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Molecular polarizability in quantum defect theory: polar molecules
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The reduced-added Green’s function technique in the quantum defect theory combines the advantages of
analytical and ab initio methods in calculating frequency-dependent (dynamic) polarizabilities of atoms and
molecules, providing an exact account for the high-excited and continuum electronic states. In the present paper
this technique is modified to take into account the long-range dipole potential of a polar molecule core. The
method developed is applied to calculation of the dynamic polarizability tensors of alkali-metal hydrides LiH
and NaH as well as to some fluorides (CaF and BF) in the frequency range up to the first resonances. The results
are in good agreement with ab initio calculations available for some frequencies.
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I. INTRODUCTION

The previous papers of the present series discussed the
modifications of the quantum defect theory (QDT) which
allowed us to use it for calculation of frequency-dependent
(dynamic) polarizabilities of different (close- and open-shell)
atoms [1] and nonpolar diatomic molecules [2]. In the present
paper we develop the theory further to calculate the dynamic
polarizabilities of polar diatomic molecules.

Besides the traditional molecular physics applications, such
as ac Stark effect, Raman and Rayleigh light scattering,
Faraday and Kerr effects [3], and long-range intermolecular
interactions [4], the computation of dynamic polarizabilities
are relevant for studies of cold and ultracold molecules, such
as for modeling the Stark deceleration and trapping of polar
molecules in external electromagnetic fields, or to predict their
possible orientation and alignment in a superposition of static
and oscillating electric fields [5].

The dynamic polarizabilities of homonuclear alkali-metal
dimers, which were among the first cold molecules produced
experimentally, was calculated in the previous paper [2]. In
this context there is growing interest in electronic properties
of polar alkali-metal hydrides, LiH and NaH [5,6], whose
polarizabilities are presented in this paper. It should be
mentioned that these molecules are interesting also from
the astrophysical and astrochemical points of view: They are
detected in the interstellar clouds [7], in the atmosphere of
Jupiter and Saturn [8], and in quasars spectra [9]. Since LiH
was one of the first molecules formed in the universe, their
radiation and collisional properties are important study of
the early universe chemistry [10]. The boron monofluoride
molecule, BF, is also of astrochemical interest; it has been
recently detected in the sunspot spectra [11]. This molecule
plays an important role in coordination chemistry due to its
high bond polarity [12]. Among the metal monofluorides, the
CaF molecule is a well-known object for studying the Rydberg
electron states [13–20]. The large dipole moment of CaF+
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makes the Rydberg spectra of CaF completely different from
those of the nonpolar molecules.

A Rydberg electron spends most of its time at a long
distance away from a molecular core. Therefore, the motion
of this electron is mostly affected only by long-range parts
of the core potential. Apart from the Coulomb field of the
molecular core, the terms of a multipole expansion of the core
potential also play a role of such long-range potentials. In
particular, the core of polar molecules possesses a moment of
the lowest multipolarity, a dipole moment; therefore, the theory
of Rydberg states in polar molecules should be constructed
taking consistently into account the core dipole moment. A
variant of such consistent consideration taking into account
the above-mentioned important difference from the nonpolar
molecules was described in terms of so-called dipole-spherical
angular functions which give the exact analytical solutions of
Schrödinger equation for an electron in the field of a point
charge combined with a point dipole [21–23].

It seems that the above dipole-spherical functions were used
for the first time by Debye [24] in the analysis of the Stark effect
for a symmetric rotator, with this problem actually leading
to the angular functions. These functions were used for the
description of the Rydberg states of polar molecules within
the framework of the Born-Oppenheimer [21,22] and the
inverse-Born-Oppenheimer [23] rotational approximations.
The oscillator strengths of excimer Rydberg molecules were
calculated with the help of the dipole-spherical functions in
Refs. [25,26]. These functions were also used for studying the
photodetachment of atomic anions in a strong field [27], and for
studying the single-photon photodetachment of dipole-bound
molecular anions [28,29]. In Ref. [30] the dipole-spherical
angular functions were applied to the Zeeman effect in
rotational-Rydberg states of polar molecules.

In the present paper we give the further development of
the quantum defect Green’s function (QDGF) technique [1,2]
and generalize it for calculation of polarizabilities of polar
molecules. This technique combines the ab initio description
of the ground and low-excited molecular states with the
analytical description of the high-excited and continuum states
of the optical electron in polar molecules using the dipole-
spherical functions as exact solutions for the Schrödinger
equation with dipole-Coulomb potential. A brief sketch of
this model is given below; atomic units are used throughout.
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II. GENERAL FORMALISM

The Hamiltonian of the electron moving in a “Coulomb +
point dipole” field can be written as

Ĥ C+d = T̂ + V̂ ; (1)

T̂ = − 1

2r2

∂

∂r

(
r2 ∂

∂r

)
+ l̂2

2r2
; (2)

l̂2 = − 1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
− 1

sin2 ϑ

∂2

∂2ϕ
(3)

V̂ = −Z

r
+ (d · r)

r3
. (4)

Here T̂ is the electron kinetic energy operator, l̂2 is the squared
electron angular momentum, and V̂ is the interaction between
the electron and the molecular core with the charge Z and the
dipole moment d.

The Schrödinger equation with the dipole-Coulomb Hamil-
tonian (1) can be separated in spherical coordinates r , ϑ , ϕ with
the z axis along the dipole moment direction d:

Ĥ C+d�C+d(r) = E�C+d(r);
(5)

�C+d(r) = RC+d(r)Z�m(ϑ, ϕ),

where the dipole-spherical functions Z�m(ϑ, ϕ) satisfy

(l̂2 + 2d cos ϑ)Z�m = η�mZ�m. (6)

The separation constant, that is, the eigenvalue η�m of the
two-dimensional angular operator (6) is enumerated by two
quantum numbers; one of them is the projection m of the
electron’s orbital momentum onto the molecular z axis. To
understand the meaning of the second quantum number, �,
we expand the dipole-spherical functions over the familiar
spherical harmonics:

Z�m(ϑ, ϕ) =
∑

L>|m|
am

�,LYLm(ϑ, ϕ), (7)

and substitute the expansion (7) into Eq. (6) to ob-
tain the recurrence relation for the expansion coefficients
am

�l (d):

A−
Lam

�,L−1 + A+
Lam

�,L+1 = (η�m − L+L−)am
�,L,

(8)

A±
L = 2d

[
L2

± − m2

4L2± − 1

]1/2

; L± = L + 1

2
± 1

2
.

The expansion (7) explicitly demonstrates the l mixing
due to nonspherical (axial) symmetry of the polar molecule’s
core potential (4), so the convenient orbital momentum l

is not a good quantum number. Instead of it we introduce
the “quasimomentum” � = �lm(d) according to η = �(� + 1).
The noninteger quasimomentum values are enumerated by
the integer l, m numbers so that in the zero dipole limit
we have

η�m(d → 0) −→ l(l + 1); am
�,L(d → 0) −→ δl,L, (9)

and therefore the dipole-spherical functions Z�m(ϑ, ϕ) turn
to the convenient spherical functions Ylm(ϑ, ϕ). Since the
quasimomentum � = �lm is completely determined by
the values of l and m (and also by the value d of the dipole
moment), the dipole-spherical functions can be written in the
form Zlm.

The condition (9) uniquely defines the solution of the
homogeneous eigenvalue difference problem (8), (9). It can
be explicitly shown [22,25] that in the small dipole limit,

d � l(l + 1), (10)

which can be also treated as the quasiclassical limit for
the angular equation (6), the quasimomentum tends to the
convenient orbital quantum number:

�lm � l + 2d2 l(l + 1) − 3m2

l(l + 1)(4l2 − 1)(2l + 3)
, l � 1;

(11)
�00 � −2

3
d2.

The expansion coefficients am
�L corresponding to the state with

the quasimomentum �lm are expressed in the low dipole limit
(10) as

am
�,L � δl,L + 1

2

[
δL−,l

A−
L

L−
− δL+,l

A+
L

L+

]
, l � 1;

(12)
a0

�,L � δL,0 + d√
3
δL,1, l = 0;

where L � |m| according to Eq. (10).
The radial function corresponding to the bound state with

radial quantum state n (which is equal to the number of nodes
in r) and the angular quantum numbers l, m (which define the
quasimomentum � = �lm) is expressed in the dipole-Coulomb
model as

RC+d
nlm (r) = 2Z3/2

N2
nlm

x�e−x

√
n!

�(2� + 2 + n)
L2�+1

n (x), (13)

where x = 2Zr/Nnlm and L is the Laguerre polynomial [31].
The functions (13) have Coulomb form with the noninteger
quasimomentum instead of the orbital quantum number and
noninteger principal quantum number Nnlm which determines
the discrete energy levels in the dipole-Coulomb model:

εnlm = − Z2

2N 2
nlm

; Nnlm = n + �lm + 1. (14)

The noninteger value of Nnlm in Eq. (14) provides the account
for the long-range (dipole) part of the molecular core’s
potential. In the QDT framework the account of the short-range
part can be provided in terms of the “short-range” quantum
defect µs

lm:

Enlm = − Z2

2ν2
nlm

; νnlm = Nnlm − µs
lm. (15)

The total (long- plus short-range) quantum defect, which
is normally reported in the literature, can be expressed as
µlm = �lm − l + µs

lm. Note that the “atom-like” spectroscopic
notation |nlm〉 does not imply the l mixing and is normally
assigned to the molecular states in the united atom limit.
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The Green’s function G(E, r, r ′) of the optical electron
in the dipole-Coulomb QDT model (QDGF) satisfies the
following equation outside the molecular core:

(E − Ĥ C+d)GQD(E, r, r ′) = δ(r − r ′), r > rc, (16)

where E is the virtual energy of the optical electron. Inserting
the expansion of the three-dimensional Green’s function,

GQD(E, r, r ′) =
∞∑
l=0

l∑
m=−l

g
QD
lm (E, r, r ′)Zlm(r)Z∗

lm(r ′), (17)

over the dipole-spherical functions into Eq. (16) we obtain
the equation for the radial QDGF g

QD
lm (E, r, r ′) in the r > rc

domain:[
1

2r2

d

dr

(
r2 d

dr

)
− �(� + 1)

2r2
+ E + Z

r

]
g

QD
lm (E, r, r ′)

= 1

rr ′ δ(r − r ′), (18)

whose solution can be given in terms of Whittaker func-
tions [31] (see Refs. [1,2] for the details),

g
QD
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2

(
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ν

)]
; ν = 1/

√−2E.

(19)

Equation (19) differs from the corresponding expression for
nonpolar molecules [2] by the dependence on dipole moment
via the noninteger quasimomentum �lm. By the similar way
we introduce the function,

lm(ν)

= ν2q

[
q−1∏
k=0

(k − � + µlm + ν)(k + 1 + � − µlm − ν)

]−1

,

(20)

and the function �lm(E) which coincides with lm(ν) in the
dipole-Coulomb eigenstates (14):

�lm(εnlm) = lm(Nnlm). (21)

The quantum defect function µs
lm(ν) in Eq. (19) should be

constructed by interpolation from the experimental Rydberg
spectrum according to (15):

µs
lm(Enlm) = Nnlm − νnlm. (22)

The radial wave functions in QDT can be obtained as a
residue of the radial QDGF (19) in the discrete spectrum points
Enlm [1]. Here we write the three-dimensional QDT wave

function of the optical electron for the r > rc domain:

�
QD
nlm(r) = Z1/2

rνnlm

[
�lm(Enlm)

lm(νnlm)

] 1
2

×
(−1)nWνnlm,�+ 1

2

(
2Zr
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)
Zlm(ϑ, ϕ)√

�(� + 1 + νnlm)�(νnlm − �)
(
1 + ∂µs

lm(νnlm)
∂ν

) .

(23)

The GF in r, r ′ representation 〈r|Ĝ(E)|r ′〉 = G(E, r, r ′)
can be expressed in terms of spectral expansion over discrete
|d〉 and continuous |c〉 states:

G(E, r, r ′) =
∑

d

�∗
d (r ′)�d (r)

E − Ed

+
∫

dEc

�∗
c (r ′)�c(r)

E − Ec

. (24)

The “reduce-adding” procedure used here and in the
previous papers [1,2] consists of substitution of the first N

low-excited states (including the ground one) wave functions
�

QD
d (r) in Eq. (24) by ab initio wave functions obtained with

the help of computational chemistry (CC) methods:

G(E, r, r ′) = GQD(E, r, r ′) −
N−1∑
d=0

�
QD∗
d (r ′)�QD

d (r)

E − Ed

+
N−1∑
d=0

�CC∗
d (r ′)�CC

d (r)

E − Ed

. (25)

The number N of the substituted states should be determined
from convergence of the numerical values. If no states are
substituted, then formally we have N = 0 that means the
absence of the reducing-adding procedure so that the sums
in Eq. (25) vanish and G = GQD for N = 0.

The “reduce-adding” formalism for calculation of polariz-
abilities in terms of the reduced-added GF G (25) is similar to
that given in Ref. [2].

III. RESULTS AND DISCUSSION

The ab initio calculations for the low-excited states was
calculated using the GAUSSIAN98 package [32]. For the basis
expansion coefficients of the low-excited states, this package
gives accuracy of about five significant digits. The QD-related
function �lm(ε) is built by interpolation of the quantum defects
(or energy level values) from literature where they are given
four-digit accuracy. The results for transition moments and
static polarizabilities reported in the papers, which are used for
comparison with our calculations, have the same accuracy and
therefore our results are presented with four significant digits.
It should be expected that this accuracy does not sufficiently
decrease for near-resonant frequencies since the behavior of
the GF near resonances is determined by (i) the position of
a resonance which is taken from the experimental data and
(ii) by the residue in the resonance which is determined by the
product of the corresponding bound state’s wave functions [in
the case of low-excited states corresponding to first or second
resonances, these residues are determined by ab initio wave
functions in Eq. (25)]. The overall accuracy of our calculation
should also not decrease when increasing the number N

of the substituted states since GF should then converge to
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TABLE I. Parallel polarizability αzz(ω) (in a.u.) LiH (the first
resonance at ω = 0.1314 a.u.).

QDT (this work)

ω (a.u.) N = 0 N = 1 N = 2 Ref. [37]

0.0 41.09 24.70 26.01 26.08
0.01 41.27 24.79 26.10 26.17
0.02 41.83 25.06 26.38 26.45
0.03 42.81 25.52 26.86 26.93
0.04 44.28 26.22 27.58 27.65
0.05 46.37 27.21 28.60 28.67
0.06 49.28 28.58 30.00 30.07
0.07 53.37 30.49 31.96 32.00
0.08 59.27 33.24 34.76 34.75
0.09 68.25 37.38 38.97 38.84
0.10 83.15 44.21 45.89 45.44
0.11 112.2 57.46 59.24 57.85
0.12 192.6 93.90 95.80 89.86

its “ab initio” value. However, significant increase of N is
meaningless because of, for example, relativistic, vibrational,
rotational corrections, etc.

A. LiH

The ground-state wave function for the LiH molecule
was calculated by the MP2 method (i.e., Hartree-Fock cal-
culation followed by a Møller-Plesset correlation energy
correction [33]) using the 6–31 G∗ basis at the equilibrium
internuclear separation Re(LiH) = 3.015 a.u. [34]. The quan-
tum defect function was interpolated using the spectroscopic
data taken from Ref. [35]. The dipole moment of the molecular
core is d(LiH+) = 0.703 D at Re(LiH+) = 4.15 a.u. [36].
In Tables I and II we present the results of calculations of
the parallel, αzz(ω), and the perpendicular, αxx(ω), dynamic

TABLE II. Perpendicular polarizability αxx(ω) (in a.u.) LiH (the
first resonance at ω = 0.1684 a.u.).

QDT (this work)

ω (a.u.) N = 0 N = 1 N = 2 Ref. [37]

0.0 21.57 30.07 29.36 29.75
0.01 21.62 30.16 29.44 29.83
0.02 21.79 30.41 29.70 30.09
0.03 22.07 30.85 30.13 30.52
0.04 22.47 31.49 30.77 31.16
0.05 23.03 32.35 31.63 32.02
0.06 23.75 33.49 32.77 33.16
0.07 24.69 34.96 34.25 34.63
0.08 25.89 36.87 36.15 36.52
0.09 27.45 39.35 38.63 38.98
0.10 29.52 42.64 41.92 42.24
0.11 32.31 47.12 46.40 46.66
0.12 36.28 53.51 52.79 52.92
0.13 42.28 63.24 62.53
0.14 52.41 79.78 79.06

TABLE III. Static polarizabilities (in a.u.) of LiH molecule.

Method αxx αzz ᾱ

Multideterminant ket 30.8 26.9 29.5
with polynomial factor [35]
DQMC [38] 30.9 24.6 28.8
TDGI [39] 29.96 27.04 28.99
CCSD(T) [40] 29.57 25.79 28.31
MCSCF [41] 29.76 26.36 28.63
TDGI [37] 29.75 26.08 28.53
CCSD(T) [42] 30.01 26.81 28.94
QDGT (this work) 29.36 26.01 28.24

polarizabilities calculated according to Eq. (24) of our previous
work [2] without the “reduce-adding” procedure (N = 0,
the first column) and with N = 1, 2 first dipole transition
moments substituted by the values calculated ab initio [35].
Substitution of more than N = 2 states does not result in
significant change in the calculated values of polarizability. For
instance, substitution of N = 3 states changes the αzz(ω) value
by 0.6%, and the αzz(ω) value by 0.07%; this demonstrates
the convergence of the “reduce-adding” procedure. As it
is seen from Tables I and II, our calculations are in good
agreement with time-dependent gauge independent (TDGI)
ab initio results [37]. Table III compares the static (ω = 0)
values of the perpendicular, parallel, and mean polarizabili-
ties αxx , αzz, and ᾱ = 1

3 (2αxx + αzz) calculated by different
methods.

B. NaH

We calculated the wave function of the LiH ground state
by MP2 method using the 6–31 G∗∗ basis at the equilibrium
internuclear separation Re(NaH) = 3.566 a.u. [43]. Since the
experimental energies are known only for the A1�, B1, C1�

states, we used the energy level values calculated ab ininio
in Refs. [39] and [44] for interpolation of µlm(ν) function.
The transition dipole moments used in the “reduce-adding”
procedure were also taken from Refs. [39,44]. Tables IV and

TABLE IV. Parallel polarizability αzz(ω) (in a.u.) NaH (the first
resonance at ω = 0.1157 a.u.).

QDT

ω (a.u.) N = 0 N = 1 N = 2

0.0 88.63 54.41 55.95
0.01 89.25 54.77 56.32
0.02 91.16 55.87 57.44
0.03 94.54 57.83 59.42
0.04 99.79 60.86 62.48
0.05 107.5 65.33 67.00
0.06 118.9 71.93 73.66
0.07 136.3 81.97 83.78
0.08 164.6 98.33 100.2
0.09 216.6 128.5 130.5
0.10 340.1 199.8 202.0
0.11 962.0 559.7 562.1
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TABLE V. Perpendicular polarizability αxx(ω) (in a.u.) NaH (the
first resonance at ω = 0.150858 a.u.).

QDT

ω (a.u.) N = 0 N = 1 N = 2

0.0 35.49 39.09 40.35
0.01 35.61 39.23 40.49
0.02 35.98 39.65 40.92
0.03 36.62 40.38 41.66
0.04 37.57 41.45 42.76
0.05 38.88 42.93 44.27
0.06 40.64 44.92 46.30
0.07 42.98 47.58 49.00
0.08 46.13 51.14 52.63
0.09 50.44 56.03 57.60
0.10 56.55 62.98 64.64
0.11 65.75 73.44 75.23
0.12 80.94 90.75 92.69
0.13 110.6 124.6 126.7
0.14 194.2 220.1 222.5
0.15 2208. 2526. 2529.

V show the results of calculations without the “reduce-adding”
procedure (N = 0) and with the substitution of N = 1, 2
states. In calculation of the static polarizabilities, a good
agreement with the other authors was achieved even for N = 1
for both αxx(0) and αzz(0) values. These results are presented
in Table VI.

C. BF

As for the case of NaH, the ground-state wave function
for LiH molecule was calculated by MP2 method using
the 6–31 G∗∗ basis at the equilibrium internuclear separation
Re(BF) = 2.386 a.u. [47]. The dipole moment d(BF+) � 3 D
of the molecular core ion was taken from Fig. 2 of Ref. [47].
To build the interpolation function µlm(ν) we used the spec-
troscopic data from Ref. [48]. The results of the calculations
for the polarizabilities of BF molecule are shown in Tables
VII and VIII. The number of the substituted states N = 1
for the perpendicular polarizability and N = 2 for the parallel
polarizability. Tables VII and VIII contain also the results for
N = 3, 4 to illustrate the convergence of the “reduce-adding”
procedure. The convergence for αxx(ω) is not monotonic,
but the agreement with ab initio TDGI calculations [49] is
satisfactory: for the static value the difference is 4.8% and
0.9% for αxx(ω) and αzz(ω) correspondingly. This discrepancy

TABLE VI. Static polarizabilities (in a.u.) of NaH molecule.

Method αxx αzz ᾱ

CCSD(T) [39] 39.60 58.30 45.80
TDGI [39] 41.37 58.01 46.92
QCISD(T) [45] 39.97 56.53 45.99
CCSD(T) [42] 39.70 58.90 46.10
Finite field method [46] 38.80 53.70 43.70
QDT (this work) 40.35 55.95 45.55

TABLE VII. Parallel polarizability αzz(ω) (in a.u.) BF (the first
resonance at ω = 0.298 a.u.).

QDT (this work)

ω (a.u.) N = 0 N = 1 N = 2 N = 3 N = 4 Ref. [49]

0.0 33.41 34.40 17.63 18.04 16.74 17.48
0.02 33.53 34.52 17.68 18.10 16.80
0.04 33.89 34.90 17.85 18.26 16.95
0.06 34.50 35.53 18.12 18.55 17.23
0.072 35.00 36.06 18.35 18.79 17.43 17.75
0.08 35.40 36.47 18.53 18.97 17.61
0.0885 35.88 36.97 18.75 19.19 17.81 18.03
0.0933 36.18 37.28 18.89 19.33 17.94 18.12
0.0995 36.61 37.72 19.08 19.53 18.13 18.25
0.10 36.64 37.76 19.10 19.55 18.14
0.1045 36.97 38.10 19.25 19.70 18.28 18.36
0.12 38.29 39.47 19.84 20.31 18.85
0.1252 38.80 40.00 20.07 20.54 19.07 18.92
0.1294 39.24 40.46 20.27 20.75 19.26 19.06
0.14 40.47 41.74 20.82 21.31 19.79
0.16 43.35 44.74 22.11 22.63 21.02
0.18 47.23 48.79 23.84 24.40 22.68
0.20 52.59 54.39 26.23 26.84 24.98
0.22 60.33 62.51 29.66 30.35 28.29
0.24 72.25 75.07 34.91 35.69 33.38
0.28 135.3 143.9 63.02 64.16 60.95

is probably due to differences in the experimental [48] and the
TDGI calculated [49] BF energy spectra.

D. CaF

The ground-state 2�+ of CaF contains only p0 = 1 electron
over the closed core subshells. This makes it similar to

TABLE VIII. Perpendicular polarizability αxx(ω) (in a.u.) BF (the
first resonance at ω = 0.233 a.u.).

QDT (this work)

ω (a.u.) N = 0 N = 1 N = 2 Ref. [49]

0.0 7.320 20.93 20.78 21.99
0.02 7.349 21.06 20.91
0.04 7.439 21.46 21.31
0.06 7.596 22.17 22.02
0.072 7.727 22.77 22.62 23.71
0.08 7.831 23.26 23.10
0.0885 7.959 23.86 23.70 24.73
0.0933 8.040 24.25 24.09 25.09
0.0995 8.154 24.80 24.63 25.60
0.10 8.164 24.84 24.68
0.1045 8.255 25.29 25.12 26.07
0.12 8.626 27.15 26.98
0.1252 8.774 27.91 27.73 28.56
0.1294 8.903 28.58 28.41 29.26
0.14 9.276 30.57 30.39
0.16 10.23 35.98 35.78
0.18 11.73 45.48 45.27
0.20 14.58 66.29 66.05
0.22 23.77 149.2 148.9
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TABLE IX. Parallel αzz(ω) and perpendicular αxx(ω) polarizabil-
ities (in a.u.) CaF.

QDT

ω (a.u.) αzz αxx ᾱ

0.0 37.85 75.50 62.95
0.005 37.84 75.84 63.18
0.01 38.21 76.90 64.00
0.015 38.77 78.72 65.40
0.02 39.59 81.42 67.48
0.025 40.71 85.16 70.34
0.03 42.16 90.22 74.20
0.035 44.04 97.01 79.35
0.04 46.46 106.2 86.28
0.045 49.60 118.9 95.80
0.05 53.73 137.1 109.3
0.055 59.31 164.9 129.7
0.06 67.17 211.4 163.4
0.065 78.91 304.0 229.0
0.07 98.18 571.6 413.8
0.075 135.4 8881. 5966.

0.08 236.7
0.085 1580.

one-electron alkali-metal-like systems which are well de-
scribed by QDT, and the large dipole moment d(CaF+) � 9 D
of the molecular core makes this molecule an ideal object
for studying Rydberg states in polar molecules. Indeed, the
Rydberg states of CaF are very well described [13–20]; to build
the interpolated function µlm(ν) we used the experimental
data from Refs. [13,14,16,50]. Table IX contains the results
for dynamic polarizabilities calculated without the “reduce-
adding” procedure. It can be justified by good agreement
of the static polarizabilities (Table X) with the ab initio
calculations [51]. This fact is not surprising due to the
above-mentioned similarity between the alkaline-metal-earth
halides and alkali-metal atoms. For the latter the calculation of
polarizability does not require substitution of any states [1].

TABLE X. Mean polarizability (in a.u.) and polarizability
anisotropies of CaF molecule.

Method ᾱ γ

TEK [51] 61.88 −38.94
D-shell(−1) [51] 62.83 −35.09
D-shell(q) [51] 60.94 −27.20
QDT (this work) 62.95 −37.64

IV. CONCLUDING REMARKS

This paper continues the series [1,2] where we develop
the quantum defect theory (QDT) for simple calculation of
dynamic polarizability of molecules in a wide frequency range.
The Green’s function of the optical electron in this technique
(QDGF) with the reducing-adding procedure of the low-
excited states provides an exact account for the high-excited
and continuum electronic states. In the description of the latter
states, the dipole moment of the molecular core is taken into ac-
count using the formalism of dipole-spherical functions giving
exact analytical solution of the Schrödinger equation for the
electron moving in the field of point charge and point dipole. As
an application, we present simple and efficient semianalytical
method for calculation of electric frequency-dependent dipole
polarizability for simple diatomics (LiH, NaH, BF, and CaF).
We consider the proposed method to be a helpful addition to ab
initio methods of computational quantum chemistry [52–55];
its accuracy is comparable with the accuracy of the ab initio
methods. The method is also applicable for calculation of other
polarizability-related electromagnetic properties of simple
molecules, such as depolarization ratios [56] or magneto-
optical constants [57].
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[20] V. S. Petrović, J. J. Kay, S. L. Coy, and R. W. Field, J. Chem.
Phys. 131, 064301 (2009).
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