FIG. 5. (Color online) The dynamic polarizabilities α1(ω) and
αT

1 (ω) (in a.u.) of the Be+ 2 2P state for photon frequencies below
0.40 a.u. The scalar polarizability is given by the solid line while the
tensor polarizability is given by the chain curve.

FIG. 6. (Color online) The polarizability difference between the
2 2S and 2 2P states of Li. Polarizability differences are shown for
M = 0 and M = 1.

Using the static polarizability and static hyperpolarizability
for the Li atom results in 
α = 37.1 and 
γ = 9.99 × 106

giving X = 0.0001 at F = 6.67 × 10−5 a.u. (344 kV/cm) and
X = 0.001 at F = 2.11 × 10−4 a.u. (1087 kV/cm). These
estimates of the critical field strength where the quadratic
Stark shift is valid depend slightly on the magnetic quan-
tum number, and exact values can be determined by using
M-dependent polarizabilities. Stark shifts of higher order
than the hyperpolarizability can be comfortably ignored at
the 0.01% level, provided the field strength is less than
1100 kV/cm. The static Stark shift for Be+ is not interesting
since it is difficult to measure as a Be+ ion immersed in a
finite electric field is accelerated away from the finite-field
region.

D. Dynamic 2 2S → 2 2P Stark shift

The Li Stark shifts, α(2s) − α(2pM ), are plotted as a
function of frequency in Fig. 6. It is seen that there are magic
wavelengths for M = 0 just below the 2 2P → 3 2S threshold
and between the 2 2S → 2 2P and 2 2P → 3 2D thresholds.
The actual energies for which the polarizability difference is
zero are given in Table V. The Stark shifts get very large for
frequencies between 0.058 and 0.070 a.u.

The Be+ Stark shifts, α(2s) − α(2pM ), are plotted as a
function of frequency in Fig. 7. The Stark shifts are much
smaller in magnitude than the Li atom shifts. One difference
from Li is that the Be+ shift has no zero for energies below
the 2 2S → 2 2P threshold. The first zero in the Stark shift
(excepting those related to a singularity) is at 0.263 a.u.
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TABLE V. The photon energies for which there is no Stark shift
for the 2 2S → 2 2P transition. Underlined digits indicate uncertain
digits arising from lack of basis set convergence. Digits in brackets
indicate possible uncertainties associated with relativistic corrections
in the recommended (Rec.) values.

System M = 0 M = 1

∞Li 0.046 317 680 6 0.084 763 957 1
0.081 021 795 5
0.093 664 330 5

7Li 0.046 335 687 8 0.084 766 087 0
0.081 024 478 9
0.093 661 899 1

Rec. 7Li 0.046 297(4) 0.084 756(2)
0.081 014(2)
0.093 661 3(2)

∞Be+ 0.262 920 267 8 0.378 457 000 4
0.370 371 502 7
0.390 752 146 3

9Be+ 0.262 917 360 3 0.378 451 843 7
0.370 279 952 2
0.390 455 356 8

Rec. 9Be+ 0.262 895 6(7) 0.378 443(2)
0.370 274(1)
0.390 454 6(2)

E. Analytic representation

The utility of the present calculations can be increased
by constructing a closed-form expression for the dynamic
polarizability. This is done by retaining the first 3 terms in
Eq. (7) explicitly and then expanding the energy denominator
in the remainder. The expressions explicitly include oscillator
strengths up to the n = 4 principal quantum numbers. The
closed form expression is

α1(ω) =
(

4∑
n=2

f2s→np


E2
2snp − ω2

)
+ S(−2) + ω2S(−4)

+ω4S(−6) + · · · + ω14S(−16) + C(ω), (16)

FIG. 7. (Color online) The polarizability difference between the
2 2S and 2 2P states of Be+. Polarizability differences are shown for
M = 0 and M = 1.

where

S(−m) =
∑
n=5

f2s→np

(
E2snp)m
, (17)

C(ω) = η1ω
16S(−16)

1 − η1ω2
. (18)

Here, f2s→np are the dipole oscillator strengths for the 2 2S →
n 2P transitions with transition energies 
E2snp = Enp − E2s .
The oscillator strength is defined as

fn0L→nL′ = 8π

(2� + 1)2(2L + 1)

En0LnL′ |〈n0L‖T�‖nL′〉|2.

(19)

The S(−n) are the Cauchy moments of the remainder of
the oscillator-strength distribution and are independent of
ω. The term C(ω) is an approximate term to represent the
summation from the term S(−18) to S(∞). The ratio η1 =
S(−n − 2)/S(−n) is assumed to be constant and its value is set
to S(−16)/S(−14). Numerical values of the various constants
in Eq. (16) can be found in Table VI. Inclusion of the remainder
term has greatly increased the precision of the analytic fit to
the exact dynamic polarizability.

The analytic representation for the Li 2 2S state is accurate
to 0.01 a.u. for ω � 0.1612 a.u. and to an accuracy of
0.1 a.u. for ω � 0.1728 a.u. The dynamic polarizability for
the Be+ 2 2S state maintains its accuracy over a larger ω range.
It is accurate to 0.001 a.u. for ω � 0.543 a.u., to 0.01 a.u. for
ω � 0.586 05 a.u., and to 0.1 a.u. for ω � 0.6 a.u.

The presence of zeros in the dynamic polarizability near the
singularities means that the relative error in the analytic repre-
sentation can get very large in a frequency range very close to
the zeros. Neglecting these localized regions with anomalously
high relative uncertainties, the relative difference between the
analytic representation and actual dynamic polarizability for
the Li 2 2S state was less than 0.001% for ω � 0.1399 a.u.,
0.01% for ω � 0.1551 a.u., and 0.1% for ω � 0.1651 a.u.
The relative difference for the Be+ 2 2S state obtained by
the variational Hylleraas method was less than 0.001% for
ω � 0.4737 a.u., 0.01% for ω � 0.5067 a.u., and 0.1% for
ω � 0.525 75 a.u. The inclusion of the remainder term C(ω)
improved the accuracy of the analytic representation by one
or two orders of magnitude within the frequency range listed
above.

The dynamic dipole polarizabilities of the 2 2P states of Li
and Be+ have both scalar α1(ω) and tensor αT

1 (ω) parts. The
scalar part can be written as

α1(ω) =
4∑

n=2

f2p→ns


E2
2pns − ω2

+
4∑

n=3

f2p→nd


E2
2pnd − ω2

+ S(−2) + ω2S(−4) + ω4S(−6) + · · ·
+ω14S(−16) + C(ω), (20)

where

S(−m) =
∑
n=5

f2p→ns

(
E2pns)m
+

∑
n′

f2p→n′P

(
E2pn′P )m

+
∑
n=5

f2p→nd

(
E2pnd )m
. (21)
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TABLE VI. The parameters for the calculation of the 2 2S-state frequency-dependent polarizabilities of Li and Be+. The numbers in
the square brackets denote powers of 10. The recommended (Rec.) results of the fourth and the seventh columns incorporate relativistic
corrections.

Parameter ∞Li 7Li Rec. 7Li ∞Be+ 9Be+ Rec. 9Be+

f2s→2p 0.746 956 855 381 0.746 961 871 867 0.747 011 776 131 0.498 067 422 721 0.498 083 382 699 0.498 227 010 322

E2s2p 0.067 903 791 567 0.067 894 172 078 0.067 906 05 0.145 429 884 364 0.145 403 572 344 0.145 478 06
f2s→3p 0.004 731 019 443 0.004 737 600 312 0.004 728 028 090 0.083 243 986 131 0.083 288 941 464 7 0.083 209 271 939

E2s3p 0.140 909 212 964 0.140 896 165 068 0.140 906 40 0.439 629 051 730 0.439 596 005 937 0.439 665 21
f2s→4p 0.004 960 028 680 0.004 964 714 658 0.040 874 056 901 0.040 896 543 934

E2s4p 0.166 756 175 058 0.166 742 266 938 0.546 967 693 380 0.546 934 227 760
S(−2) 1.697 71 1.698 63 0.379 627 0.379 781
S(−4) 21.871 4 21.888 8 0.513 938 0.514 207
S(−6) 428.809 429.237 0.979 476 0.980 088
S(−8) 9.693 64[3] 9.705 02[3] 2.053 22 2.054 69
S(−10) 2.370 08[5] 2.373 25[5] 4.521 45 4.525 08
S(−12) 6.080 98[6] 6.090 06[6] 10.247 3 10.256 4
S(−14) 1.610 32[8] 1.612 96[8] 23.636 8 23.659 6
S(−16) 4.357 60[9] 4.365 37[9] 55.128 0 55.185 2
η1 27.060 5 27.064 3 2.332 29 2.332 46

The 2p → n′P excitation involves a core excitation and the
intermediate state is an unnatural parity 2P e state. The tensor
part is

αT
1 (ω) = −

4∑
n=2

f2p→ns


E2
2pns − ω2

− 1

10

4∑
n=3

f2p→nd


E2
2pnd − ω2

+ ST (−2) + ω2ST (−4) + ω4ST (−6) + · · ·
+ω14ST (−16) + CT (ω), (22)

where

ST (−m) = −
∑
n=5

f2p→ns

(
E2pns)m
+ 1

2

∑
n′

f2p→n′P

(
E2pn′P )m

− 1

10

∑
n=5

f2p→nd

(
E2pnd )m
, (23)

CT (ω) = ηT
1 ω16ST (−16)

1 − ηT
1 ω2

, (24)

where f2p→mL1 means the oscillator strength from the 2p-state
to the mL1-state transition. The coefficients ST (−2), ST (−4),
ST (−6), . . . correspond to the ω0,ω2,ω4, . . . terms of the tensor
part. The remainder term CT (ω) is an approximate expression
to take into account the ST (−18) → ST (∞) summations. The
factor ηT

1 is set to be ηT
1 = S(−16)/S(−14). All parameters in

the analytic representation are given in Table VII.
The first two terms of Eqs. (20) and (22) include five

resonances which make the major contribution to the polar-
izability, with the second term involving excitations to D

states being the most important. This is clearly seen in the
Li α1(ω) of 185.542(5) a.u. at ω = 0.04 a.u. The contribution
of the first summation of Eq. (20) was −8.8717 a.u., while the
second summation contributed 175.8241 a.u. The value given
by Eq. (20) was 185.5378 a.u., which agrees with the exact
value at the level of 0.0004%.

The analytic representation for the scalar polarizability
α1(ω) of the Li 2 2P state is accurate to 0.01 a.u. for ω �

0.0855 a.u. and to 0.1 a.u. for ω � 0.0937 a.u. The analytic
representation for the tensor polarizability αT

1 (ω) is accurate to
0.01 a.u. for ω � 0.0926 a.u. and to 0.10 a.u. for ω � 0.1 a.u.

The relative error in the analytic representation of α1(ω) for
the 2 2P state of the Li atom is less than 0.001% for ω � 0.082
a.u., 0.01% for ω � 0.0871 a.u., and 0.1% for ω � 0.0906 a.u.
The relative error of the analytic representation for αT

1 (ω) is
less than 0.001% for ω � 0.0815 a.u., 0.01% for ω � 0.0932
a.u., and 0.1% for ω � 0.0995 a.u.

The dynamic polarizability of the Be+ 2 2P state maintains
its accuracy over a larger range of ω. It is accurate to 0.001 a.u.
for ω � 0.3513 a.u., to 0.01 a.u. for ω � 0.3837 a.u., and
0.1 a.u. for ω � 0.4111 a.u. The absolute error for αT

1 (ω) is
0.001 a.u. for ω � 0.3788 a.u., 0.01 a.u. for ω � 0.4077 a.u.,
and 0.1 a.u. for ω � 0.4291 a.u.

The relative error between the analytic representation and
Hylleraas values of α1(ω) for the Be+ 2 2P state is less than
0.001% for ω � 0.332 a.u., 0.01% for ω � 0.3536 a.u., and
0.1% for ω � 0.3708 a.u. The relative error for αT

1 (ω) of the
Be+ 2 2P state is less than 0.001% for ω � 0.3265 a.u., 0.01%
for ω � 0.3434 a.u., and 0.1% for ω � 0.3534 a.u.

IV. FINITE-MASS CORRECTIONS

The effect of the finite mass was to decrease the Li atom
and Be+ ion binding energies listed in the Table I. Therefore, it
is not surprisingly that the ω = 0 polarizabilities of the Li and
Be+ ground states are increased in Tables II and III. The overall
changes of the ω = 0 polarizabilities are 0.03% and 0.04%
for Li and Be+ respectively. The finite-mass polarizabilities
are larger than the infinite-mass values at ω = 0 a.u. These
differences can be taken as indicative of the overall change
in the polarizabilities at finite frequencies below the first
excitation threshold. The differences are naturally larger near
thresholds.

The finite-mass effect for the Li 2 2P state increased its
polarizability by 0.001% (Table IV) while decreasing the
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TABLE VII. The parameters defining the frequency-dependent polarizabilities of the 2 2P state of Li and Be+. The numbers in the square
brackets denote powers of 10. The recommended (Rec.) results of the fourth and the seventh columns incorporate relativistic effects.

Parameter ∞Li 7Li Rec. 7Li ∞Be+ 9Be+ Rec. 9Be+

f2p→2s −0.248 985 618 454 −0.248 987 290 622 −0.249 003 925 38 −0.166 022 474 240 −0.166 027 794 233 −0.166 075 670 107

E2p2s −0.067 903 791 567 −0.067 894 172 078 −0.067 906 050 −0.145 429 884 364 −0.145 403 572 344 −0.145 478 060 000
f2p→3s 0.110 578 835 460 0.110 575 403 831 0.110 589 306 872 0.064 385 095 804 0.064 385 347 515 0.064 407 168 594

E2p3s 0.056 059 306 121 0.056 058 468 507 0.056 054 150 0.256 561 561 765 0.256 561 980 308 0.256 536 125 000
f2p→4s 0.014 979 087 136 0.014 981 586 569 0.012 876 689 561 0.012 879 003 186

E2p4s 0.092 714 410 055 0.092 711 788 029 0.387 472 175 091 0.387 469 829 948
f2p→3d 0.638 568 044 661 0.638 583 007 678 0.638 583 083 728 0.631 981 700 709 0.632 059 480 294 0.632 047 210 702

E2p3d 0.074 632 989 884 0.074 630 453 329 0.074 630 150 0.301 279 233 806 0.301 276 362 793 0.301 291 440 000
f2p→4d 0.122 746 501 135 0.122 756 411 337 0.122 711 398 708 0.122 734 598 764

E2p4d 0.098 967 235 189 0.098 962 799 378 0.398 640 164 736 0.398 631 384 564
S(−2) 16.840 8 16.844 7 1.075 95 1.076 28
S(−4) 974.832 975.135 3.695 33 3.696 58
S(−6) 6.408 29[4] 6.410 83[4] 14.9422 14.9479
S(−8) 4.484 04[6] 4.48620[6] 64.3838 64.4113
S(−10) 3.261 08[8] 3.262 95[8] 288.547 288.684
S(−12) 2.434 29[10] 2.435 92[10] 1328.18 1328.87
S(−14) 1.851 41[12] 1.852 82[12] 6232.21 6235.79
S(−16) 1.427 96[14] 1.429 18[14] 296 67.5 296 85.9
η1 77.128 2 77.135 4 4.760 34 4.760 58
ST (−2) −2.730 75 −2.731 18 −0.156 423 −0.156 454
ST (−4) −154.670 −154.702 −0.544 987 −0.545 110
ST (−6) −9.881 99[3] −9.884 58[3] −2.109 90 −2.110 44
ST (−8) −6.716 03[5] −6.718 18[5] −8.715 72 −8.718 24
ST (−10) −4.735 61[7] −4.737 42[7] −37.508 3 −37.520 6
ST (−12) −3.422 63[9] −3.424 17[9] −166.164 −166.226
ST (−14) −2.519 02[11] −2.520 34[11] −752.681 −753.003
ST (−16) −1.880 83[13] −1.881 97[13] −3471.37 −3473.06
ηT

1 74.665 1 74.671 3 4.612 01 4.612 28

polarizability for the Be+ 2 2P state (Table IV) by 0.08%. This
behavior for Be+ is due to the 2 2P → 2 2S downward transi-
tion. The increased negative contribution from this transition is
enough to outweigh the increased positive contributions from
transitions to more highly excited states.

As a general rule, the magnitude of the polarizabilities
for both upward and downward transitions increase for the
finite-mass calculations. The residual Cauchy moments S(−n)
in Table VI and Table VII all increase for the finite-mass
calculations since these are computed exclusively from upward
transitions.

V. OTHER EFFECTS AND UNCERTAINTIES

A. Estimate of relativistic effects

The major omission from the present calculation is the
inclusion of relativistic effects. The larger part of the energy
difference between the present finite-mass calculations and
the experimental binding energies in Table I is due to the
omission of relativistic effects. Relativistic effects will alter
the polarizability calculation in two ways. First, the energy
differences will be changed. Generally, the binding energies
of all states can be expected to be slightly larger. Secondly,
there will be some changes in the reduced matrix elements.
The wave functions for the n 2S and n 2P states can be expected
to be slightly more compact since they are more tightly bound.

Correcting for the relativistic energy is simply a mat-
ter of replacing the theoretical energies in the sum rules
by the experimental values. The spin-orbit weighted av-
erages were used for states with L � 1. The corrections
to the transition matrix elements are made by recourse
to calculations using a semiempirical model potential that
supplements the potential field of a frozen Hartree-Fock
(HF) core with a tunable polarization potential [21,23,37].
Polarizabilities for Li and Be+ computed with this approach
reproduce the Hylleraas calculation at the 0.1%-accuracy level
[17,21,23].

The method used to estimate the relativistic effect upon
matrix elements relies on comparing two very similar

TABLE VIII. Experimental C3 values from analysis of the
Li2 spectrum and C3 values from the Hylleraas calculations.

Source Value

Li2 spectrum [39], C6 fixed from [19] 11.002 2(24)
Li2 spectrum [8], C6 fixed from [19] 11.002 41(23)
Li2 spectrum [8], C6 fixed from [21] 11.002 40(23)
Hylleraas ∞Li 11.000 221
Hylleraas 7Li 11.001 853
Hylleraas 7Li: Recommended 11.000 7
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calculations. One calculation has its polarization potentials
tuned to reproduce the finite-mass energies of Table I. The
other calculation is tuned to give the experimental ener-
gies. The matrix elements for the low-lying transitions that
dominate the dynamic polarizabilities are then compared.
The differences between the “finite-mass” calculation and
the “experimental” calculations are then determined. These
changes in the matrix elements are then applied as corrections
to the set of Hylleraas matrix elements. The only matrix
elements that are changed are those involving transitions
inside the 2 2L and 3 2L level space. Transitions to these states
dominate the 2 2S and 2 2P polarizabilities. The actual change
in the Li 2 2S → 2 2P matrix element was a reduction of
0.0054%. The reduction in the Be+ 2 2S → 2 2P matrix element
was 0.011%.

Using the new set of corrected matrix elements gives a
ground state polarizability of 164.114 a.u. (Table I). This
represents a reduction of the polarizability by 0.047 a.u. A
coupled-cluster calculation of the Li ground state estimated
that relativistic effects reduced its polarizability by 0.06 a.u.
[38]. The static polarizability of the 2 2P state of 7Li; namely
126.947 a.u., was increased to 126.970 a.u. (Table IV). This
gives a Stark shift of −37.144 a.u., which is in agreement with
the experiment of Hunter et al. [13] which gave −37.14(2)
for the 7Li 2 2S–2 2P1/2 Stark shift. Another calculation was
made to check the 2 2P1/2:2 2P3/2 polarizability difference. The
MBPT-SD calculation gave a difference of 0.015 a.u. [22].
Doing two calculations tuned to give a 2 2P spin-orbit splitting
of 1.77 × 10−6 a.u. (the energy splitting in the MBPT-SD
calculation [22]) gave a polarizability difference of 0.0145
a.u.. The energy splitting in the MBPT-SD calculation [22]
gave a polarizability difference of 0.0145 a.u. A further test
was made by examination of the line strengths of the Si3+
3 2S–3 2P spin-orbit doublet. An MBPT-SD calculation gave
a line-strength ratio of 1.000 524 (once angular momentum
factors were removed) [40]. Turning the core potential in a
semiempirical model based on the Schrödinger equation [40]
gave a value of 1.000 618. The available evidence supports
the conjecture that it is possible to use the energy differences
between the Hylleraas and experimental energies to get an
initial estimate of relativistic corrections for other properties
such as the polarizability. The uncertainty in the correction
would seem to be about 20%. To a certain extent, the
cancellations involved in adding the finite-mass and relativistic
corrections together leads to polarizabilities that are close to
the infinite-mass polarizabilities.

The static polarizability of the Be+ ground state was
reduced from 24.506 to 24.489 a.u. This represents a reduction
of 0.4%. However, the static scalar polarizability of the 2 2P

state increased from 2.0231 to 2.0285 a.u., an increase of
0.24%. The static tensor polarizability changed from 5.8589 to
5.8528 a.u. The heavier mass and larger nuclear charge means
relativistic effects are substantially larger than finite-mass
corrections.

Dynamic polarizabilities and their analytic representations
from the set of matrix elements with the estimate of the rela-
tivistic effects are listed in Tables II–VII as the recommended
values. The changes to analytic representation only involved
changes in the oscillator strength and energy differences for a
few states.

B. 2 2S → 2 2P matrix element and uncertainties

Recently Le Roy et al. [8] analyzed the ro-vibrational
spectrum of the lithium dimer obtaining an estimate for the
C3 parameter describing the long range C3/R

3 potential
of the A state that dissociates to the 2 2S and 2 2P states.
The C3 parameter can be related to the 2 2S–2 2P multiplet
strength. The determination of Le Roy et al. represented
an order-of-magnitude improvement in precision over any
previous determination of C3.

The current value of C3 = 11.0007 a.u., computed with
relativistic corrections, is about 0.0155% smaller than the
experimental value of Le Roy et al. The finite-mass calculation
with the relativistic correction is closer to experiment than
the infinite-mass C3, but there is a remaining discrepancy of
0.0017 a.u. It is not likely that QED effects can explain the
discrepancy, as Pachucki et al. found that these were 2.5 times
smaller than relativistic effects in the polarizability of helium
[41]. It must be recalled that the Le Roy et al. experiment is
reporting an order-of-magnitude improvement in experimental
precision. Going to such extreme levels of precision means
there might be small corrections that need to be applied to the
analysis of the data that have not received consideration. For
example, the value of C3 will be different for states asymptotic
to the 2 2P1/2 and 2 2P3/2 levels. The analysis of Le Roy et al.
uses a common C3 value for both members of the spin-orbit
doublet. Irrespective of this, it should be noted that experiment
and theory are incompatible at precisions better than 0.01%.

The difference between the present value of C3 and that
of Le Roy et al. is used to assign an error to the present
polarizability calculation. Changes of 0.008% were made to
the 2(3)2S–2(3)2P matrix elements, the polarizabilities were
recomputed, and the differences assigned as the uncertainty
in the recommended values. This difference is actually larger
than the estimated relativistic change in the matrix element.
Therefore, the recommended static polarizability of the Li
ground state is 164.11(3) a.u. Uncertainties in the 2(3)2P –3 2D

matrix elements are smaller (relativistic effects have a smaller
impact on these matrix elements) and have not been included
in the uncertainty analysis. The final value for the static scalar
polarizability of the 2 2P state was 126.970(4) a.u., while the
tensor polarizability was 1.612(4) a.u.

The same uncertainty analysis was applied to the Be+ ion
polarizabilities. The recommended value for the ground state
is 24.489(4) a.u. The static 2 2P scalar polarizability was set
as 2.0285(10) a.u. while the tensor polarizability was set to
5.8528(10) a.u.

Uncertainties in the recommended dynamic polarizabilities
in Tables II–V were computed by making corrections to
the matrix elements, recomputing, and then observing the
change. These uncertainties are best interpreted as indicative,
as opposed to rigorous estimates.

VI. SUMMARY

Definitive nonrelativistic values for the dynamic dipole
polarizabilities of Li and Be+ in their low-lying 2 2S and 2 2P

states have been established using the variational method
with Hylleraas basis sets. Calculation for both finite and
infinite nuclear-mass systems have been performed. Analytic
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representations for the dynamic polarizabilities of the Li atom
and the Be+ ion have also been developed. These results can
serve as a standard against which any other calculation can be
judged.

Subsidiary calculations have been used to estimate the
impact of relativistic effects that are not explicitly included
in the Hylleraas calculation. It is recommended that the value
of 164.11(3) a.u. be adopted as the static polarizability of 7Li.
The uncertainty of 0.03 a.u. is based on the difference between
the present C3 and that of Le Roy et al. [8]. This accuracy
level is also supported by the 7Li 2 2S–2 2P1/2 Stark shift of
−37.14 a.u., which is in perfect agreement with the value of
−37.14(2) given by the high precision experiment of Hunter
et al. [13]. The recommended static polarizability for Be+ is
24.489(4) a.u.

The dynamic polarizabilities that have been obtained can
be used as an atom-based standard for electromagnetic field
intensity. These polarizabilities can be regarded as an initial
attempt to develop atom-based standards for polarizability and
Stark-shift measurements. The primary virtue of the method
with which the relativistic corrections were evaluated was

simplicity of computation. For present purposes, the estimate
of the relativistic corrections only has to be accurate to
10%–20% for the recommended polarizabilities to be valid.
The comparisons that have been done with fully relativistic
calculations suggest that the estimates of the relativistic
corrections are indeed accurate at this level. However, a
more rigorous estimate using the Briet-Pauli Hamiltonian and
perturbation theory would be desirable [41–43].
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