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Kohn-Sham potentials for fullerenes and spherical molecules
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We present a procedure for the construction of accurate Kohn-Sham potentials of quasispherical molecules
starting from the first-principles valence densities. The method is demonstrated for the case of icosahedral
C20

2+ and C60 molecules. Provided the density is N representable the Hohenberg-Kohn theorem guarantees the
uniqueness of the obtained potentials. The potential is iteratively built following the suggestion of R. van Leeuwen
and E. J. Baerends [Phys. Rev. A 49, 2421 (1994)]. The high symmetry of the molecules allows a parametrization
of the angular dependence of the densities and the potentials using a small number of symmetry-adapted spherical
harmonics. The radial behavior of these quantities is represented on a grid and the density is reconstructed from
the approximate potential by numerically solving the coupled-channel Kohn-Sham equations. Subsequently, the
potential is updated and the procedure is continued until convergence is achieved.
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I. INTRODUCTION

The number of quantum-mechanical systems for which the
electron density n(r) is accurately known is quite limited. This
is to be expected, as from n(r) the ground-state total energy
E0 is deduced. In general E0 can be numerically determined,
for example, by using the expensive configuration interaction
(CI) or coupled cluster (CC) methods. Even though these
methods yield accurate E0, a correct behavior of the obtained
electron density cannot be taken for granted: in the asymptotic
region (r → ∞), where n(r) decays as exp(−2

√
2εr) [1] (ε

is the lowest ionization potential), and also for r → Ra (Ra is
any of the nuclei positions), where n(r) is constrained by the
nuclear cusp condition [2], an infinite number of Gaussian-type
basis functions is needed to represent the density. Typically,
however, only a small number of basis functions is optimized
for the calculation in the valence region. Using Slater-type
basis functions is a better choice in this respect, but even
then best-known atomic densities have limited accuracy. For
example, the widely used electronic density of Ne atoms
computed by Bunge and Esquivel [3] has a relative error of
0.5% in the range 3 < r < 6 bohrs, and the cusp condition is
fulfilled with the same precision.

Systems with known accurate Kohn-Sham potentials are
even a subset of the systems with known n(r). The reason
is that, although the Hohenberg-Kohn theorem [4] guarantees
the uniqueness of the potential for a given n(r) (there are also
some exceptions [5]), it does not provide a mathematically
straightforward prescription for its construction. On the other
hand, to obtain n(r) for a given potential one solves iteratively
the Kohn-Sham equation with a given approximation for
the exchange-correlation functional. For one- or two-electron
systems the inverse problem can be solved exactly [6]. For
many-electron systems this is still a daunting task [7–11].

This work is a contribution to fill partially this gap.
We outline a prescription to construct accurate Kohn-Sham
potentials for quasispherical molecules and illustrate the
method for two prominent molecular systems, C60 and C20

2+.
These fullerenes are academically interesting and hold a
promise for applications ranging from molecular electronics to
quantum computing [12,13]. The vast majority of theoretical
treatments dealing with these systems is based on a very

crude approximation for the ionic and core electron potentials
which results in the so-called jellium-shell model [14] with a
spherically symmetric potential well of depth v0 and width �R

located at a distance R from the center of the molecule. The
electrostatic potential of the valence electrons and the local
density approximation for the exchange potential are self-
consistently added, yielding a spherically symmetric Kohn-
Sham potential. Despite its simplicity this model captures
qualitatively the main features of the electronic structure; for
example, it has been employed for the calculations of the
Rydberg states [15], to study single and double ionization
of C60 [16–24] and of Ar@C60 [25], and to compute the
fragmentation cross sections in He-C60 collisions [26,27].

Shortcomings of the model were recognized already by its
inventors. Besides the poor treatment of electronic exchange
and correlation, its elevated symmetry (Ih → O3) is the major
source of errors. The most obvious consequence is the lack of
electronic level splitting which results in the wrong prediction
of 250 valence electrons instead of 240. A partial account
for the icosahedral symmetry of the system was attempted by
Yabana and Bertsch [28] in the same year that the jellium-shell
model was proposed. However, components of the potential
with angular momentum � > 0 were introduced as merely
fitting parameters to obtain a spectrum in agreement with ab
initio calculations. Here we numerically construct the Kohn-
Sham potential starting from the ab initio electron density. We
show that the density and the potential can be described by
a small number of parameters, which is very advantageous
computationally.

The outline of the article is as follows. In Sec. II we discuss
the group theoretical properties of the Ih point symmetry and
the representations of the group in terms of the spherical
harmonics. The symmetry adapted functions composed of
them form the basis for representations of the densities and the
potentials. In Sec. III we analyze the valence density from the
various quantum chemistry calculations. Further, we present
details of our numerical method. It relies on the solution
of the coupled-channel Schrödinger equation. We elaborate
on aspects pertinent to angular momentum couplings and to
the symmetry of the wave functions in Sec. IV. Finally, we
present results for exchange-correlation potentials in Sec. V
and conclude.
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II. THE ICOSAHEDRAL POINT GROUP

The electron density and the exchange-correlation po-
tential are the main quantities of interest for the present
study. Exploiting the symmetry properties allows for an
enormous simplification of their treatment. For spherical
fullerenes, upon a proper or improper rotation, physical
quantities transform according to the totally symmetric, one-
dimensional representation (Ag) of the Ih symmetry group.
The group contains 120 elements that can be constructed from
four generators; it possesses one-dimesional (Ag ,Au), three-
dimensional (T1g ,T2g ,T1u,T2u), four-dimensional (Gg ,Gu), and
five-dimensional (Hg ,Hu) representations [29]. On the other
hand, the electronic density and the potential may be char-
acterized by their angular momentum (�) components [30].
To switch between these two points of view it is necessary
to construct suitable linear combinations of the spherical har-
monics Y�,m (i.e., the eigenfunctions of the angular momentum
operators) that transform as the identity representation of
the group Ih. We call these combinations symmetry-adapted
spherical functions (SAFs). For the construction of SAFs one
may use the projection operator method, its application to the
Ih symmetry group is, however, extremely difficult. Motivated
by applications in x-ray scattering and electron microscopy
of viruses, in a number of studies SAFs were constructed for
small �. For � � 30 SAFs were tabulated by Prandl et al. [31].
The number of identity representations g� for each � can be
obtained from the generating function

1

(x6 − 1)(x10 − 1)
=

∞∑
�=0

g�x
�.

There are only a few SAFs with low angular momentum (� =
0, 6, 10, 12), which is very attractive from a computational
point of view. The density or the potential can be represented
accurately up to the 12th order by just four functions. Staring
from � = 16, SAFs with any even value of the angular
momentum can be built; for � = 30, two one-dimensional
representations appear for the first time (g30 = 2). Working
with SAFs of such high orders is still a huge simplification;
however, the coupling of the angular momenta given by the
3j symbols is numerically very demanding. Therefore, the
numerical solution of the Kohn-Sham equation presented
in this work is performed up to the order �m = 15. The
corresponding density has components up to the order 30.

In general, the electron density (same holds for the
potential) can be represented as

n(r) =
∞∑

�=0

g�∑
α�=1

n�,α�
(r)I�,α�

(θ,φ). (1)

Here I�,α�
(θ,φ) denotes the symmetry adapted spherical

function of �th order, index α� discriminates between different
representations of the same angular momentum, and (r,θ,φ)
are the spherical coordinates of the vector r. The explicit
expression for I�,α�

(θ,φ) reads

I�,α�
(θ,φ) =

�∑
m=−�

I (α�)
�,mY�,m(θ,φ). (2)

FIG. 1. (Color online) Symmetry-adapted spherical harmonics
I�,α�

(θ,φ) (� = 6, . . . ,30) coded by the hue color component. Due
to the Ih symmetry it is sufficient to plot them only in a small
irreducible domain of the spherical coordinate system. The spherical
triangle 0 � θ � arccos(1/

√
5), 0 � φ � 2π/5, containing six such

domains is shown. Phases of the functions are selected as in [31].
The z axis is one of the fivefold axes. Black dots denote positions
of the vertices of the truncated icosahedron. This idealized solid (all
edges of the same length) is an almost perfect representation of the
C60 fullerene (6-6 and 5-6 bond have slightly different lengths). At
the center of the hexagon is situated a vertex of the dodecahedron, a
solid representing the C20

2+ molecule.

Apart from the trivial I0,1(θ,φ) = Y0,0(θ,φ) = 1/
√

4π , the
simplest normalized SAF appears for � = 6:

I6,1(θ,φ) = 1
5 [

√
11Y6,0 −

√
7(Y6,5 − Y6,−5)],

where we use the phase convention for the spherical harmonics
Y�,m(θ,φ) as in [32] and the coordinate system is chosen such
that the z axis is parallel to one of the axes of the fivefold
symmetry and the y axis is parallel to one of the twofold axes.
Some other SAFs are shown in Fig. 1.

Fast convergence is necessary for the expansion [Eq. (1)] to
be useful for numerical computations; that is, only a few terms
in Eq. (1) should accurately represent the quantity of interest.
Let us consider at first the case of the ionic potential, v(i)(r). It
can be analytically found by solving the Poisson equation with
the ionic density n(i)(r). In our work we consider systems with
Na ionic sites having the same distance R to the center. For
C60 we have R = 3.568 Å while for C20

2+ we use R = 2.03 Å.
Thus, the expansion of the ionic density is

n(i)(r) =
Na∑
a=1

qionδ(r − Ra)

= qionNa√
4πR2

δ(r − R)
∞∑

�=0

g�∑
α�=1

C
(i)
�,α�

I�,α�
(θ,φ). (3)

Here qion is the charge of the ion (qion = 6 for carbon atoms).
By writing the density in such a form we set the first expansion
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coefficient C0,1 to one. The ionic potential can be found from
the spherical Bessel transforms of the density; that is,

v
(i)
� (r) = 4π

2

π

∫ ∞

0
dqñ

(i)
� (q)j�(qr), (4a)

ñ
(i)
� (q) =

∫ ∞

0
dr ′r ′2n(i)

� (r ′)j�(qr ′), (4b)

where j�(x) denotes the spherical Bessel function. In this work
we adopt atomic units. In these notations the Poisson equation
reads �v(i)(r) = −4πn(i)(r). For

n
(i)
� (r) = qionNa√

4πR2
C

(i)
�,α�

δ(r − R),

all integrals are performed analytically (Eq. 6.512.1 of [33])
with the result

v
(i)
� (r) = qionNa

√
4π

C
(i)
�,α�

2� + 1
×

⎧⎪⎪⎨
⎪⎪⎩

r�

R�+1
for r � R,

R�

r�+1
for r > R.

(5)

The singularity of v(i)(r) at r = Ra does not appear in the radial
functions v

(i)
� (r). They are continuous for all values of r and

have a finite peak (removable singularity) at r = R. Away from
the shell, already the second radial function v

(i)
6 (r) decays very

fast. Thus, apart from the disturbance at r = R components
of the ionic potential with higher angular momenta have
little influence on the electron density. However, as will be
shown subsequently, all of them contribute substantially to the
potential at r = R. In other words, the expansion coefficients
C

(i)
�,α�

are slowly decaying functions of �.

The coefficients C
(i)
�,α�

can be computed as a sum over the
spherical coordinates (θa,φa) of the atoms,

C
(i)
�,α�

=
√

4π

Na

Na∑
a=1

I�,α�
(θa,φa), (6)

or as a limit of the following spherical integral,

C
(i)
�,α�

=
√

4π

Na

lim
ε→0

∫
d	 I�,α�

(θ,φ)
Na∑
a=1

δε(	a − 	), (7)

where 	a = (θa,φa) denote the atomic positions in the
spherical coordinate system, and δε represents some numerical
regularization of the δ function on the sphere, that is,
limε→0 δε(	) = δ(	). To obtain the last equation we used the
identity

Na∑
a=1

δ(r − Ra) = δ(r − R)
Na∑
a=1

δ(	a − 	).

Typical representation for the three-dimensional δ function is

δ(r − Ra) = lim
σ→0

1

(
√

2πσ )3
exp

[
− (r − Ra)2

2σ 2

]
.

If Ra = R in a spherical coordinate system [r = (r,	) and
Ra = (R,	a)], we have

δ(r − Ra) = δ(r − R) lim
ε→0

1

(
√

2πε)2R2
exp

[
−|	 − 	a|2

2ε2

]
,

where |	 − 	a| denotes the distance between the points on
the unit sphere. Note, the integrals in Eq. (7) are nonuniform
functions of the regularization parameter ε. Therefore, in
practice, Eq. (6) is preferred. However, the density still is
expressible in a form suitable for numerical analysis:

n(i)(r) = qion

R2
δ(r − R) lim

ε→0

1

(
√

2πε)2

× exp

⎡
⎣− 1

2ε2

∞∑
�=0

g�∑
α�=1

ζ
(i)
�,α�

I�,α�
(θ,φ)

⎤
⎦ . (8)

This relation resembles the cumulant expansions in statistical
physics or probability theory. Hence, we call it the cumulant
expansion of the density in terms of SAF. The expansion
coefficients ζ

(i)
�,α�

are computed by a formula analogous to
Eq. (7):

ζ
(i)
�,α�

=
∫

d	 I�,α�
(θ,φ)n̂(i)

ε (θ,φ), (9)

n̂(i)
ε (θ,φ) = −2ε2 log

[
Na∑
a=1

exp

(
−|	a − 	|2

2ε2

)]
. (10)

In contrast to the density n(i)(r), its regularizations n̂(i)
ε (θ,φ)

on the sphere are smooth functions of angles which are
independent of the regularization parameter ε provided it is
small. Equation (9) is thus suitable for numerical integration.
By comparing Eqs. (3) and (8) we find

Na√
4π

∞∑
�=0

g�∑
α�=1

C
(i)
�,α�

I�,α�
(θ,φ)

= lim
ε→0

1

(
√

2πε)2
exp

⎡
⎣− 1

2ε2

∞∑
�=0

g�∑
α�=1

ζ
(i)
�,α�

I�,α�
(θ,φ)

⎤
⎦ .

(11)

Furthermore, we introduce coefficients

ζ
(i)
� =

√√√√ g�∑
α�=1

∣∣ζ (i)
�,α�

∣∣2
.

Their magnitude serves as an indicator for truncating the
SAF expansion, Eq. (1). We depicted the coefficients for
all five regular polyhedra and for the truncated icosahedron
(idealization for the C60 fullerene) in Fig. (2). As expected
from the smoothness of the regularized ionic density n̂(i)

ε (θ,φ),
ζ

(i)
� are well-behaved functions of � that algebraically decay

for � → ∞. This decay is, however, not monotonic; the
coefficients may rather be grouped into several series (with
uniform convergence) reflecting the peculiarity of the geo-
metric structure. In the context of two prototypical molecules
we observe three distinct series for C20

2+ ({6n}, {6n + 10},
{6n + 20}) and five series for C60 ({10n}, {6,10n + 12},
{18,10n + 24}, {16,28,10n + 36}, {26,10n + 38}), where n =
0, . . . . To describe correctly the ionic density and the potential
at least the first term of each series is necessary, meaning
that for C20

2+ terms up to � = 20 are required, while for
C60 inclusion of contributions up to � = 28 is necessary.
Up to now we considered only the ionic density and the
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FIG. 2. (Color online) Expansion coefficients ζ
(i)
� for five regular polyhedra and for the truncated icosahedron.

corresponding potential. Core electrons are localized close
to the nuclei; therefore they require similar treatment. In
contrast, the valence electrons are much more delocalized.
Their description can be much more accurate with a smaller
number of terms.

III. ELECTRONIC DENSITIES

The electron densities, an input for the inverse problem,
were obtained from the full-electron and pseudopotential
quantum chemistry calculations with the GAUSSIAN 03 [34]
package. We used the 6-311++G(2d,2p) basis set [35]
((12s,6p,2d)/[5s,4p,2d] contraction scheme) for the full-
electron calculations, and the pseudopotential calculations
were performed using the CRENBL basis set [36] (4s4p

uncontracted scheme). The densities were computed on a grid
in real space and subsequently projected on the SAFs for each
radial point of the spherical coordinate system.

n�,α�
(r) =

∫
d	n(r)I�,α�

(θ,φ). (12)

The choice of the coordinate system is important here. The
molecules in ab initio calculations were oriented as shown
in Fig. 3, that is, with the twofold axis aligned along the z

axis. Since the SAFs tabulated in [31] are given in a different
orientation they must be rotated. The rotation of SAFs of the
order � is accomplished by applying the Wigner D function to
the vector of length 2� + 1 containing the coefficients of the
SAF expansion:

Ĩ (α�)
�,m′ =

�∑
m=−�

I (α�)
�,mD�

mm′(α,β,γ ).

The Wigner functions can be expressed via the Jacobi
polynomials (P (µ,ν)

s (x)):

D�
mm′(α,β,γ ) = e−imαd�

mm′(β)eim′γ ,

C2+
20

C60

FIG. 3. Geometric structure and orientation of the studied
molecules.
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d�
mm′ (β) = ξmm′

√
s!(s + µ + ν)!

(s + µ)!(s + ν)!
,

×
(

sin
β

2

)µ (
cos

β

2

)ν

P (µ,ν)
s (cos β),

ξmm′ =
{

1 for m′ � m,

(−1)m
′−m for m′ < m,

µ = |m − m′|, ν = |m + m′|, s = � − 1
2 (µ + ν).

For the molecule’s orientation the angles are γ = 0,

β = arccos

⎛
⎝

√
5 + √

5

10

⎞
⎠ ,

and α = 0 for C60 and α = π
2 for C20

2+, where the β angle is
the angle between the twofold and fivefold symmetry axes. The
accuracy of the expansion, Eq. (12), is assessed by computing
the relative error

ε = 1

qionNa

∫ ∞

0
r2dr

∫
d	

∣∣∣∣∣n(r)

−
�m∑
�=0

g�∑
α�=1

n�,α�
(r)I�,α�

(θ,φ)

∣∣∣∣∣. (13)

At large distances from the nuclei the density decays
erroneously as exp(−kr2) as a result of using Gaussian-type
orbitals (GTO). To circumvent this issue we extrapolated the
density tails with the exp(−κr) function. For our calculation
we found it sufficient to consider radial distances in the range
up to 6 Å for C20

2+ and to 8 Å for C60; 900 and 1200 radial
points were used, respectively. It is important, especially for
large �, to have an accurate algorithm for performing angular
integrations, Eq. (12). The Lebedev integrators, typically used
in density functional codes, are designed to accurately integrate
spherical harmonics up to a certain order. In these applications
the center of the sphere where the integration is performed is
located on the nucleus. This guarantees the smoothness of the
electron density and makes the method well suited for quantum
chemical calculations. In contrast to these applications, the
origin of the spherical coordinate system in the present work
coincides with the center of the molecule and is not situated on
the nucleus. When the sphere of integration crosses the nuclei
the integrated function is not smooth any more and contains
contributions of infinite order in �. This renders the Lebedev
method impractical. Besides being able to integrate peaked
functions there are several further requirements for our desired
quadrature. One should be able to gradually vary the number of
integration points in order to check the convergence of integrals
and, thus, to assess the accuracy of the computational scheme.
The grid should be uniform and isotropic. And, finally, there
should be a fast and simple algorithm to generate weights and
grid coordinates. In all these respects we found the “Fibonacci
grids” introduced by Hannay and Nye [37] to have clear advan-
tages over the conventional Lebedev grids. The number of inte-
gration points is N = 2fn, where fn denotes the nth Fibonacci
number, while the error scales as N−6. We use grids with dif-
ferent numbers of angular points (n ranging from 18 to 22) de-
pending on the vicinity of the integration sphere to the nuclei.
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FIG. 4. Electron density of the studied molecules. Left vs right
panels compare the Hartree-Fock valence density from full-electron
vs pseudopotential calculations.

At first we discuss the low angular momentum components
of the valence electron density shown in Fig. 4. The densities
from the full-electron calculations are sharply peaked at the
radius of the geometric shell. In contrast, the corresponding
densities from the pseudopotential calculations are more
smooth and the maximum of the angular averaged (� = 0)
density is slightly shifted toward the center of the molecule.
The angular-averaged densities of two systems are very
similar; for C20

2+ it is slightly more extended into the inner
region. The second largest components, as anticipated from
Figs. 1 and 2, are � = 6 and � = 10 for smaller and larger
shells, respectively. By including only the first three terms in
the expansion, Eq. (12), the relative error is 8% for full-electron
and 6% for pseudopotential densities. If terms up to and
including � = 30 are added, the relative error is further reduced
to 2% and 0.5%, respectively.

A nonlocal or, in most applications semilocal, operator of
the pseudopotential eliminates the core-electron states. Due
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FIG. 5. The difference of valence densities from the Hartree-Fock
and MP2 methods.

to the oscillation theorem, the lowest valence states from the
pseudopotential calculation are inevitably nodeless. Hence,
the use of pseudopotentials reduces the number of nodes in the
density expansion; the effect is seen for the density components
� � 10 for C20

2+ and for � � 16 for C60.
Up to now we have considered valence electron densities

from the Hartree-Fock method which yields the single-particle
states and serves as a basis for subsequent correlated calcula-
tions. For the smaller system we succeeded in obtaining the
densities via the coupled-cluster singles and doubles (CCSD)
method. For the C60 fullerene we applied the MP2 perturbation
theory which is known to provide total energies, bond lengths,
and reaction barriers with accuracy comparable to (or often
better than) the best density-functional methods. The CCSD
method is more precise, but is computationally demanding. It
is often superseded in accuracy by the CCSD(T), the gold
standard of quantum chemistry. However, the latter is not
suitable for our purposes since it can only provide the total
energy and not the density. Large improvement of the total
energies provided by the correlated methods requires minimal
changes in the total electron density. This is evidenced by
Fig. 5 where the dominant density differences of the Hartree-
Fock and MP2 methods are plotted. The error introduced by
the truncation of the angular expansion often exceeded the
difference between the Hartree-Fock and correlated densities.
Therefore, if not explicitly stated, we use for the analysis the
Hartree-Fock density and the corresponding potential.

From the shown results, several routes to accurate
exchange-correlation potential for fullerenes seem appropri-
ate: Ideally, the electron density from the most precise corre-
lated method based on the full-electron calculation should be
used. This would require a solution of the Kohn-Sham equation
with a trial potential for very high values of the angular
momentum on each iteration step; that is, large-� components
are needed to obtain the core states. Our aim is, however,
to represent the potential by just a few angular components
to make it attractive for use by other researchers for other
purposes. If the potential expansion [Eq. (5)] is truncated at low
�, the potential at the nuclei position may well be too shallow
to support bound core states. An efficient way to find the
Kohn-Sham potential is to perform all the computations using

localized basis functions for the expansion of the potential. At
the present time these methods are still too computationally
demanding. In this work we take advantage of the fact that the
valence electron density from the pseudopotential calculations
is a smooth function that requires only a small number of
symmetry adapted functions for its expansion.

Let us assume for a moment that we solve the inverse
problem and have found the corresponding local Kohn-Sham
potential. Because it is constructed from the valence electron
density it is tempting to say that the potential can be separated
into local and nonlocal parts. To the first group belongs (i)
the Hartree potential of the valence electrons and (ii) the
interaction with the nuclei. The nonlocal part contains (i) the
exchange and the correlation potential of the valence electrons
and (ii) the pseudopotential. This last term models the effect of
the core electrons. We note that for alkali metals the nonlocal
core correction is significant and must be accounted for. For
carbon, however, this effect is minor. In the calculations one
uses typically a semilocal expression for the pseudopotential
that acts differently on the s and p and higher projections of
the wave functions. The exchange-correlation potential and the
pseudopotential are two nonlocal terms formally incorporated
in the local Kohn-Sham potential. Considerable effort has been
devoted to the development of accurate approximations for
either part. Would it be possible to estimate these quantities
from the computed Kohn-Sham potential? Because they are
both nonlocal this is formally not possible. If, however, one
takes into account that the nonlocal part of the pseudopotential
is strongly localized on the nuclei, already at r ≈ 0.8 Å the
pseudopotential is indistinguishable from Zcore/r for carbon,
and we can still find the exchange-correlation potential from
our calculation.

IV. COUPLED-CHANNEL SCHRÖDINGER EQUATION

The basic component of our approach is the numerical
solution of the Schrödinger equation on a grid. Since we
expand the potential, the wave functions, and the densities
in terms of the spherical harmonics the three-dimensional
eigenvalue problem is reduced to one dimension for the
radial functions. Our potential is angular dependent, that
is, we consider terms beyond � = 0. Hence, the coupling
between the components of wave functions are to be treated
which implies a solution of the coupled-channel Schrödinger
equation. The numerical solution is far more demanding than
for the ordinary 1D equation: In contrast to the single-channel
case, the presence of degenerate eigenstates poses a problem.
Fortunately, each eigenstate can still be characterized by
a unique generalized node count. This follows from the
generalization of the oscillation theorem to the multichannel
case. The number can be used to classify the states and to
differentiate states that are accidentally close to each other
(they have a different number of nodes) from truly degenerate
states with the same number of nodes. In application to
fullerenes, this is extremely important since the states are
densely spaced and almost always degenerate.

There are several methods available to tackle this problem
[38–40]. For the calculations we used our implementation of
the renormalized Numerov method [38,41], widely used in
studies of molecular vibrations, etc. For details, we refer the
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reader to the original article. Here we recapitulate the main
features of the method. For the maximal angular momentum
�m there are nm = (�m + 1)2 coupled equations and wave-
function components. Generally speaking, they are complex-
valued functions. However, since we do not involve magnetic
fields, the wave functions can all be selected to be real without
loss of generality.

For a test value of the eigenenergy the propagation is
performed from the left and from the right edges of the interval
to a matching point. The eigenvalue εn with generalized node
number nn is said to be converged if the lower and the upper
energy limits (εL � εn < εU ) are found such that

|εL − εU | < h,

N (εL) = nn < N(εU ),

where h is the tolerance typically set to 10−10 and N (ε) denotes
the number of nodes for energy ε solution. The tolerance
h sets also a threshold between two closely spaced groups
of states or a single degenerate state. After the state has
been converged N (εU ) − N (εL) yields its degeneracy. Each
propagation step requires two nm × nm symmetric matrix
inversions. This constitutes the main computational cost. Thus,
the method scales as nr�

6
m, where nr is the number of radial

grid points. A node-counting algorithm is used to calculate
degenerate eigenstates and to indicate their degeneracy. In the
case of a few nondegenerate states appearing for � = 0 and
� = 6 we used the faster Brent method after the eigenvalue
had already been isolated; that is, εL, and εU are found with
N (εU ) − N (εL) = 1. Otherwise, we are using the bisection
procedure.

Since the numerical cost of the method steeply increases
with maximal angular momentum we decided not to work
with complex-valued wave functions excluding all redundant
components. Thus, by solely working with real functions we
can achieve 8 times speedup at the cost of more complicated
algorithms for coupling different angular momentum com-
ponents. Let us focus now on that part of the Hamiltonian
containing this coupling.

Its matrix elements in the complex case are easily expressed
via the product of two Wigner 3jm symbols (cf. Eq. 5.9.5
of [32]), namely,

〈�1,m1|Y�,m|�2,m2〉 =
∫

Y ∗
�1,m1

Y�,mY�2,m2d	

= (−1)m1

√
(2�1 + 1)(2� + 1)(2�2 + 1)

4π

×
(

�1 � �2

0 0 0

)(
�1 � �2

−m1 m m2

)
.

(14)

One can also express them in terms of a single Gaunt
coefficient.

Real functions are expandable in terms of spherical har-
monics as

f (θ,φ) =
�m∑
�=0

[
a�,0Y�,0(θ,φ) +

√
2

�∑
m=1

Re[a�,mY�,m(θ,φ)]

]
.

For each � there are 2� + 1 normalized real basis functions
which can be selected in the form Y�,0,

√
2ReY�,m,

√
2ImY�,m

(m > 0). Integrals containing products of three such functions
[in analogy with Eq. (14)] can be cast as a linear combination of
the Gaunt coefficients. However, the final equations are quite
cumbersome, for one needs to treat differently three kinds
of real basis functions. For our calculations a large number
of the Gaunt coefficients of high order are necessary. They
were precomputed with the MATHEMATICA symbolic algebra
package and stored.

Upon the nth step all occupied Kohn-Sham (KS) eigenstates
ψi(r) are computed with some approximate KS potential
v(n)

s (r). Then we calculate the electron density

n
(n)
KS(r) = 2

Ne∑
i=1

|ψi(r)|2 (15)

and apply the van Leeuwen iterative procedure to obtain the
update of the KS potential,

v(n+1)
s (r) = nref(r) + α

n
(n)
KS(r) + α

v(n)
s (r). (16)

The constant α is used to stabilize the recursion. Note, we
apply the recursion to the total potential and not to the
electron-repulsion part as in [9] (see also the remark on
the fourth page of [10]). The density contains expansion
coefficients with the maximal angular momentum 2�m. They
are computed analytically from the wave-function expansion
coefficients using the Clebsh-Gordon algebra. To obtain the
expansion coefficients for the potential, Eq. (16) is represented
on a mesh in real space and projected onto the SAFs by
performing the angular integration [as in Eq. (12)].

The iterative refinement of the potential as outlined still
needs to be refined for fullerenes. The problems of the
numerical stability of such an algorithm have already been
observed and discussed in [10]. They even appear in the case of
a single Ne atom. One aspect, already brought to the attention
by these authors, is the sensitivity of the method to the initial
guess of the potential. Apart from that, in the case of fullerenes
one faces another challenge related to the computation of
the KS density. If at some point in the iterative process the
potential acquires angular distribution slightly different from
the searched one, this will, most probably, lead to an incorrect
sequence of electronic states. For instance, in the case of
C20

2+ there is a competition between the hu, t1u, and t2u states
(13 states of � = 6 symmetry split in the Ih environment into
one five-dimensional and two three-dimensional multiples) to
be occupied. According to the Hartree-Fock calculation only
hu should be occupied. In the course of calculation it frequently
appears that the substates’ order is reverted. If so, the electron
density computed from such (partially occupied states) has
different symmetry from the target density. As a consequence,
if such unphysical density is used to update the potential it
will only amplify the initial error, and the potential will never
converge. In addition, one would need some prescription for
how to deal with partially filled states. As a simple solution,
one might think of introducing some fractional occupation
numbers. We found that this does not work either because
the resulting density does not transform according to Ag

representation. The only way to obtain reliable results and
to have stable iterations is, in our opinion, to determine the
electron configuration in each iteration step and to assign the
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occupation numbers according to the electron configuration
from the Hartree-Fock method [42]. For the systems of interest
they are summarized as

C20
2+ : ag︸︷︷︸

0

t1u︸︷︷︸
1

hg︸︷︷︸
2

gu t2u︸ ︷︷ ︸
3

gg︸︷︷︸
4

ag︸︷︷︸
0

hg︸︷︷︸
4

hu︸︷︷︸
5

t1u︸︷︷︸
1

hg︸︷︷︸
2

,

C60 : ag︸︷︷︸
0

t1u︸︷︷︸
1

hg︸︷︷︸
2

t2u gu︸ ︷︷ ︸
3

hg gg︸ ︷︷ ︸
4

hu t1u t2u︸ ︷︷ ︸
5

t1g hg ag gg︸ ︷︷ ︸
6

hu t1u t2u︸ ︷︷ ︸
7

ag︸︷︷︸
0

gu︸︷︷︸
7

hg︸︷︷︸
8

t1u︸︷︷︸
1

gg t2g︸ ︷︷ ︸
8

gu︸︷︷︸
9

hg︸︷︷︸
2

hg︸︷︷︸
8

hu︸︷︷︸
9

t2u gu︸ ︷︷ ︸
3

gg hg︸ ︷︷ ︸
4

hu︸︷︷︸
5

,

where the dominant � value is shown below each symmetry
class. They were determined with the help of multiplet-
splitting tabulated in [43].

In our work we found it sufficient to analyze the electronic
configuration in a simplified way. Thus, we determine the
symmetry properties of each eigenstate with respect to SO(3)
rather than the Ih group symmetry operations. This amounts
to assigning to each wave function a set of probabilities {s�}
to be in the � angular momentum state. The state n is said to
have the angular momentum �n if the corresponding number
is maximal. If all components of the potential with � > 0
were zero, the system would possess a spherical symmetry
and such a classification would be exact (s� = 1 for � angular
momentum state, otherwise zero). Realistically, the potential
always introduces some symmetry breaking. This results in
level splitting and in an admixture of other angular momentum
components. We found that such an angular momentum
analysis together with the information on the degeneracy (from
the Numerov method) can be used to unambiguously classify
the states. Thus, Eq. (15) is modified to include only the states
with the correct symmetry and degeneracy into the density.

V. RESULTS

In Sec. III we gave a description of the electron densities
of fullerenes studied. In Sec. IV we established a numerical
method for solving the Schrödinger equation with a trial
angular-dependent local potential and presented details of
the iterative procedure leading to the Kohn-Sham potential
associated with the target density (obtained from the ab initio
pseudopotential calculations). The pseudopotential density has
been selected as being better suited for our method. It is
free from oscillations in the core region and, thus, can be
represented by a small number of angular components. To
the best of our knowledge the pseudopotential density is used
here for the first time as a target for the inverse Kohn-Sham
problem. Therefore, one might question the very existence of
the local Kohn-Sham potential yielding such a density. As we
mentioned previously, the pseudopotential for the carbon atom
is a semilocal operator,

w(r,r′) = wlocal(r) + δ(r − r ′)

×
∑

�

�w�(r)
�∑

m=−�

Y ∗
�m(r̂ ′)Y�m(r̂).

The s and p pseudopotentials for carbon are very distinct func-
tions. Several schemes for the generation of pseudopotentials
are reviewed, and real and Fourier space dependencies are an-
alyzed by Troullier and Martins [44]. Typically, the s channel
is a more shallow function at the origin than the p channel.

The Hohenberg and Kohn theory cannot be applied directly
to systems with nonlocal external potential. According to
their mathematical proof [4], the existence of a unique
local Kohn-Sham potential is only guaranteed for the v-
representable density, that is, a density that is associated
with an antisymmetric ground-state wave function of some
Hamiltonian with local external potential. The theorem proven
by Levy [45] extends the validity domain of the Hohenberg-
Kohn theory to N -representable densities, that is, functions
that may be obtained from some antisymmetric many-body
wave function. Thus, the restriction on the external potential
to be local can safely be omitted. The N -representability
condition is rather weak and easily satisfied by a trial n. The
theorem of Levy is the foundation of our method. However,
one issue has to be discussed: On the one hand we state
that the pseudopotential for carbon must be nonlocal, while
on the other hand the Kohn-Sham potential yielding the
same density as pseudopotential calculations is local. This
is similar to ambiguity arising when considering the exchange
operator. Despite the fact that the actual nature of this operator
is nonlocal, one can still construct the corresponding local
Kohn-Sham potential. The method to do so belongs to the
realm of the optimized effective potential (OEP) approach.
The nonlocal expression is generally valid, including the
system with a trial density during the self-consistency loop.
Independently, the local potential can be constructed, but only
for the true density.

We seek an initial approximation to the sought potential.
The jellium-shell potential of Puska and Nieminen [14] allows
for a fine-tuning of the state energies by adjusting a few
parameters. The initial approximation has the form of two
Heaviside step functions:

vs
(0)
�=0(r) =

√
4πU

×
[
θδ

(
r − R + �

2

)
− θδ

(
r − R − �

2

)]
,

θδ(x) = 1

2πi

[
log (x − iδ) − log (−x − iδ)

]
, (17)

where U and � denote the depth and the width of the potential
well, and we introduced a small parameter δ (0.2a0 for C60

and 0.1a0 for C20
2+) in order to allow for the potential to

decay algebraically away from the shell. This facilitates the
convergence in the regions where the potential is small. We
deliberately selected a different initial depth and width of the
potential well in order to demonstrate the independence of the
converged results on the initial parameters (Fig. 6).

For comparison, we also show the electrostatic potential
and exchange potential from the local density approximation:

v(LDA)
x (r) = −

(
3

π
n(r)

)1/3

.

The electrostatic potential includes the Hartree potential of
the valence electrons and the ionic potential. Since we exclude
the core electrons from consideration the ionic charge is set
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FIG. 6. (Color online) Spherically averaged potentials (� = 0
component multiplied by 1/

√
4π ) for C20

2+ and C60 systems. The
thick solid line denotes the Puska and Nieminen model potentials [14]
according to Eq. (17) parametrization. The dotted and dashed lines
denote the electrostatic and LDA exchange potential corresponding
to the target density. The thin lines denote the Kohn-Sham potential
vs in the course of iterative optimization.

to 4. The electrostatic potential is computed by numerically
solving the Poisson equation by two spherical Bessel
transforms [Eqs. (4a) and (4b)]. The details are presented in
the Appendix.

The converged Kohn-Sham potentials are depicted in Fig. 7.
We used here the pseudopotential Hartree-Fock density as a
target. The calculations were performed for �m = 15. Let us
consider separately two aspects of the obtained potentials:
(i) the angular dependence and (ii) the radial dependence.
Contrary to widespread opinion, the deviation of the potential
from spherical symmetry is substantial and is not identical
to the angular dependence of the density. For the C20

2+
molecule, the density is characterized by a large � = 6 term,
while the potential is dominated by an � = 16 contribution.
It is interesting to observe that if we had perturbatively
taken � > 10 potential terms into account, they would lead
to vanishing energy correction for all occupied states in this
system. This follows from the fact that all occupied states
have angular momentum � � 5. The high-� components of the
potential can still affect the states via the second-order energy
corrections. For C60 they are also important; however, the
� = 10 term is large for both the density and the potential. The
occurrence of large angular momentum terms in the potential
is an important message of the present work. It shows a
limited character of the model calculations with spherically
symmetric potentials. The limitations cannot be surmounted
by the use of perturbation theory because the second-order
treatment formally requires the summations to be performed
over all states, including the unoccupied ones.

Also the radial behavior of the � = 0 potentials differs
considerably from the model potentials [14,28]. In order
to understand the details one can single out the exchange-
correlation part (vxc) of the Kohn-Sham potential and further
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FIG. 7. The Kohn-Sham potentials.

partition it into several components as is done in [46] and
references therein,

vxc = vhole
xc + vc,kin + vresp.

Here we make only some qualitative remarks: The intershell
peaks are a well-established feature of vxc and were noticed
for numerous atomic systems. For the carbon atom Morrison
and Zhao [47] found intershell peaks at around 0.3 Å from
the nucleus. They are typically attributed to the stark variation
of vc,kin in the region between 1s and 2s or 2p shells. The
intershell peaks are well differentiated from the comparably
large potential oscillations at the core region when the target
density is taken from the GTO calculations [48]. There are
several reasons why the potential oscillation in our systems
is much less pronounced. One aspect is that there are no
contributions to the kinetic potential vc,kin from the “inter-
action” between the core and valence states. Furthermore, our
density is rather smooth in the core region due to the use of
pseudopotential. As for the origin of the two asymmetric peaks
at around 0.7 Å on both sides of the shell we recall the findings
of Schipper et al. [48]: Using a method based on the linear
response theory they were able to achieve the convergence
much faster than with the van Leeuwen method. This increased
the accuracy of the potential and reveals unphysical features
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often masked by convergence problems of the slower method.
Due to the complexity of our system it was not possible to
perform 10 000 iterations to obtain fully convergent results.
At most 100 iterations could be performed. However, as noted
in [48], a fair picture of the potential is feasible at this number
of iterations. Furthermore, already at this point the relative
error computed according to Eq. (13) is comparable with the
error of the target density due to the truncation of the SAF
expansion. Hence, we do not converge the potential to a better
accuracy than that of the given density.

It is possible to evaluate the vc,kin part of vxc explicitly
and to verify if this term is responsible for the small peaks in
the potential. This part is given as the difference between the
kinetic potential computed on the true many-body (vkin) and the
single-determinant many-body function constructed from the
Kohn-Sham orbitals (vs,kin). In its general form it is expressed
in terms of the nonlocal two-particle density matrix. However,
for the case of the single determinantal wave functions it is
reduced to [49]

vs,kin(r) = 1

2

Ne∑
i=1

∣∣∣∣∇φi(r)√
n(r)

∣∣∣∣2

. (18)

Several studies of kinetic terms are known ([46] and references
therein). They were evaluated from the Hartree-Fock orbitals
[50] and from the many-body functions [51]; vc,kin was
computed from the optimized potential model [52]. For the
case of Hartree-Fock target densities, vc,kin is given as the
difference of the kinetic potentials computed on the Hartree-
Fock and Kohn-Sham orbitals [Eq. (18) can be used in
both cases]. Since the difference between these orbitals is
rather small, we argue that the kinetic term alone cannot be
responsible for the peak.

VI. CONCLUSIONS

We presented a method for the construction of the Kohn-
Sham potential for quasispherical molecules and illustrated
the method by calculations for two representative spherical
fullerenes. The density from the pseudopotential calculations
was used as a target for the inverse problem. Large magnitudes
of high angular momentum components and complicated
radial dependence indicate strong deviations of the potential
from known models. The calculations can be viewed as a
starting point for more systematic investigations of the exact
Kohn-Sham potentials for fullerenes. We envisage several
extensions in terms of densities: (i) more accurate densities
from the Slater-type orbital expansions, (ii) densities from
full-electron calculations rather than from pseudopotential
calculations, and (iii) correlated densities. Only alternative (i)
is easily realized with our methodology. The others require
inclusion of even higher angular momentum components.
This is mandatory for a correct description of the core
states. One also needs a better accuracy for the density in
order to appreciate the role of electronic correlations. From
the methodological view, there are other possibilities to solve
the inverse problem. More sophisticated methods can provide
the same accuracy with a smaller number of iterations.
However, only methods which rely on localized basis functions

for the expansion of the potentials can independently verify
the real space results.

Theoretical study of photoionization of fullerenes is one of
the possible applications of the constructed potentials. Consid-
erations based on the acceleration form of the dipole operator
can be used to unveil dominant contributions to photoioniza-
tion. For the case of the jellium-shell model, theory predicts
four oscillation frequencies related to the spatial regions with
a large potential gradient [53]. These oscillations were indeed
observed in experiment [54]. However, certain features in the
Fourier transform of the partial photoionization cross section
can only be explained with the use of realistic potentials.

APPENDIX: NUMERICAL SOLUTION OF THE
POISSON EQUATION

We comment briefly on the solution of the Poisson equation
with respect to the numerical problems that may arise when
using a brute force approach. Such an implementation scales
as n2

r . A possible approach utilizes one of the several methods
relying on the fast Fourier transformation (FFT) [55,56] (scale
as nr log2 nr ). A disadvantage here is the use of logarithmic
grids. Recently, a FFT-based method with a uniform grid
was proposed [56]. These methods are quite involved and do
not automatically guarantee accurate results if the function
to be transformed is oscillating and/or slowly decaying at
infinity. Since these two conditions simultaneously occur
for the second transform [Eq. (4a)] we developed another
approach. It provides very accurate results for the potentials
at the cost of n2

r scaling. The method is based on two
observations: (i) the electron density is strongly localized at
and decays exponentially away from the shell radius, and (ii)
the direct transform for the ionic density can be computed
analytically and subtracted from the numerical transform of
the electron density. From the first observation it follows that
the first improper integral can be replaced by the integration
in finite limits without any loss of accuracy. For its numerical
evaluation we use the Filon method (see Sec. 2.10.2 of [57]).
In the original formulation the method is applied to integration
of products involving trigonometric functions, for example,

I (k) =
∫ b

a

f (t)

{
cos kt

sin kt

}
dt.

It can be also used for spherical Bessel transforms since these
functions can be expressed as a combination of sine and cosine
functions. We use this previously unexploited fact to devise the
following expression:∫ b

a

j�(qr)f (r) dr ≈ h{βC2n + γC2n−1

+α[f (b)y�(qb) − f (a)y�(qa)]}
C2n = 1

2
f (a)j�(qa) + f (a + 2h)j�(q(a + 2h))

+ f (a + 4h)j�(q(a + 4h)) + · · · + 1

2
f (b)j�(qb),

C2n−1 = f (a + h)j�(q(a + h)) + f (a + 3h)j�(q(a + 3h))

+ · · · + f (b − h)j�(q(b − h)),

where y�(z) is the spherical Bessel function of the second kind,
h is the integration step, and the coefficients α, β, and γ are the
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same as in Filon’s method. The integration interval is divided
into two parts, in the small interval close to the origin ([0,a]) we
use the Simpson method because y�(z) functions are diverging
there. The Filon method is used for larger values of r . The
transition point a is selected at the middle between the first
zero of the j�(qr

(j )
1 ) = 0 and y�(qr

(y)
1 ) = 0 functions, that is,

a = 1
2

(
r

(j )
1 + r

(y)
1

)
.

The second transform yielding the potential [Eq. (4a)]
is applied to an oscillating and slowly decaying function

proportional to the q-dependent density. In general one would
need some sophisticated methods for its integration. However,
since we subtract the analytic transform of the ionic density
prior to the transform, the function becomes more localized
in q space. The effect of slowly decaying tails can be
eliminated in a controlled way by increasing the interval of
integration. We found very accurate results for the number
of q points nq = 16nr and the interval of integration [0,qm],
where qm = 12nr/rm. The integration is performed with the
Simpson method.
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