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We have studied the effect of atomic electrons on the nuclear transition from the isomeric 229mTh state to
the ground 229gTh state in 229Th+ due to the electronic bridge process. The exact value of the nuclear transition
frequency is unknown so far; therefore, we have developed a formalism that can be used for any nuclear transition
frequency. We have calculated positions of several high-lying even-parity states which are not presented in
experimental atomic spectra databases. We have found their energy levels and g factors.

DOI: 10.1103/PhysRevA.81.042516 PACS number(s): 31.15.A−, 23.20.Lv, 27.90.+b

I. INTRODUCTION

The energy splitting of the ground-state doublet of the
229Th nucleus is only several electron volts [1]. At the same
time the exact value of the frequency for the transition
from the isomeric 229mTh state to the ground 229gTh state
is unknown. Experiments give values of this frequency ωN

ranging from 3.5 ± 1.0 eV [2] to 7.6 ± 0.5 eV [3]. The
measurements of the lifetime of the isomeric state performed
by different experimental groups lead to values which differ
from each other by many orders of magnitude (see, e.g.,
[4,5]).

As was noted in [6] the nuclear transition from the isomeric
state to the ground state is of a great interest since it makes it
possible to build a very precise nuclear clock. This transition
is very sensitive to hypothetical temporal variation of the
fundamental constants [7].

The triply ionized 232Th was recently laser cooled [8].
Further, this experimental group plans to investigate the
nuclear transition between the isomeric and the ground state in
a cold 229Th3+ ion. Another experimental group [9] plans to use
the ion 229Th+ to study the nuclear 229mTh–229gTh transition.

In our previous work [10] we considered the 229Th3+ ion
and calculated the transition probability of the 229Th nucleus
from its lowest energy isomeric state 229mTh to the ground state
229gTh due to the electronic bridge (EB) process. In this paper
we consider the more complicated three-valence ion 229Th+.
In our approach we do not fix the value of the nuclear transition
frequency. Hence, the result obtained here can be applied for
any value of ωN .

The paper is organized as follows. In Sec. II we briefly
discuss the general formalism describing the EB process. In
Sec. III we describe the method of calculation of the properties
of Th+. Section IV is devoted to the results of calculations
and Sec. V contains concluding remarks. Atomic units
(h̄ = |e| = me = 1 and the speed of light c = 137) are used
throughout.

II. GENERAL FORMALISM

A derivation of the equation for the probability of the EB
process, �EB, is given in detail in [10]. For this reason we will
repeat here only the main features of the formalism.

The EB process can be represented by the two Feynman
diagrams in Fig. 1. In the following we assume that the initial

i and the final f electronic states are of opposite parity and
fixed. A real photon which is emitted or absorbed is the electric
dipole photon. The EB process can be effectively treated as the
electric dipole i → f transition of the electron accompanied
by the nuclear transition from its isomeric state to the ground
state.

Because the exact value of the nuclear transition frequency
is unknown we do not fix it in our calculation. Using the
experimental data we suggest that most probably the real value
of ωN is between 2 and 8 eV. The general expression for �EB

we used for calculation of the EB process for 229Th3+ can
be simplified for 229Th+. This is due to the spectrum of Th+
being much denser than the spectrum of Th3+. As a result,
for any nuclear transition frequency ωN lying between 2 and
8 eV we can find an atomic transition from the initial state
i to the definite intermediate state n whose frequency will
be very close to ωN . Assuming the resonance character of
the EB process we arrive at the following expression for �EB

[10]:

�EB ≈ 4

9

(ω

c

)3 |〈Ig||M1||Im〉|2
(2Im + 1)(2Ji + 1)

G1, (1)

where M1 is the magnetic dipole nuclear moment and |Ig〉 and
|Im〉 are the ground nuclear state and the isomeric nuclear state
(Ig = 5/2+, [633] Nilsson state and Im = 3/2+, [631] Nilsson
state); Ji is the electron total angular momentum of the initial
state, ω is the real photon frequency determined from the law
of conservation of energy as ω = εi − εf + ωN (where εk is
the atomic energy), and G1 can be approximated by

G1 ≈ 1

2Jn + 1

∣∣∣∣ 〈γf Jf ||D||γnJn〉〈γnJn||T1||γiJi〉
ωin + ωN

∣∣∣∣
2

. (2)

Here T1 is the electronic magnetic-dipole hyperfine coupling
operator. The total hyperfine coupling Hamiltonian HHFI may
be represented as

HHFI =
∑

λ

Mλ
1 T1λ. (3)

The operator D is the electric dipole moment operator, ωin ≡
εi − εn, and γk encapsulates all other electronic quantum
numbers. The explicit expressions for the matrix elements of
the operators T1 and D are given in our paper [10]. If we
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FIG. 1. Feynman diagrams of the EB process. The single and
double solid lines relate to the electronic and the nuclear transitions,
correspondingly. The dashed line is the photon line.

introduce the quantity

Rn ≡ |〈γf Jf ||D||γnJn〉〈γnJn||T1||γiJi〉|2 (4)

then Eq. (2) can be rewritten as

G1 ≈ 1

2Jn + 1

Rn

(ωin + ωN )2
. (5)

In Eqs. (2)–(5) the electronic state |γnJn〉 is assumed to be
fixed. This state should be chosen to meet two conditions: 1.
−ωin ≈ ωN and 2. if the first condition is fulfilled for two
atomic states we should take the state for which Rn is larger.
The second condition is important because in certain cases
the coefficients Rn for two neighboring energy levels differ by
several orders of magnitude.

In Ref. [10] we used the dimensionless quantity βM1 defined
as the ratio of the probability of the EB process, �EB, to
the probability of the M1 radiative nuclear m → g transition,
�N :

βM1 = �EB

�N

≈
(

ω

ωN

)3
G1

3(2Ji + 1)
. (6)

It is reasonable to choose the ground state (6d2 7s) J =
3/2 as the initial state i and consider the lowest lying odd-
parity state (5f 7s2) J = 5/2 as the final state f . Thus, the
intermediate atomic states contributing to G1 are even-parity
states and our purpose is to calculate the coefficients Rn for all
even-parity states whose transition frequencies to the ground
state are between 2 and 8 eV. Then, using Eqs. (5) and (6) we
can find the quantities G1 and βM1, correspondingly, for any
ωN lying between 2 and 8 eV.

III. METHOD OF CALCULATION

We consider Th+ as the atom with three valence electrons
above the closed-shell core [1s2, . . . ,6p6]. We employ the
approach combining the configuration-interaction (CI) method
in the valence space with many-body perturbation theory
(MBPT) for core polarization effects. In the following we refer
to this combined approach as the CI + MBPT method [11].

At the first stage we have solved the Dirac-Hartree-Fock
(DHF) equations [12] in the V N−3 approximation. This means
that the DHF equations were solved self-consistently for the
core electrons. After that we determined the 5f , 6d, 7p, 7s, and
8s orbitals from the frozen-core DHF equations. The virtual
orbitals were determined with the help of a recurrent procedure
[13]. The one-electron basis set included 1s–18s, 2p–17p,
3d–16d, and 4f –15f orbitals on the CI stage.

TABLE I. The low-lying energy levels in the range from 18119
to 40644 cm−1 (from 2 to 5 eV) in the CI + MBPT approximation, g

factors, and the coefficients Rn (in a.u.). � is the difference between
the energies of the ground state and the excited state. The notation
y[x] means y × 10x . The theoretical values are compared with the
experimental data.

Conf. J � (Expt.)a � (Calc.) g (Expt.)a g (Calc.) Rn

6d2 7s 3/2 0 0 0.639 0.712 9[-2]
6d3 3/2 18 119 21 351 0.93 0.887 4[-3]
6d3 5/2 20 159 23 731 1.19 1.198 2[-3]
6d3 5/2 22 106 26 005 0.92 0.931 3[-3]
6d3 3/2 25 382 29 632 1.25 1.242 2[-7]
5f 7s7p 5/2 26 489 26 971 0.776 0.747 5[-3]
5f 2 7s 3/2 26 762 27 561 0.4 0.480 1[-3]
5f 2 7s 5/2 27 594 28 396 0.963 0.975 1[-6]
5f 7s7p 3/2 27 631 28 082 0.625 0.518 3[-2]
6d3 3/2 28 011 32 348 0.717 0.841 1[-6]
6d3 5/2 28 026 32 764 1.13 0.975 1[-4]
5f 7s7p 5/2 28 824 29 367 0.987 0.993 2[-1]
5f 2 7s 5/2 29 346 30 440 0.935 0.933 1[-5]
5f 6d7p 5/2 31 259 31 973 0.781 0.903 2[-3]
5f 7s7p 5/2 31 754 32 554 0.948 0.997 4[-3]
5f 6d7p 3/2 32 959 34 051 0.874 0.834 2[-4]
5f 27s 5/2 33 731 34 891 1.031 1.014 3[-2]
5f 27s 3/2 34 019 35 306 0.823 0.910 4[-2]
5f 27s 5/2 34 175 35 727 0.986 1.095 1[-2]
5f 7s7p 5/2 34 544 34 732 1.003 0.965 2[-2]
5f 7s7p 3/2 35 021 35 535 1.042 1.001 2[-3]
5f 6d7p 5/2 35 741 37 326 0.954 0.996 8[-3]
5f 26d 5/2 36 066 36 864 0.887 0.834 6[-2]
5f 27s 3/2 36 329 38 069 1.615 1.636 4[-6]
5f 6d7p 5/2 37 465 39 615 1.048 0.958 3[-3]
5f 27s 3/2 37 542 38 787 1.003 0.870 1[-2]
5f 7s7p 3/2 37 822 39 376 1.15 0.942 1[-2]
5f 7s7p 5/2 37 945 38 975 0.893 0.987 3[-2]
5f 27s 5/2 38 105 38 653 1.172 0.918 3[-2]
5f 26d 3/2 38 372 40 194 1.200 1.295 1[-3]
5f 6d7p 5/2 38 729 40 305 1.255 1.177 3[-4]
5f 27s 3/2 38 757 40 937 0.935 0.903 2[-4]
5f 6d7p 3/2 38 836 39 919 1.013 1.046 2[-4]
5f 6d7p 5/2 38 864 40 386 0.967 1.076 4[-6]
5f 6d7p 3/2 39 151 40 336 0.739 0.823 4[-3]
5f 7s7p 5/2 39 367 40 679 1.140 1.277 7[-3]
5f 6d7p 5/2 39 701 41 000 1.090 1.177 2[-3]
5f 6d7p 5/2 40 216 41 967 1.024 0.941 2[-3]
5f 7s7p 3/2 40 223 41 738 0.738 0.887 7[-4]
5f 7s7p 3/2 40 278 41 890 0.705 0.595 7[-4]
5f 26d 5/2 40 644 42 229 0.856 0.979 1[-3]

aReference [16].

The configuration spaces for even-parity and odd-parity
states were formed as follows. The main configuration of the
ground state is 6d27s. We formed the configuration space
for the even-parity states by allowing single, double, and
triple excitations from the 6d27s configuration to the 7s–13s,
7p–12p, 6d–11d, and 5f –10f shells. The main configuration
of the lowest lying odd-parity state is 5f 7s2. The configuration
space for the odd-parity levels was formed by single, double,
and triple excitations from the 5f 7s2 configuration to the
7s–13s, 7p–12p, 6d–11d, and 5f –10f shells. Inclusion of
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TABLE II. The low-lying energy levels in the range from 40924 to 64000 cm−1 (from 5 to 8 eV) in the CI + MBPT approximation, g

factors, and the coefficients Rn (in a.u.). � is the difference between the energies of the ground state and the excited state. The notation y[x]
means y × 10x .

Conf. J � (Expt.)a � (Calc.) g (Expt.)a g (Calc.) Rn

5f 6d7p 5/2 40 l924 42 449 0.988 1.063 3[-3]
5f 6d7p 3/2 40 992 42 501 1.036 1.037 3[-5]
5f 7s7p 5/2 41 328 42 747 1.101 0.957 1[-4]
5f 26d 3/2 41 677 43 943 1.220 1.264 1[-6]
5f 26d 3/2 41 937 43 236 1.095 1.088 1[-4]
5f 26d + 5f 6d7p 5/2 42 337 44 239 1.15 1.041 7[-4]
5f 26d + 5f 6d7p 5/2 42 352 44 305 1.126 1.237 5[-4]
5f 26d + 5f 6d7p 5/2 43 097 44 716 0.982 0.995 2[-3]
5f 26d + 5f 6d7p 5/2 43 228 44 876 1.153 1.135 1[-6]
5f 26d 3/2 43 245 45 161 1.08 1.107 1[-5]
5f 26d + 5f 6d7p 5/2 43 772 45 900 1.04 0.985 3[-3]
5f 6d7p 3/2 43 808 45 544 1.211 1.271 1[-5]
5f 26d 3/2 44 301 46 287 1.342 1.357 1[-5]
5f 26d + 5f 6d7p 5/2 44 389 46 283 1.158 1.087 1[-3]
5f 26d + 5f 6d7p 5/2 44 553 46 775 1.182 1.224 2[-6]
5f 26d 3/2 44 890 46 742 1.346 0.960 3[-5]
5f 26d + 5f 6d7p 5/2 45 190 46 928 0.674 0.729 4[-5]
5f 6d7p 3/2 45 306 46 994 0.6 0.910 8[-4]
5f 26d + 5f 6d7p 5/2 45 611 47 310 1.075 1.076 1[-8]
5f 26d + 5f 6d7p 5/2 45 800 47 877 1.3 1.249 5[-4]
5f 6d7p 3/2 46 264 47 778 0.891 0.936 2[-3]
5f 6d7p 3/2 46 396 48 554 1.268 1[-4]
5f 26d + 5f 6d7p 5/2 46 581 48 439 1.018 1.058 2[-3]
5f 26d + 5f 6d7p 5/2 46 603 48 616 1.112 1.135 2[-4]
5f 26d + 5f 6d7p 5/2 46 903 48 835 1.143 1.147 1[-3]
5f 26d 3/2 46 936 49 401 0.956 0.567 6[-4]
5f 6d7p 3/2 47 149 49 137 1.09 1.316 1[-4]
5f 26d + 5f 6d7p 5/2 47 324 49 355 1.189 1.231 1[-4]
5f 26d 3/2 47 870 50 324 0.849 4[-4]
5f 26d + 5f 6d7p 5/2 48 321 50 553 1.155 2[-4]
5f 26d + 5f 6d7p 5/2 48 492 50 633 1.025 2[-4]
5f 6d7p 3/2 48 690 50 924 0.922 1.079 2[-5]
5f 26d 3/2 48 818 50 749 0.956 0.727 2[-4]
5f 26d + 5f 6d7p 5/2 49 069 51 463 1.061 4[-7]
5f 6d7p 3/2 49 415 51 692 1.003 1.213 1[-6]
5f 26d + 5f 6d7p 5/2 49 873 51 941 1.054 5[-4]
5f 26d + 5f 6d7p 5/2 50 664 52 964 1.207 2[-4]
5f 6d7p 3/2 50 735 52 761 1.36 1.585 1[-7]
5f 6d7p 3/2 50 908 53 760 1.3 0.852 3[-4]
5f 26d + 5f 6d7p 3/2 51 025 54 511 1.270 1.286 2[-5]
5f 26d + 5f 6d7p 5/2 51 363 54 363 1.271 3[-4]
5f 6d7p 3/2 51 676 54 796 1.069 3[-4]
5f 26d + 5f 6d7p 5/2 51 865 54 851 1.031 1[-3]
5f 26d + 5f 6d7p 5/2 51 936 55 511 1.279 1[-3]
5f 6d7p 3/2 52 307 55 562 1.036 2[-3]
5f 6d7p 3/2 52 736 57 665 1.246 3[-3]
5f 26d + 5f 6d7p 5/2 53 845 56 279 1.253 1[-4]
5f 26d + 5f 6d7p 5/2 54 494 57 274 1.198 2[-3]
5f 6d7p 3/2 54 922 58 868 1.102 6[-6]
5f 6d7p 3/2 56 235 59 107 0.884 2[-5]
5f 26d + 5f 6d7p 5/2 56 391 58 037 1.446 1[-4]
6d28s 3/2 58119 0.645 6[-3]
6d28s 5/2 58 301 1.073 2[-2]
5f 26d + 5f 6d7p 5/2 59 731 0.932 1[-1]
6d7s8s 3/2 59 808 1.092 3[-3]
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TABLE II. (Continued.)

Conf. J � (Expt.)a � (Calc.) g (Expt.)a g (Calc.) Rn

5f 6d7p 3/2 60 287 1.167 1[-3]
6d7s8s 5/2 60 416 1.205 2[-2]
5f 6d7p 5/2 60 462 1.216 1[-3]
6d7s8s 3/2 61 763 0.784 1[-6]
5f 26d 5/2 61 996 1.183 9[-5]
6d28s 5/2 62 345 0.937 2[-5]
6d7s8s 3/2 62 927 0.839 9[-4]
6d27d 5/2 63 308 0.857 2[-4]
6d27d 3/2 63 381 1.079 1[-6]
6d27d 3/2 63 729 0.928 3[-5]
6d28s + 6d7s8s 5/2 63 955 1.065 7[-5]

aReference [16].

all possible (up to triple) excitations is important, especially
for high-lying states. It allows us to take into account most
completely the configuration interaction for all considered
states.

In the CI + MBPT method, the energies and the wave
functions are determined from the eigenvalue equation in the
model space of the valence electrons,

Heff(Ep) |�p〉 = Ep |�p〉, (7)

where the effective Hamiltonian is defined as

Heff(E) = HFC + 	(E). (8)

Here HFC is the relativistic three-electron Hamiltonian in the
frozen-core approximation and 	(E) is the energy-dependent
core-polarization correction.

Together with the effective Hamiltonian Heff we introduce
the effective electric-dipole operator Deff and the operator
(T1)eff acting in the model space of valence electrons. These
operators were obtained within the relativistic random-phase
approximation (RPA) [14,15], which describes a shielding of
the externally applied electric field by the core electrons. The
RPA sequence of diagrams was summed to all orders of the
perturbation theory.

To solve the RPA equations and to calculate diagrams for
the effective Hamiltonian and the effective operators D and
T1 we used a different basis set. The core orbitals in this basis
set are the same as before, but the number of virtual orbitals
is much larger. On the whole, it consisted of 1s–22s, 2p–22p,
3d–22d, 4f –22f , and 5g–16g orbitals.

IV. RESULTS AND DISCUSSION

We start the discussion of the results with the following
remark: The spectrum of Th+ is very complicated. As is seen
from the experimental data [16], on the one hand, the states
belonging to different configurations strongly interact with
each other and LS coupling is not valid (even approximately)
for this ion. On the other hand, it is not a chaotic system.
Respectively, the methods of statistical physics are not ap-
plicable. Such an “intermediate” type of coupling makes the
calculations of the properties of Th+ rather difficult.

As we have already mentioned in Sec. II, we con-

sider the following transition: 6d27s (J = 3/2)
T1−→ n

E1−→

5f 7s2 (J = 5/2). According to Eqs. (2)–(5) only intermediate
states n with Jn = 3/2 and Jn = 5/2 contribute to the
probability of the EB process for this transitions.

In Tables I and II we presented the calculated values of the
energy levels with Jn = 3/2 and Jn = 5/2 and also g factors
and the coefficients Rn obtained with use of Eq. (4) for the
most interesting frequency range from 2 to 8 eV. In Table I
we present the results for the atomic frequencies from 2 to
5 eV and in Table II (which is a continuation of Table I)
the data are listed for the frequencies from 5 to 8 eV. The
results for the energy levels and g factors were obtained in
the CI + MBPT approximation. The values of the coefficients
Rn were found in the frame of the CI + MBPT + RPA
approach.

As is seen from the tables basically the agreement between
the experimental and the calculated energy levels is satisfac-
tory. For the majority of the levels presented in Tables I and
II the agreement is at the level of several percent. The largest
difference between the experimental and the theoretical values
is for the states belonging to the 6d3 configuration, where it
reaches 15%. At the same time the g factors for these states
were reproduced rather well. This means that the configuration
interaction was taken into account correctly.

The energy levels with total angular momenta J = 3/2
and J = 5/2 lying higher than 56391 cm−1 are not identified
experimentally. In our work we have determined several new
high-lying energy levels with J = 3/2 and 5/2. In the first
rows of Tables I and II we indicate the configurations that
give the largest contributions to these states according to our
calculation.

As we have already mentioned the configuration mixture is
strong for all states starting from the ground state. Sometimes
we were unable to reproduce correctly the configuration
interaction. In such cases the theoretical g factors differ from
the experimental g factors and, respectively, the accuracy of
calculation of Rn for such states is poorer.

As follows from Tables I and II the coefficients Rn change
from 10−7 to 10−1. This is not surprisingly if we note that the
initial state 6d27s and the final state 5f 7s2 differ from each
other by two electrons while T1 and D are the one-electron
operators. For this reason the i → n → f transition occurs
only by the configuration interaction. In a case when the
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TABLE III. The nuclear transition frequency ωN (given in eV and in cm−1) along with the configuration,
the total angular momentum J , and the transition frequency with respect to the ground state (ωres) for the
resonance state mainly contributing to G1, listed with the coefficients Rn (in a.u.), G1 (in a.u.), and βM1.

ωN Resonance state

eV cm−1 Conf. J ωres (cm−1) Rn G1 βM1

3.5 28 231 5f 7s7p 5/2 28 824 0.2 4570 225
5.5 44 363 5f 26d + 5f 6d7p 5/2 44 389 0.001 11 880 720

intermediate state n is characterized by configurations that
open two strong one-electron 6d27s → n and n → 5f 7s2

transitions, Rn turn out to be large. Due to the complexity of the
energy level spectrum of Th+ the accuracy of the calculation
of the coefficients Rn is not high. We would consider these
values as an order-of-magnitude estimate.

To illustrate how the developed formalism works we
consider two possible values of the nuclear frequency, ωN =
3.5 eV [2] and ωN = 5.5 eV [17], as reported by two experi-
mental groups in the mentioned papers. In Table III we present
the values of the relevant quantities.

For ωN = 3.5 eV ≈ 28 231 cm−1 the resonance contri-
bution to �EB comes from the atomic state J = 5/2 at
28 824 cm−1 belonging to the configuration 5f 7s7p. We chose
this state because the transition frequency ωres from this state
to the initial state i (the ground state) is close to ωN and the
coefficient Rn is largest. Knowing from Table I the coefficient
Rn for this state and using Eqs. (5) and (6) we can easily find the

quantities G1 and βM1 for the transition 6d27s (J = 3/2)
T1−→

5f 7s7p (J = 5/2)
E1−→ 5f 7s2 (J = 5/2). In a similar way

G1 and βM1 can be obtained for ωN = 5.5 eV.
Comparing the coefficients βM1 obtained for ωN = 3.5 eV

and ωN = 5.5 eV we see that they are of the order of 102–103.
We note that in the case of ωN = 5.5 eV the difference
(ωres − ωN ) is only 26 cm−1 while Rn = 0.001 is rather small.
For ωN = 3.5 eV the difference (ωres − ωN ) ∼ 600 cm−1 but
the coefficient Rn = 0.2 is two orders of magnitude larger
than that for ωN = 3.5 eV. The latter occurs because the
resonance energy level whose frequency is close to ωN =
3.5 eV belongs to the configuration 5f 7s7p. Hence, there is

a strong 5f 7s7p (J = 5/2)
E1−→ 5f 7s2 (J = 5/2) transition.

Due to an admixture of the configuration 6d27s to the config-

uration 5f 7s7p the amplitude of the 6d27s (J = 3/2)
T1−→

5f 7s7p (J = 5/2) transition is not small. As a result, the
coefficient Rn is large.

The case of ωN = 7.6 eV [3] requires special attention. The
problem is that the atomic energy levels are not identified
experimentally in the region of 7.5 eV and, consequently,
we cannot compare the theoretical energy levels with the
experimental energy levels. As we previously mentioned, the
theoretical accuracy is at the level of several percent. Thus at
present we are unable to reliably predict the position of the
resonance energy level and, consequently, the coefficient βM1.
For this reason experimental investigations and identification
of the energy levels in the frequency region ∼7.5 eV would
be very useful. Once these tasks are completed the coefficient
βM1 can be easily determined.

V. CONCLUSION

To conclude, we have found several high-lying even-parity
states with total angular momenta J = 3/2 and J = 5/2 that
are not identified in the atomic spectra database [16]. We have
determined the energy levels and the g factors of these states.

We have calculated the coefficients Rn determined by
Eq. (4) for the even-parity states lying between 2 and 8 eV.
When the nuclear transition frequency ωN is exactly known
and the atomic energy levels are experimentally identified, we
can find, using Rn, the coefficients G1, βM1, and the probability
of the EB process.
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