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Generating optimal Sturmian basis functions for atomic problems
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In this paper we discuss the optimization of Sturmian basis functions by studying bound atomic systems within
the configuration interaction method. Our investigation clearly shows how the fulfillment of correct physical
boundary conditions at short and large distances from the nucleus improves the convergence rate of the method.
This is illustrated first through a one-electron atom, and then with the two-electron systems. For the ground state
of the helium atom, and with 35 Sturmian functions per electron and angular momenta, we obtain an energy of
−2.903 712 820 a.u., outperforming previous similar calculations [Bromley and Mitroy, Int. J. Quantum Chem.
107, 1150 (2007)].
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I. INTRODUCTION

Several methods have been developed to approximately
solve the Schrödinger equation for two-electron atoms. Prob-
ably the simplest is the configuration interaction (CI) method
in which the two-electron wave functions are expanded in
spherical harmonics (or biharmonics) and a complete basis
set for each radial coordinate [1,2]. Although the rate of
convergence with the CI approach is not as fast as that obtained
with other methods which use all interparticle coordinates
(see, e.g., [3–5]), its extension to deal with n-electron atomic
systems is straightforward; uncorrelated basis functions re-
main therefore a very useful tool. The convergence rate of CI
expansions is strongly related to the properties of the chosen
radial configurations. In this contribution we address this issue
by proposing an optimized way of defining the basis functions.
Applications first to a one-electron atomic model, and then
to two-electron systems, will illustrate the efficiency of the
method. Improved energy convergence rates are particularly
significant if large or complex systems were to be studied.

The main characteristics of atomic wave functions can be
exemplified by a one-electron system Schrödinger equation in
the s-wave (l = 0) model:

[
− 1

2r2

d

dr

(
r2 d

dr

)
+ U (r) − E

]
�(r) = 0, (1)

where the first term in the brackets is the kinetic energy,
U (r) is a central potential, E < 0 is the energy (only bound
states will be considered here), and �(r) is the radial wave
function. Atomic potentials associated with Coulomb-like
interactions can be written as U (r) = Uaux(r) + Ũ (r), where
the auxiliary potential Uaux(r) is assumed to have well-defined
Coulomb-like behaviors associated with the charges Zin and
Zas, respectively, in the limits r → 0 and r → ∞; Ũ (r)
models a short-range perturbation, without Coulomb-like
singularities. The physical boundary conditions imposed to
the wave function �(r) are integrability and regularity in the
range r ε [0,∞). In addition, the Coulomb character of the
potential Uaux(r) provides well-defined behaviors,

lim
r→0

d�(r)

dr
= −Zin�(r) (2a)

lim
r→∞ �(r) ∝ ϕas(r) = e−κr− Zas

κ
ln(2κr), (2b)

where κ = √−2E > 0. Relation (2a) corresponds to Kato
cusp condition for two-body coalescence [6].

One kind of radial basis functions which has been widely
used in CI calculations is the set of Coulomb Sturmian
Functions (CSF) [1,2,7]. They are solutions of a two-body
Coulomb Schrödinger equation, where the charge of the
Coulomb potential is considered as the eigenvalue, and the
(negative) energy is taken as an externally fixed parameter,
the same for all CSF. This makes the basis elements having
the same damped asymptotic behavior [i.e., the same κ value
in Eq. (2b)]. A two-point boundary condition (regularity at the
origin and the exponential behavior at infinity) problem can
be set and is of the form of the Sturm-Liouville theory. This is
why the CSF were named Sturmians (see, e.g., Ref. [8,9]).

Different CI approaches have been implemented using
Sturmian functions, based on adequate choices of the energy
parameters. In this way, the damped behavior of the basis is
adjusted to reproduce the truly bound state behavior, and then
the convergence rate of the expansions increased. However,
none of these basis sets fulfills the correct physical conditions
that the wave function should have, that is, the cusp conditions
at the Coulomb singularities and appropriate logarithmic
factors in the asymptotic behavior given for the one-electron
case, by relations (2a) and (2b), respectively. Instead of the
fixed values Zas and Zin, the eigenvalue appears in those
equations for the CSF case. As a consequence an unnecessary
large number of CSF will be required to represent the proper
behavior in both regions.

In this report we continue with the study initiated in our
previous publication [10,11], concerning the optimization of
the Sturmian Functions (SF) basis. We explicitly show how
adjusting the basis functions to have the proper behavior both at
the origin and at large distances increases the convergence rate
of the CI approach. To do so, we apply the method introduced
in Ref. [10] to generate different types of SF basis satisfying:
i) condition (2a) but not (2b); ii) condition (2b) but not (2a);
and iii) both conditions (2a) and (2b). For comparison, we
also generate CSF which do not satisfy either (2a) or (2b). All
these basis functions are first applied to the study of a simple
two-particle atomic model (Sec. II), in order to illustrate how

1050-2947/2010/81(4)/042520(7) 042520-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.042520


J. M. RANDAZZO et al. PHYSICAL REVIEW A 81, 042520 (2010)

each of these properties affect the convergence of the energy
calculation. The application to two-electron systems is then
considered (Sec. III). We first study the Temkin-Poet (TP)
model to put in evidence that, with an optimized choice of
the parameters, substantially smaller matrices are needed to
obtain a similar level of energy accuracy. Then, we perform
highly accurate calculations of the partial-wave series of the
ground state of the helium atom. Our energy values are
compared with those obtained with the high-precision CSF
variational calculations of Bromley and Mitroy [1], and with
ours published in [10]. Concluding remarks are given in
Sec. IV.

We employ atomic units (m = h̄ = e = 1) throughout.

II. STURMIAN BASIS FUNCTIONS FOR ONE-ELECTRON
SYSTEMS

The Sturm-Liouville (SL) eigenvalue problem [9] is based
on the following equation, defined in the closed interval [a,b]:

− d

dr

(
p(r)

dyn(r)

dr

)
+ q(r)yn(r) = βnω(r)yn(r), (3)

together with the boundary conditions:[
a1

dyn(r)

dr
+ a2yn(r)

]
r=a

= 0 (4a)[
b1

dyn(r)

dr
+ b2yn(r)

]
r=b

= 0, (4b)

where ai,bi (i = 1,2) are constants independent of the eigen-
value βn. Provided p(r), q(r), and the weight function ω(r) are
continuous on [a,b], Eqs. (3), (4a), and (4b) define a complete
and discrete (n ∈ N) set of solutions yn(r) in the interval, with
well–known properties including orthogonality and closure
relations: ∫ b

a

yn′ (r)ω(r)yn(r)dr = δn′,n (5a)

∞∑
n=1

yn(r)ω(r)yn(r ′) = δ(r − r ′). (5b)

We recall that our aim is to investigate how to optimize
Sturmian basis functions to solve the physical problem given
by Eq. (1) together with conditions (2a) and (2b). We
shall restrict the discussion to s-wave (l = 0) models, the
generalization to higher angular momenta being straightfor-
ward. Atomic-like basis functions �n(r), adequate for CI
expansions, can be obtained by comparing Eqs. (3) with (1) and
setting p(r) = r2/2, q(r) = r2[USL(r) − E], ω(r) = r2V (r),
and yn(r) = �n(r); USL(r) and V (r) are atomic potentials
whose singularities at r = 0 are not worse than r−1. Besides the
regularity and integrability conditions, the physical restrictions
(2a) and (2b) can be converted into SL boundary conditions
(4a) and (4b) with the choice a1 = 1 and a2 = Zin at the point
r = a = 0, and b1 = 1 and b2 = κ + Zas

κr
for r = b → ∞.

Special care must be taken when cusp conditions are
imposed through Eq. (4a), since a regularity condition was
already assumed at r = 0. If V (r) had a Coulomb singularity,
the charge Zin associated to a cusp condition of a regular
function would be dependent of the eigenvalue βn since it is

multiplying ω(r) in Eq. (3). When V (r) has no Coulomb (or
worse) divergence at r = 0, the only Coulomb divergence is
associated with the externally fixed potential USL(r): In this
case a unique (physical) cusp condition can be imposed. We
can therefore fulfill both conditions (the cusp and regularity
ones) at the small price of restricting the action of the potential
V (r) close to r = 0.

We must also be prudent when imposing the fall-off
condition, since it is not a point boundary condition, but
an asymptotic one. Again, in order that the condition (4b)
takes the form of Eq. (2b) for r → ∞ with Zas independent
of the eigenvalue, V (r) must be a short-range potential, and
the charge Zas must belong uniquely to the potential USL(r)
(USL → Zas/r for r → ∞).

These properties imply inner and asymptotic behaviors
which are eigenvalue independent [11]. As a result, the whole
set of Sturmians functions conform a discrete and complete set
which have: i) the same asymptotic behavior, corresponding to
a particle of energy E moving in the outer region of a Coulomb
potential with charge Zas; and ii) the same cusp condition,
associated with the charge Zin. In intermediate regions, each
of the basis functions represents a particle moving in a potential
with different magnitude βn; V (r) plays an important role in
the method and is referenced as the generating potential.

The best value of the energy E in the Sturmian equation
(which appears also in the asymptotic behavior through κ)
seems to be the energy of the state they are intended to
represent; the latter is, of course, not known until a first
simple (low-order) diagonalization is performed. However,
one can always estimate it with alternative methods such
as independent electron models in the case of two- and
many-electron atoms.

The numerical procedure employed to evaluate the Stur-
mian functions and eigenvalues for arbitrary potentials has
been described in an earlier publication [10] and will not be
presented here. We only need to mention that the numerical
relative precision of the expansion is of the order of 10−8–10−9,
small enough for the present purposes.

By setting USL(r) = 0 and V (r) = − 1
r

in our evaluation
algorithms, we are able to generate also CSF as a particular
case. They correspond to Coulomb potentials of different mag-
nitudes so that they cannot satisfy the proper, unique, Kato cusp
condition (2a), or indeed have the proper asymptotic behavior
(2b). Both Zin and Zas are eigenvalue dependent and vary with
n. Thus, an expansion in terms of CSF will require a large num-
ber of basis functions to represent appropriately the behaviors
at the cusp and in the asymptotic region. As this implies an
unnecessary large number of basis functions, the CSF basis set
is not ideal—in this sense—to represent an atomic system.

From now on, for simplicity, we will use in the expansions
the functions Sn(r) = r�n(r) rather than �n(r). Among the
main properties of the functions Sn(r) we can mention the
nondegeneracy of the eigenvalues βn, and the orthonormality
and closure relations [see Eqs. (5a) and (5b)]:∫ ∞

0
drSn′(r)V (r)Sn(r) = δn′,n, (6a)

∞∑
n=1

Sn(r ′)Sn(r)V (r) = δ(r − r ′). (6b)
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Let us study the ground state of the two-particle system
described by the radial Schrödinger equation (1) with the
potential U (r) = Uaux(r) + Ũ (r), where

Uaux(r) = −Zas

r
+ (−Zin + Zas)e−αr

r
, (7)

and Ũ (r) is a perturbation which does not modify the
Coulombic behavior of Uaux(r) neither at r → 0 nor for
r → ∞. For the illustration, we choose Ũ (r) as

Ũ (r) = Ũ0e
−σ (r−r0)2

, (8)

(α,σ , and r0 are positive parameters).
By choosing USL(r) = Uaux(r) in the Sturm-Liouville

equation (3), all eigenfunctions will have the same Coulomb
properties as the state we want to represent through the CI
expansion. The solution �(r) of Eq. (1) with condition (2a) is
approximated by


(r) =
N1e∑
n=1

an

Sn(r)

r
, (9)

where N1e is the size of the radial basis.
We take as generating potential,

V (r) = −e−λr

r

[
rδe−γ r2 + (

1 − e−γ r2)]
, (10)

with δ > 0 and γ > 0 so that no further Coulomb singu-
larities are added. The exact ground-state wave function
can be obtained with a very precise numerical algorithm
[12]. For illustration purposes, we diagonalize the radial
Eq. (1) using N1e = 7 SF, with the following parameters:
Zin = −1, Zas = −1/4, α = 0.9, Ũ0 = −1/2, r0 = 5/2, and
σ = 5. The eigenenergies E and the expansion coefficients
an are obtained through the Galerkin method [10]. Figure 1
shows the exact ground-state wave function and the seven
SF (top panel) and CSF (bottom panel). It is evident that
the SF span a smaller region of the space, where the
bound state develops. In the region r > 5 a.u., the SF have
an exponentially damped behavior (in agreement with the
physical state), while the n = 6 and n = 7 CSF still have a local
maximum.

The differences in behavior between the CSF and SF sets,
with respect to conditions (2a) and (2b), can be seen from
Figs. 2 and 3 where we plot the ratios 1

�n(r)
d�n(r)

dr
and

Sn(r)/ϕas(r), respectively. In Fig. 3 a unique ratio (−Zin) is
found through the SF construction, but not for CSF. In Fig. 2
we clearly observe that the asymptotic behavior is eigenvalue
dependent for CSF but not for SF.

In order to investigate the role of the fulfillment by the basis
of proper boundary conditions, the energy parameter was set
equal to the value obtained with Ref. [12] with an accuracy of
10−14, which for brevity we will call “exact” value. In this way,
we concentrate only on the effects of the Coulomb potentials.
For that purpose we performed four different variational
calculations (Sturmian expansions) with different parameters
λ, δ, and γ . In the first one we choose λ = 0, δ = 0, and
γ = 0 for the generating potential, that is, V (r) = −1/r; this
expansion does not preserve the conditions (2a) and (2b), and
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FIG. 1. (Color online) r
(r) (open circles) and seven asymptot-
ically optimized SF (lines, top) and CSF (lines, bottom).

is similar to a CSF expansion (it differs only through the central
potential USL(r), which is not the purely Coulomb one as in
the CSF case). In a second calculation (δ = γ = 0), we vary
the parameters δ and γ , in order to impose to the expansion
only condition (2a), without taking care of the asymptotic
behavior. In the third calculation, we gradually change the
asymptotic behavior of the basis set from having different
Coulomb factors (associated to each eigenvalue) to having
only one corresponding to Zas; in this case, however, we do not
preserve the Kato condition at the origin. Finally, we impose
both conditions (2a) and (2b), by varying all three parameters.
In Table I, we compare the exact energy value Eexact [12] with
the results obtained with these different SF expansions of size
N1e = 5 (the CSF result is also included). We can clearly see
by looking at the relative errors 
E that the imposition of the
correct physical boundary conditions on the basis improves
the energy value of the diagonalizations. Besides, it appears
also that imposing the correct asymptotic behavior has more
relevance for the convergence than the cusp condition. These
results show that with the same number of basis functions
better energies are obtained when the physics of the state to be
represented is incorporated in the basis functions.
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FIG. 2. (Color online) 1
�n(r)

d�n(r)
dr

as a function of r for the first
five SF (top) and CSF (bottom).
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FIG. 3. (Color online) Sn(r)/ϕas(r), with ϕas(r) defined by (2b),
as a function of r , for the first five SF (top) and CSF (bottom).

III. STURMIAN BASIS FUNCTIONS FOR
TWO-ELECTRON SYSTEMS

Consider now the Schrödinger equation for two-electron
systems of nuclear charge Z (Z = 2 for helium):[
−1

2
∇2

r1
− 1

2
∇2

r2
− Z

r1
− Z

r2
+ 1

r12
− E

]

(r1,r2) = 0. (11)

As is usual in uncorrelated CI calculations, we use a partial-
wave expansion of the electron-electron potential,

1

r12
=

∞∑
l=0

rl
<

rl+1
>

4π

2l + 1

l∑
m=−l

Y m
l (r̂1)Ym∗

l (r̂2). (12)

We propose an expansion of the wave function of the form:



L,M
S (r1,r2) =

N2e∑
ν

aL,M,S
ν �

L,M
ν,S (r1,r2), (13)

where

�
L,M
ν,S (r1,r2) = AS

Sn1,l1 (r1)

r1

Sn2,l2 (r2)

r2
YL,M

l1,l2
( r̂1 ,̂r2), (14)

(ν = {l1,l2,n1,n2}), and the operator AS is defined by

ASF (r1,r2) = 1√
2

[F (r1,r2) + (−1)SF (r2,r1)], (15)

ensuring spin symmetry. The basis elements (14) are eigen-
states of the total angular momentum operator and its pro-

TABLE I. Energy E and relative errors 
E = |(E − Eexact)/
Eexact| obtained with a CSF expansion and with three different SF
expansions satisfying separately conditions (2a) or (2b), or both (2a)
and (2b). The exact value was found through the use of a precise
algorithm [12]. All values are in atomic units.

E 
E λ δ γ

Exact, Eexact −0.239 06 0 – – –
CSF −0.231 82 0.0303 0 0 0
SF (2a) −0.232 71 0.0266 0 8 4
SF (2b) −0.235 77 0.0138 0.23 0 0
SF (2a) and (2b) −0.236 09 0.0128 0.41 9 4

1 2 3 4 5 6 7 8
r
2
(a. u.)

-2

0

2

(d
Ψ

(0
,r

2)/
dr

1)/
Ψ

(0
,r

2)

SF
CSF

FIG. 4. (Color online) R(r1,r2) = 1

(r1,r2)

d
(r1,r2)
dr1

evaluated at
r1 = 0, as a function of r2. The two-electron wave function was
evaluated by means of the SF with condition (2a) (dashed line) and
the CSF (solid line).

jection along the ẑ axis, with quantum numbers L and M ,
respectively. Parity conservation (−1)L = (−1)l1+l2 restricts
the angular quantum numbers. The radial indexes should also
be restricted to avoid redundancies in the expansion. For
example, for the TP model in which only the l = 0 term is
retained in (12), the number N2e of two-electron configurations
is given in terms of the number N1e of one-electron functions
(see [10] for details):

N2e = 1
2N1e[(−1)S + N1e]. (16)

Hereafter we shall consider only the S = 0 case.
In the following illustrations we aim to show the advantages

of our optimized SF over the traditional CSF. To achieve
this, we start with simple TP calculations and then present
results of high-precision calculations for the real helium atom.
The central potential of the two-electron atomic system is
purely Coulombic (charge Z = 2). In order to model the
electron-electron repulsion when one of the coordinate ri is
large, we propose to use the same potential USL(r) taken in the
one-electron case (Sec. II), which includes a pure Coulomb
potential as a particular case [see Eq. (7)]. We then study
different values of the asymptotic charges when generating
the basis, in order to compare with a CSF calculation. A very
simple (N1e = 7) variational calculation for the TP ground-
state energy yielded the following optimal basis parameters:
γ = 4, λ = 0.25, δ = 0.5, α = 1.1, Zin = 2, and Zas = 1.14.
The value of Zas appears as a screened charge and thus
simulates the effect of the interelectronic repulsion term.

TABLE II. Energy E and relative errors 
E obtained with N1e =
7 CSF and SF for the Temkin-Poet model (the SF result corresponds to
the optimal parameters: γ = 4, λ = 0.25, δ = 0.5, α = 1.1, Zin = 2,
and Zas = 1.14). All values are in atomic units.

E 
E

Exact [13] −2.879 028 767 0
CSF −2.878 933 952 3.3 10−5

SF −2.879 010 264 6.4 10−6
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TABLE III. Sets of parameters pi used in generating the Sturmian
basis functions for Li = 0 and Li = 12. The sets p0 and p12 are used
for the results shown in Tables IV and V, respectively. All values are
in atomic units.

Li Ei Zin Zas α λ δ γ

p0 0 −1.27 −2 −2 0 0.44 0.3 4
p12 12 −1.05 −2 −2 0 0.93 0.3 4

The total wave function 
(r1,r2) is set to satisfy the two
electron-nucleus Kato cusp conditions in the limits ri → 0
(i = 1,2) with −Zin = −2; this value corresponds also to a
variational minimum. The effect of this condition can be ap-
preciated in Fig. 4, where the ratio R(r1,r2) = 1


(r1,r2)
d
(r1,r2)

dr1
,

evaluated at r1 = 0, is plotted as a function of r2. We see that,
as it should be for the exact wave function, the SF expansion
gives the ratio R(r1,r2) = −Zin on the whole range [0,∞),
while the CSF calculation shows a strong r2 dependence.

The adequate treatment of the two-body cusp conditions
and asymptotic behavior gives an improvement in the con-
vergence rates of the two-electron expansions. This can be
appreciated from observing Table II, where the energy results
obtained with both the SF and CSF basis for N1e = 7, are
compared to the exact TP result [13]. Note that according to
Eq. (16) the size of the two-electron basis for N1e = 7 is
N2e = 28. To get the same order of accuracy as the SF result,
N1e = 11 CSF are needed (which correspond to 
E = 8.0 ×
10−6), so that the two-electron basis size (N2e = 66) is slightly
more than the double of the SF case. With this number of SF an
even better energy result would be obtained. This improvement
in the convergence is in agreement with the results presented in
an earlier publication [10], where only the asymptotic behavior
of the basis was optimized through the generating potential
for the complete helium calculations; SF yielded better results
than other CSF calculations.

Let us now consider the real helium atom and larger
calculations varying Li , the maximum number of angular
momenta per electron. To be able to compare directly with
the work of Bromley and Mitroy [1], we choose Li from
0 to 12, and use N1e = 20 or N1e = 35 radial SF for the
angular momentum quantum number li associated with each
electron. In Ref. [1], the authors performed a variational

calculation, for each li , over the Laguerre parameter, noted
here λBM, which is related to the CSF energy through E

(BM)
i =

λ2
BM
2 ; this implied 13 variational parameters for their largest

calculation. In our previous work [10], we made use of
N1e = 20 only, and obtained better energies than Bromley and
Mitroy for the Li = 0 (TP) and Li = 12 cases. We should also
emphasize that, in that paper, we varied only the λ parameter
of the generating Yukawa potential (we also varied Ei to
obtain the Li = 12 result); the electron-nucleus cusp condi-
tions were not fulfilled since we used δ = 0 in Eq. (10). Using
the λ parameter obtained for the Li = 0 case, we computed the
Li = 1,..,12 cases, and obtained better results than in Ref. [1],
but only for Li = 1.

In the present study we introduce more parameters to
control the features of the generating potential, besides the
energy (Ei) and the range of the Yukawa factor λ. We first noted
that no screening effects were necessary when the number of
basis elements per electron N1e is big enough, so we chose
Zas = 2. Also, we fixed the Coulomb behavior at the origin,
setting Zin = 2. Since the calculations with a pure Yukawa
generating potential gave very accurate results, we chose
γ = 4. This prevents the modification of the potential in the
intermediate or asymptotic region, but allows the fulfillment
of the electron-nucleus cusp conditions.

These considerations left us with only three variational
parameters: Ei , λ, and δ. We chose to perform sequential
optimizations for these parameters, for Li = 0 and Li = 12.
This means to variationally select δ first, while λ and Ei are
held fixed. Then, the best energy Ei is found with the new
value of δ fixed, and so on. The starting point of this iteration
scheme were the best parameters of our previous work [10],
(i.e., Ei = −1.483 85, λ = 0.375, and δ = 0 for Li = 0, and
Ei = −1.05, λ = 0.795, and δ = 0 for Li = 12). This simple
iterative mechanism converges after two iterations to optimal
sets of parameters, noted pi , which are recorded in Table III,
for the two angular momenta Li considered.

In Tables IV and V we show the results of our calculations
of the helium ground-state energy evaluated with N1e = 20,
and compare them with our previous results [10], with those of
Bromley and Mitroy [1], and the reference values of [13,14].
From Table IV (set of parameters p0), it is clear that the present
results are better than our previous ones for Li = 0,1,2,3,4;
they are also better than those of Ref. [1] but only for Li =

TABLE IV. Partial-wave analysis of the helium ground state. Li (i = 1,2) is the maximum angular momentum considered for each electron.
Our present results, obtained with parameter set p0 given in Table III, are compared with those published in Refs. [1] and [10], evaluated with
N1e = 20 one-electron basis functions for each radial coordinate and partial wave Li . The values of the variational energy parameters EBM

i are
also indicated. Reference (noted Exact) values are from Refs. [13,14]. All values are in atomic units.

ELi
: He ground-state energy (parameter set p0, N1e = 20 per li)

Li N1e Present work Previous work [10] Ref. [1]

0 20 −2.879 028 688 −2.879 028 654 −2.879 028 507 (EBM
0 = 11.520)

1 40 −2.900 516 042 −2.900 515 957 −2.900 515 873 (EBM
1 = 30.420)

2 60 −2.902 766 487 −2.902 766 371 −2.902 766 378 (EBM
2 = 51.050)

3 80 −2.903 320 534 −2.903 320 378 −2.903 320 527 (EBM
3 = 73.205)

4 100 −2.903 517 846 −2.903 517 659 −2.903 517 973 (EBM
4 = 98.000)

Exact −2.903 724 377 [14]
Exact (Li = 0) −2.879 028 767 [13]
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TABLE V. Same as Table IV but using the basis parameters indicated as p12 (see Table III). In these calculations we also use N1e = 20
radial functions per coordinate and for each partial wave term Li . All values are in atomic units.

ELi
: He ground-state energy (parameter set p12, N1e = 20 per li)

Li N1e Present work Previous work [10] Ref. [1]

0 20 −2.879 028 733 −2.879 028 654 −2.879 028 507 (EBM
0 = 11.520)

1 40 −2.900 516 156 −2.900 515 957 −2.900 515 873 (EBM
1 = 30.420)

2 60 −2.902 766 709 −2.902 766 371 −2.902 766 378 (EBM
2 = 51.050)

3 80 −2.903 320 888 −2.903 320 378 −2.903 320 527 (EBM
3 = 73.205)

4 100 −2.903 518 349 −2.903 517 659 −2.903 517 973 (EBM
4 = 98.000)

5 120 −2.903 605 403 −2.903 604 533 −2.903 605 022 (EBM
5 = 120.12)

6 140 −2.903 649 522 −2.903 648 475 −2.903 649 142 (EBM
6 = 146.20)

7 160 −2.903 674 195 −2.903 672 975 −2.903 673 821 (EBM
7 = 174.84)

8 180 −2.903 689 042 −2.903 687 656 −2.903 688 677 (EBM
8 = 202.00)

9 200 −2.903 698 496 −2.903 696 951 −2.903 698 142 (EBM
9 = 231.12)

10 220 −2.903 704 795 −2.903 703 098 −2.903 704 451 (EBM
10 = 262.20)

11 240 −2.903 709 147 −2.903 707 307 −2.903 708 815 (EBM
11 = 292.82)

12 260 −2.903 712 247 −2.903 710 272 −2.903 711 927 (EBM
12 = 325.12)

Exact −2.903 724 377 [14]
Exact (Li = 0) −2.879 028 767 [13]

0,1,2,3, so that no further improvement in the results would
be obtained compared to [10]. On the other hand, the results
obtained with the set p12 (Table V) are consistently better than
the values given in Ref. [1], and closer to the exact value for a
given Li . The performance of each basis can be appreciated by
inspecting the energy increments 
Ei = Ei − Ei−1. Indeed,
for relatively small values of N1e, one can observe that the
SF basis performs better for Li < 6, while for Li � 6 no
significant improvement is observed, the results being then
quite similar to those obtained with the CSF. This is related to
the fact that, for Li > 0, the fulfillment of the cusp conditions
has only a small effect; however, it is measurable because
the basis parameter accommodates itself to minimize globally

the mean energy. At the same time, for all Li , the SF basis
still performs better because of its adequate description of
asymptotic conditions. Further improvements could be gained
by varying the α parameter for each partial wave.

Now, one could ask whether these optimal generating
Sturmian basis parameters (p12) would work for even larger
basis-size calculations. To answer this question, we compare
our results obtained with this set with the very accurate
variational values given by Bromley and Mitroy [1] with
N1e = 35 CSF and Li + 1 variational parameters (i.e., 13 for
Li = 12). More specifically, they used N1e = 35 orbitals for
each li except for li = 0 and li = 1 for which they use N1e = 44
and N1e = 36, respectively. Here, we choose N1e = 44 for

TABLE VI. Same as Table IV but using the basis parameters indicated as p12 (see Table III). In these calculations we use N1e = 35 radial
functions per coordinate and for each partial wave term Li , except at Li = 0 for which we use N1e = 44 functions per coordinate. This is done
in order to compare with calculations of Ref. [1] (see text). All values are in atomic units.

ELi
: He ground-state energy (parameter set p12, N1e = 35 per li)

Li N1e Present work N1e Ref. [1]

0 44 −2.879 028 762 44 −2.879 028 760 (EBM
0 = 36.98)

1 70 −2.900 516 241 80 −2.900 516 228 (EBM
1 = 67.28)

2 105 −2.902 766 843 115 −2.902 766 823 (EBM
2 = 103.68)

3 140 −2.903 321 071 150 −2.903 321 045 (EBM
3 = 147.92)

4 175 −2.903 518 582 185 −2.903 518 552 (EBM
4 = 184.32)

5 210 −2.903 605 686 220 −2.903 605 654 (EBM
5 = 224.72)

6 245 −2.903 649 854 255 −2.903 649 820 (EBM
6 = 259.92)

7 280 −2.903 674 574 290 −2.903 674 539 (EBM
7 = 307.52)

8 315 −2.903 689 465 325 −2.903 689 430 (EBM
8 = 351.12)

9 350 −2.903 698 961 360 −2.903 698 926 (EBM
9 = 392.00)

10 385 −2.903 705 298 395 −2.903 705 263 (EBM
10 = 435.12)

11 420 −2.903 709 686 430 −2.903 709 652 (EBM
11 = 480.50)

12 455 −2.903 712 820 465 −2.903 712 786 (EBM
12 = 528.12)

Exact −2.903 724 377 [14]
Exact (Li = 0) −2.879 028 767 [13]
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Li = 0, to be able to compare the TP value, and N1e = 35 for
all other angular momenta Li = 1, . . . ,12. This choice leads to
a slightly smaller basis calculation than in Ref. [1]. Table VI
shows that, even though optimized for a smaller basis, our
results are still better than those of Bromley and Mitroy [1],
for all values of the angular momenta. As far as we know, the
helium ground-state energy −2.903 712 820 a.u. is the best
value obtained with uncorrelated basis functions.

In Tables IV–VI, we have included, for each Li , the E
(BM)
i

values which are related to the only adjustable parameter λBM

of the CSF [1]. Optimization over these parameters results in
energies Ei which can be about 500 times larger than our values
for the largest angular momentum considered (Li = 12). As
these values increase considerably with Li , the optimization is
clearly not being performed over the asymptotic wave-function
behavior. Instead, it is being used to avoid the spread of the
basis to regions where the amplitude of the ground state is
negligible. This is done in a natural way with our SF since
the generating potential controls the range of the basis set
(see [10] for details), and variational minima of the energies
are in accordance with the true asymptotic behavior.

IV. CONCLUDING REMARKS

An overview of the CI method with Sturmian functions
was presented, with an emphasis on the role of the Coulomb
behavior of the auxiliary and generating potentials. Basically,
we propose adequate conditions on the generating potential
V (r) in order that the whole set of Sturmian functions—and
hence the constructed expansion representing the state—
satisfy unique two-body electron-nucleus Kato cusp condi-
tions, and has a unique Coulomb-like logarithmic asymptotic
behavior. With this choice the Sturmian set concentrates in the
region where the atomic wave function is mainly located. This
is in contrast with the case of the CSF which, by construction,
include many different behaviors in both regions.

Two illustrations were given. For one particle moving in
a model central potential, the properties of the SF basis at
r → 0 and r → ∞ exactly match those of the physical state
to be represented. With this optimal choice, the CI method
is highly convergent and superior to the CSF expansion.
Two-electron systems are then studied. Through an adequate
election of the generating potential, the two electron-nucleus
Kato cusp conditions were exactly imposed on the total
wave function. The convergence was also accelerated by
means of an asymptotic Coulomb charge, in the auxiliary
potential of the Sturmian basis, simulating the effect of the
interelectronic repulsion term. For the Temkin-Poet model,
the comparison between different Sturmian expansions shows
that the number of two-electron CSF must be almost twice
the number of optimized SF in order to obtain the same
level of energy accuracy. We have then considered the
partial wave series of the helium atom in its ground state,
including the full electron-electron correlation. Our optimized
SF basis yielded better results compared to the—already
very accurate—energy values published by Bromley and
Mitroy [1].

Hence, our study has illustrated how, if n-electron systems
were to be studied in a similar way, the optimization of the
radial basis functions may reduce considerably the computa-
tional size, and yield better energy values.
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