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Atomic properties calculated by relativistic coupled-cluster theory without truncation:
Hyperfine constants of Mg+, Ca+, Sr+, and Ba+
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We demonstrate an iterative scheme for coupled-cluster property calculations without truncating the dressed
properties operator. For validation, magnetic dipole hyperfine constants of alkaline-earth-metal ions are calculated
using relativistic coupled-cluster theory and the role of electron correlation is examined. Then a detailed analysis
of the higher-order terms is carried out. Based on the results, we arrive at an optimal form of the dressed operator,
which we recommend for properties calculations with relativistic coupled-cluster theory.
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I. INTRODUCTION

Coupled-cluster theory, first developed in nuclear many-
body physics [1,2], is considered one of the best many-body
theories. In recent times, it has been used with great success in
nuclear [3], atomic [4,5], molecular [6], and condensed-matter
[7] calculations. In atoms it is equivalent to incorporating
electron correlation effects to all orders. It has been used exten-
sively in precision atomic properties and structure calculations.
These include atomic electric dipole moments [4,8], parity
nonconservation [9], hyperfine structure constants [5,10], and
electromagnetic transition properties [11,12].

Despite the remarkable developments and numerous calcu-
lations based on relativistic coupled-cluster theory, hitherto,
a systematic analysis of the properties calculations with
coupled-cluster wave functions has been lacking. This issue
arises from the fact that the expression for properties with
coupled-cluster wave functions is a nonterminating series. In
this article we demonstrate an iterative scheme for calculating
properties without truncation. Such a study is essential and
timely as precision atomic calculations, in several instances,
complement precision atomic experiments. These have direct
bearing on, among other things, fundamental physics and new
technology.

To test and validate the scheme, we employ open-shell
coupled-cluster theory [13–15] and calculate the magnetic
dipole hyperfine constants of alkaline-earth-metal ions 25Mg+,
43Ca+, 87Sr+, and 137Ba+. We have selected these ions
as these are potential candidates for ongoing or proposed
experiments. In addition, there is a large variation in the
role of electron correlation among the ions and states. The
ground-state hyperfine constant of Mg+ is well studied with
ion-trapping techniques [16]. The clock states of the next ion
in the group, 43Ca+, were recently employed for high-fidelity
entanglement [17], a crucial step in quantum information
processing. Then, single trapped 87Sr+ is a suitable frequency
standard [18]. These are application-oriented precision ex-
periments. The other fascinating prospect is the observation
of parity nonconservation in a single 137Ba+ [19]. In all of
these endeavors, hyperfine interaction is involved. For this
reason, several theoretical calculations have examined the role
of electron correlations to the hyperfine constants of these
ions. These provide a wealth of data for comparative study. In
addition to the magnetic hyperfine constant, we also compute
the excitation energies of the low-lying states. This is to verify
the quality of the single-particle wave function we use.

The article is divided into seven sections. In Sec. II,
we give a brief description of single-valence coupled-cluster
theory. Section III is a short writeup on hyperfine interaction
and how it is calculated with relativistic coupled-cluster
theory. Section IV forms the core of the article, where we
explain our iterative scheme to calculate properties with
relativistic coupled-cluster theory to all orders. The details
of the numerical methods and schemes used in the present
work are provided in Sec. V. We present our results in
Sec. VI. Finally, in Sec. VII we make concluding remarks,
which may serve as guideline for any properties calculations
with relativistic coupled-cluster theory. In the article, all the
calculations and mathematical expressions are in atomic units
(e = h̄ = me = 1).

II. SINGLE-VALENCE COUPLED-CLUSTER THEORY

For completeness and easy reference of the working equa-
tions, we provide a condensed overview of the single-valence
coupled-cluster theory. Readers are referred to Ref. [15] for a
detailed exposition of the theory. In the Fock space coupled-
cluster theory of single-valence systems, the correlated wave
function is calculated in two steps. First, the cluster operators
of the core electrons, or the closed-shell part T , are evaluated
from the reference state |�0〉. Second, the cluster operators
of the valence shells S are evaluated and the reference
state is

|�v〉 = a†
v|�0〉. (1)

The coupled-cluster wave function of the open shell system
is

|�v〉 = eT +S |�v〉. (2)

For single-valence system eS = 1 + S, the higher-order terms
in the exponential do not contribute. Then

|�v〉 = eT (1 + S)|�v〉. (3)

For an N electron atom, the cluster operators are

T =
N−1∑
i=1

Ti and S =
N∑

i=1

Si. (4)

Here the summation index of the T is up to the N − 1
core electrons, whereas S is up to N to include the valence
electron. However, single and double are the most dominant,
in coupled-cluster single and double (CCSD) approximations
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FIG. 1. Diagrammatic representation of open-shell cluster opera-
tors. The orbital lines with double arrows indicate valence and single
up (down) arrow indicate particle (hole) states.

T = T1 + T2 and S = S1 + S2. In the second quantized repre-
sentation, for the closed-shell part,

T1 =
∑
a,p

tpa a†
paa and T2 = 1

2!

∑
a,b,p,q

t
pq

ab a†
pa†

qabaa. (5)

Similarly, for the valence shell,

S1 =
∑

p

sp
v a†

pav and S2 =
∑
a,p,q

spq
va a†

pa†
qaaav. (6)

Here, t ······ and s ···
··· are the cluster amplitudes. The indexes abc . . .

(pqr . . .) represent core (virtual) states and vwx . . . represent
valence states. The operators T1 (S1) and T2 (S2) give single and
double replacements after operating on the closed-(open-)shell
reference states. Diagrammatic representations of S are shown
in Fig. 1.

The atomic state |�v〉 satisfies the eigenvalue equation

H |�v〉 = Ev|�v〉, (7)

where H is the atomic Hamiltonian and Ev is the exact
eigenenergy of the atomic state. Applying e−T on the preceding
equation, we get

H̄ (1 + S)|�v〉 = Ev(1 + S)|�v〉, (8)

where

H̄ = H + {HT } + 1

2!
{HT T } + 1

3!
{HT T T }

+ 1

4!
{HT T T T }, (9)

is the dressed Hamiltonian, {· · ·} denotes normal ordering of

the operators, and {A · · · B} represents contraction between
two operators A and B. The cluster amplitude equations of the
singles and doubles are obtained after projecting Eq. (8) on
singly and doubly replaced states 〈�p

v | and 〈�pq
va |. From Wick’s

theorem and the normal ordered form of Hamiltonian (HN =
H − 〈�v|H |�v〉 = H − E(0)

v ), we get after the projection

〈�p
v |H̄N + {H̄NS1} + {H̄NS2}|�v〉 = �Eatt

v 〈�p
v |S1|�v〉,

(10)

〈�pq
va |H̄N + {H̄NS1} + {H̄NS2}|�v〉 = �Eatt

v 〈�pq
va |S2|�v〉.

(11)

In these equations, �Eatt
v is the valence correlation energy. It

is defined as

�Eatt
v = �EN,corr

v − �EN−1,corr
v , (12)

where �EN,corr
v and �EN−1,corr

v are the total and core correla-
tion energies, respectively.

The right-hand sides of Eqs. (10) and (11) are what
distinguish the open-shell coupled-cluster theory from the
closed-shell coupled-cluster theory. These are the equivalent
of the folded diagrams in the many-body perturbation theory
(MBPT) of open-shell systems.

A. Energy eigenvalue

To obtain the energy eigenvalue Ev of the state |�v〉, we
project Eq. (8) on the state 〈�v|, which gives

〈�v|H̄ (1 + S)|�v〉 = Ev, (13)

where we have used 〈�v|S|�v〉 = 0. Using the normal ordered
Hamiltonian, defined earlier, Eq. (13) can be written as

〈�v|
[
H̄N + E(0)

v

]
(1 + S)|�v〉 = Ev. (14)

From Wick’s theorem,

〈�v|[H̄N + {H̄NS}]|�v〉 = �EN,corr
v . (15)

The attachment energy is the difference in the exact energy of
the N - and (N − 1)-electron state (closed shell). In terms of
correlation energies, attachment energy

Eatt
v = �EN,corr

v − �EN−1,corr
v + εv, (16)

where εv is the single-electron energy of the valence electron.
From the closed-shell coupled-cluster theory, the

correlation energy �EN−1,corr
v has contributions from the

closed diagrams. The right-hand sides of the amplitude
equations Eqs. (10) and (11) absorb this correlation energy
as 〈�···

···|{H̄NS}|�v〉 is equivalent to �EN−1,corr
v 〈�···

···|S|�v〉.
Then the diagrams that contribute to �Eatt

v are the ones shown
in Fig. 2.

B. Multiple-valence shells

It is relatively straightforward to calculate, from the single-
valence CCSD theory described, the ground-state wave func-
tion and energy. Then the entire single-particle basis spaces
consist of one valence orbital, and the remaining are core
(occupied) and virtual (unoccupied). However, to calculate
excitation energies, the excited atomic states and eigenvalues
must be calculated. The trivial way is to solve the CCSD
equations of each atomic state, ground and excited, separately.
For example, to evaluate the 5d 2D3/2 excitation energy of Ba+
ion, the ground state |6s 2S1/2〉 and the excited state |5d 2D3/2〉
must be calculated, which translates to solving two sets of
CCSD equations with a

†
6s |Ba2+〉 and a

†
5d3/2

|Ba2+〉 as reference

states. Here |Ba2+〉 is the closed-shell Ba2+ reference state.
A better approach is to solve the ground- and excited-state

CCSD equations in a single calculation. Then the theory is

(a) (b) (c) (d) (e) (f)

FIG. 2. Diagrams that contribute to �Eatt
v . The dashed lines

represent the residual Coulomb interaction.
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multireference in nature and the cluster equations of different
states are coupled. In the present case, we choose the model
space to consist of one state of specific J and parity. Hence, we
do not have to invoke a full-fledged multireference coupled-
cluster theory.

III. PROPERTIES CALCULATION

A. Hyperfine structure constants

The hyperfine interaction Hhfs is the coupling of the nuclear
electromagnetic moments to the electromagnetic field of the
electrons. This causes splitting of the atomic levels and total
angular momentum F is the conserved quantity. The atomic
states are then |(IJ )FMF 〉, where I and J are the nuclear
spin and total electronic angular momentum, respectively. The
general form of the interaction is [20]

Hhfs =
∑

i

∑
k,q

(−1)q tkq (r̂i)T
k
−q, (17)

where t kq (r) and T k
q are irreducible tensor operators of rank k

effective in the electron and nuclear spaces, respectively. From
the parity selection, only even and odd values of k are allowed
for electric and magnetic interactions, respectively. For the
magnetic dipole interaction (k = 1), the explicit form of the
tensor operators are

t1
q (r) = −i

√
2[α · C1(r̂)]q

cr2
and T 1

q = µq. (18)

Here C1(r̂) is a rank 1 tensor operator in electron space and µq

is a component of µ, the nuclear magnetic moment operator.
Then the nuclear moment is the expectation value of µ in the
stretched state µ = 〈II |µ0|II 〉. Parameters which represents
the hyperfine splitting are the hyperfine structure constants.
For one-valence atoms, the magnetic dipole hyperfine structure
constant

a = gIµN√
jv(jv + 1)(2jv + 1)

〈nvκv||t1||nvκv〉. (19)

Here, gI (µ = gI IµN ) is the gyromagnetic ratio and µN is the
nuclear magneton.

B. Hyperfine constants from coupled-cluster theory

The measured value of an atomic property A for the atomic
state |�v〉 is the expectation

〈A〉 = 〈�v|A|�v〉
〈�v|�v〉 . (20)

In the present case, A is the hyperfine interaction Hhfs and
in particular the magnetic dipole hyperfine interaction. From
here on we use Hhfs; however, the derivations and discussions
are general, applicable to any dynamical variable. When
coupled-cluster wave functions, from Eq. (3), are chosen as
the correlated atomic states,

〈�v|Hhfs|�v〉 = 〈�v|H̃hfs + 2S†H̃hfs + S†H̃hfsS|�v〉, (21)

where, H̃hfs = eT †
Hhfse

T is the dressed operator. The factor
of two in the second term on the right-hand side accounts for
H̃hfsS as S†H̃hfs = H̃hfsS. An expansion of H̃hfs ideal for an

orderwise calculation is

H̃hfs = Hhfse
T +

∞∑
n=1

1

n!
(T †)nHhfse

T . (22)

The normalization factor [denominator in Eq. (20)], in terms
of coupled-cluster wave function, is

〈�v|�v〉 = 〈�v|(1 + S†)eT †
eT (1 + S)|�v〉. (23)

The dressed operator H̃hfs and operator eT †
eT in the normal-

ization factor are nonterminating series. In the next section
we describe a method for calculating H̃hfs to all orders in T

iteratively.

IV. PROPERTIES TO ALL ORDERS

For accurate properties calculations it is appropriate to
include higher-order terms in H̃hfs. It is, however, nontrivial
to go beyond the second order; the number of diagrams is
large and a systematic evaluation is extremely tedious. On
the other hand, diagrams can be grouped into different levels
of excitation (LOE) and evaluated orderwise iteratively. Here
LOE is the number of core or valence electrons replaced with
virtual electrons. For example, the diagrams in Fig. 3 have
LOE of 1. In each of these diagrams, one core electron is
replaced by a virtual electron.

To calculate the diagrams of LOE 1 to all orders, consider
the LOE 1 diagrams arising from Hhfse

T , that is,

(Hhfse
T )1 =

(
Hhfs + HhfsT + 1

2
HhfsT T

)
1

, (24)

where the subscript denotes the LOE of the contributing terms.
It is equivalent to a one-particle interaction and considered as
an effective properties operator which incorporates electron
correlations. In the next iteration,

(T †Hhfse
T )1 =

∑
i

[
T

†
i

(
Hhfs + 1

2
HhfsT

+ 1

6
HhfsT T

)
Ti

]conn

1

, (25)

where i = 1, 2 in CCSD and the superscript conn implies that
only the connected diagrams contribute. From the definition
of the cluster operators, Ti and T

†
i have LOE i and −i,

= + + + + + +

+ + + +

+ + +

FIG. 3. Diagrammatic representation of the iterative equation
for calculating the LOE 1 effective hyperfine operator Hhfs

eff
1 . The

iteration is implemented with T
†

2 and T2.
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(a) (b) (c) (d) (e) (f)

(g) (h) (l) (m)(i) (j) (k)

FIG. 4. Selected leading diagrams contributing to the hyperfine
structure constants in Eq. (21). The dashed lines terminating with a
circle represent hyperfine interaction.

respectively. The preceding equation is equivalent to the
expression in Eq. (24) sandwiched between cluster operators of
equal but opposite LOE. So the net LOE remains unchanged.
In general, we can then write

(T †nHhfse
T )1 =

∑
i

[T †
i (T †n−1

Hhfse
T )1Ti]

conn
1 . (26)

This is an iterative equation and it is possible to evaluate it order
by order to convergence. The sum of all the contributions is
equivalent to calculating the effective operator

H1 = (eT †
Hhfse

T )1. (27)

This contributes to the hyperfine structure as S
†
2H1. At the

lowest level, there are diagrams that correspond to Figs. 4(j)
and 4(k). In a similar way, the effective properties of higher
LOE are calculated.

For further study, we resort to diagrammatic analysis.
Consider diagrams arising from (Hhfse

T )1, there are six
diagrams in total. These are shown on the first row on the
right-hand side of Fig. 3. These define the initial choice of the
effective diagram. For the next and higher iterations, consider
the contractions with T

†
2 and T2. The contribution from T

†
1 and

T1 is neglected as these cluster amplitudes, on an average, are
several orders of magnitude smaller than T2. Then the iteration
is equivalent to the diagrammatic equation in Fig. 3 and it is
mathematically

H1 = H0
1 + (T †

2 H1T2)1, (28)

where H0
1 is (Hhfse

T )1, the effective operator prior to the
iteration. Since only the unique diagrams are considered, there
are no multiplying factors. The algebraic relation in Eq. (28)
is also without multiplying factors as the sequence of the
contraction is uniquely defined, which is not the case in the
expansion of eT †

Hhfse
T .

V. DESCRIPTION OF NUMERICAL METHODS

The calculations presented in this article involve var-
ious numerical techniques and methods. Some are fairly
straightforward and often used in atomic theory calculations.
Others are not and are specialized and application specific.
For easy reference in future works, we provide an outline
of the numerical methods used. This is appropriate as we

recommend, based on the current work, an approximation of
the properties operator in coupled-cluster theory.

A. Atomic Hamiltonian and single-particle states

In the results presented in this article, the Dirac-Coulomb
Hamiltonian is chosen H DC for the calculations. It incorporates
relativity at the single-particle level accurately, and, as the
name indicates, the Coulomb interactions between the elec-
trons. For an N electron atom

H DC =
N∑

i=1

[cαi · pi + (β − 1)c2 − VN (ri)] +
∑
i<j

1

rij

,

(29)

where p is the linear momentum and αi and β are the Dirac
matrices. For the nuclear potential VN (r), we consider the
finite-size Fermi density distribution

ρnuc(r) = ρ0

1 + e(r−c)/a
, (30)

where, a = t4 ln 3. The parameter c is the half-charge radius,
that is, ρnuc(c) = ρ0/2, and t is the skin thickness. At the
single-particle level, the spin orbitals are of the form

ψnκm(r) = 1

r

(
Pnκ (r)χκm(r/r)

iQnκ (r)χ−κm(r/r)

)
, (31)

where Pnκ (r) and Qnκ (r) are the large- and small-component
radial wave functions, κ is the relativistic total angular momen-
tum quantum number, and χκm(r/r) are the spin or spherical
harmonics. One representation of the radial components is to
define these as linear combination of Gaussian-like functions
and are referred to as Gaussian-type orbitals (GTOs). Then the
large and small components [21,22] are

Pnκ (r) =
∑

p

CL
κpgL

κp(r),

(32)
Qnκ (r) =

∑
p

CS
κpgS

κp(r).

The index p varies over the number of the basis functions. For
large component, we choose

gL
κp(r) = CL

κir
nκ e−αpr2

, (33)

where nκ is an integer. Similarly, the small components are
derived from the large components using the kinetic balance
condition. The exponents in the preceding expression follow
the general relation

αp = α0β
p−1. (34)

The parameters α0 and β are optimized for each of the ions
to provide good description of the properties. In our case the
optimization is to reproduce the numerical result of the total
and orbital energies. The optimized parameters used in the
calculations are listed in Table I.

From Eq. (31) the reduced-matrix element of the magnetic
hyperfine operator between two spin orbitals, v′ and v, is

〈v′||t1||v〉 = −(κv + κv′)〈−κv′ ||C1||κv〉
×

∫ ∞

0

dr

r2

(
Pnv′ κv′ Qnvκv

+ Qnv′κv′ Pnvκv

)
. (35)

A detailed derivation is given in Ref. [23].
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TABLE I. Optimized parameters α and β of the GTO basis used in the calculations.

25Mg+ 43Ca+ 87Sr+ 137Ba+

Basis Basis Basis Basis
Symmetry α β function α β function α β function α β function

s 0.0083 2.8900 28 0.0063 2.8800 29 0.0083 2.9800 30 0.0063 2.9800 31
p 0.0072 2.9650 25 0.0072 2.9650 26 0.0072 2.9650 27 0.0072 2.9590 28
d 0.0070 2.7200 22 0.0070 2.7000 24 0.0070 2.8000 25 0.0070 2.4500 26

B. Basis set and cluster amplitudes

For all the alkaline-earth-metal ions considered, Mg+, Ca+,
Sr+, and Ba+, we use V N−2 orbitals for the calculations. This
is equivalent to calculating the spin orbitals from the single-
particle eigenvalue equations of the doubly ionized alkaline-
earth-metal atoms, namely, Mg2+, Ca2+, Sr2+, and Ba2+. Then
the single-particle basis sets have few bound states and the
rest are in the continuum. We optimize the basis such that
single-particle energies of the core and valence orbitals are in
good agreement with the numerical results. For this we use
GRASP92 [24] to generate the numerical results.

As mentioned in earlier sections, we compute the closed-
shell cluster amplitudes T first. These are used to generate
the open-shell cluster amplitudes S. The coupled nonlinear
and linear equations are solved iteratively. We employ direct
inversion in the iterated subspace (DIIS) [25] for convergence
acceleration.

VI. RESULTS AND DISCUSSIONS

A. Ionization potential and excitation energies

To determine the quality of the basis set and parameters,
we compute the attachment energies of the ground state (S1/2)
and the first excited states, P1/2, P3/2, D3/2, and D5/2, are
calculated. Then the ionization potential (IP), the energy
required to remove the valence electron, is the negative of
the attachement energy −Eatt. To calculate the excitation
energy (EE) of the state |�v〉, we consider Eatt

g and Eatt
v as

the attachment energies of the ground state and the excited
state, respectively. The difference Eatt

v − Eatt
g is the EE, which

can also be defined in terms of IPs.
For further analysis on the correlation effects incorporated

with CCSD, we first compute IP with relativistic MBPT. The
MBPT calculations are similar to our previous work [26]
for second-order correlation energy of closed-shell atoms, in
particular noble gas atoms. The MBPT diagrams of IP are
similar to the first four attachment diagrams in Fig. 2 but
have residual interaction instead of S and T operators, where,
Figs. 2(a) and 2(b), direct and exchange, respectively, have
the valence replaced by a virtual state and encapsulates core-
valence correlation. Figures 2(c) and 2(d) represent core-core
correlation as these involve double replacement of core elec-
trons. Figures 2(e) and 2(f) with T1 do not contribute as single
replacements with residual Coulomb interaction are zero.

The results of the MBPT calculations are listed in Table II.
The 3d 2D3/2,5/2 and 3p 2P1/2,3/2 of Mg+, evaluated from the
MBPT IPs, are marginally lower than the experimental data
but are very close. From Ca+, there is a change in the pattern
of the EEs. The MBPT results of 2D3/2,5/2 EEs are lower than

the experimental data, whereas the 2P1/2,3/2 EEs are higher.
The same pattern occurs in Sr+ and Ba+. A similar pattern
is observed in the results of previous calculations [28]. The
differences between the results in Ref. [28] and ours are minor
and random in nature. These deviations can be attributed to
the nature and completeness of the basis sets chosen in the two
calculations.

The CCSD results of the EE are also listed in Table II, these
are closer to the experimental data than the MPBT results. This
is not surprising as CCSD encapsulates electron correlations
more accurately. The trend of the CCSD results separates into
two: Mg+ and other ions. The additional electron correlation
increases the IPs of Mg+, whereas there is a decrease in
the IPs of Ca+, Sr+, and Ba+. However, the states change
differently such that the EE improves. These results vouch for
the reliability of the basis set for properties calculations.

B. Magnetic dipole hyperfine constants

To compute the hyperfine constants from the CCSD wave
functions, we use Eq. (21). The results are listed in Table III;
for comparison the results of other theoretical calculations and
experimental data are also given. As defined in Eq. (21), the
coupled-cluster expression of the hyperfine structure constants
is separated into three groups. The dominant contribution from
the first term H̃hfs, up to first order in T † and T , is

H̃hfs ≈ Hhfs + 2HhfsT1 + T
†

1 Hhfs(T1 + 2T2) + T
†

2 HhfsT2.

(36)

Here, the first term is the Dirac-Fock (DF), which has the
largest contribution. The factor two in the second and fourth
terms accounts for the complex conjugate terms. The third
term, second order in T1, has one diagram and a negligibly
small contribution. The diagrams arising from the last term
are topologically similar to the attachment diagrams in
Figs. 2(c) and 2(d), except with the T

†
2 instead of residual

Coulomb interaction and Hhfs inserted on one of the orbital
lines. There are ten diagrams and contribution from these
are labeled as H̃hfs − DF. The last two terms in Eq. (21) are
approximated as

S†H̃hfs ≈ 2S†(Hhfse
T )1, (37)

S†H̃hfsS ≈ S
†
1Hhfs(S1 + 2S2) + S

†
2HhfsS2. (38)

Like in H̃hfs, the factor of two is to account for the complex
conjugate terms. The expression of (Hhfse

T )1 is as given
in Eq. (24). The S

†
2HhfsS2 term has contributions from the

diagrams in Figs. 4(b)–4(g). These are topologically similar
to in Figs. 2(a) and 2(b), except, like in T

†
2 HhfsT2, with S

†
2

instead of residual Coulomb interaction and Hhfs inserted to
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TABLE II. Ionization potential and excitation energies. For comparison other results and experimental values are also listed. All values are
in atomic units.

MBPT Coupled cluster Other works Expt. results Ref. [27]
Ion State IP EE IP EE IP EE EE

25Mg+ 3s1/2 −0.551 56 0.0 −0.552 03 0.0 −0.552 52 0.0 0.0
3d3/2 −0.226 52 0.325 04 −0.226 66 0.325 37 −0.226 77 0.325 75a 0.325 73
3d5/2 −0.226 52 0.325 04 −0.226 68 0.325 35 −0.226 77 0.325 75a 0.325 74
3p1/2 −0.389 22 0.162 34 −0.389 50 0.162 53 −0.390 03 0.162 49a 0.162 52
3p3/2 −0.388 78 0.162 78 −0.389 17 0.162 86 −0.389 61 0.162 91a 0.162 94

43Ca+ 4s1/2 −0.437 84 0.0 −0.436 71 0.0 −0.438 36 0.0 0.0
3d3/2 −0.377 97 0.059 87 −0.376 01 0.060 70 −0.377 68 0.060 68b 0.062 20
3d5/2 −0.377 62 0.060 22 −0.375 78 0.060 93 −0.377 31 0.062 05b 0.062 47
4p1/2 −0.321 80 0.116 04 −0.321 28 0.115 43 −0.322 17 0.116 19b 0.114 78
4p3/2 −0.320 75 0.117 09 −0.321 19 0.115 52 −0.321 11 0.117 25b 0.115 80

87Sr+ 5s1/2 −0.407 88 0.0 −0.405 73 0.0 −0.408 39 0.0 0.0
4d3/2 −0.342 36 0.065 52 −0.339 26 0.066 47 −0.342 79 0.065 60b 0.066 32
4d5/2 −0.340 91 0.066 97 −0.338 27 0.067 46 −0.341 32 0.067 07b 0.067 60
5p1/2 −0.297 93 0.109 95 −0.296 96 0.108 77 −0.298 38 0.110 01b 0.108 05
5p3/2 −0.294 21 0.113 67 −0.294 25 0.111 48 −0.294 63 0.113 76b 0.111 71

137Ba+ 6s1/2 −0.372 97 0.0 −0.368 62 0.0 −0.373 08 0.0 0.0
5d3/2 −0.352 96 0.020 01 −0.347 58 0.021 04 −0.351 72 0.021 36b 0.022 21
5d5/2 −0.348 72 0.024 25 −0.343 86 0.024 76 −0.347 48 0.025 60b 0.025 86
6p1/2 −0.276 85 0.096 12 −0.274 83 0.093 79 −0.275 32 0.097 76b 0.092 32
6p3/2 −0.268 82 0.104 15 −0.268 21 0.100 41 −0.269 46 0.103 62b 0.100 02

aReference [31].
bReference [28].

one orbital line. Diagrams arising from the remaining terms are
also given in Fig. 4. Based on this grouping, the contributions
are listed in Table IV. In the following we present a detailed
comparison of our magnetic hyperfine constant results with
the earlier ones. As discussed later, some of our results are the
best match with experimental data. This is a thorough test for
the starting point of our iterative procedure and the expression
for properties calculation we recommend.

1. Mg+

The experimental data are available only for the ground-
state 3s 2S1/2 [16]. However, theoretical results are available
for the low-lying states 3s 2S1/2, 3p 2P1/2, 3p 2P3/2, 3d 2D3/2,
and 3d 2D5/2. In the previous works, the calculations used
relativistic MBPT [29,30] and linearized CCSD [31] using
numerical and B-spline basis sets, respectively. These re-
port the DF contributions for 3s 2S1/2 as −466.4 [30] and
−463 [29]. The latter is in excellent agreement with our
result, −463.29. The other dominant terms are S†H̃hfs and
H̃hfs − DF; contributions from these are −107.32 and −16.13,
respectively. Total value of these three terms is −586.76, or
98% of the experimental value. Our total value of −596.78,
after including S†HhfsS, is 0.08% lower than the experimental
value and is the best theoretical result.

For the 3p 2P1/2 and 3p 2P3/2 states, our DF values −76.98
and −15.24 are in very good agreement with the values
−77 and −15.2 given in Ref. [29]. The two states have
20.6% and 16.3% contribution to the total value from S†H̃hfs.
This difference shows variations in the nature of correlation
effects, predominantly core polarization. Our total values for

the two states are −103.0 and −19.55, which are in very good
agreement with the previous results.

For the 3d2D3/2 and 3d2D5/2 states, our DF values are
−1.26 and −0.54, respectively. Whereas, the values in a
previous work [29] are −1.61 and −0.54. The results of
3d2D5/2 match perfectly but there is a significant difference
in the results of 3d2D3/2. Our result of −1.26 is 28%
lower in magnitude. The correlation effects, core-polarization
in particular, are markedly different from the other states.
Contribution from S†H̃hfs to 3d2D3/2 is 0.19 is 15% in
magnitude of DF and opposite in sign. It is even more dramatic
for 3d2D5/2; it is 0.65, which is larger than DF in magnitude
and opposite in sign.

Considering that the calculations in Ref. [29] incorporate
core polarization to all orders, we can extract the pair
correlation effects. For the 3s 2S1/2 state, the core polarization
contributes −91. Subtracting this from our S†H̃hfs result, the
pair correlation contribution to this term is −16.32. Adding the
other terms as well, the total contribution from pair correlation
is −43.82, which is less than the core polarization but not neg-
ligible. For the other states the core-polarization contributions
are −18, −3.7, and 0.71 for 3p 2P1/2, 3p 2P3/2, and 3d 2D5/2,
respectively. The corresponding pair correlation contribution
are −7.86, −0.62, and −0.04. The pair correlation is negligible
in last two states and we have not estimated for 3d 2D3/2 as
there is a large difference between our DF value and Ref. [29].

2. Ca+

This is the most well-studied, experimentally and theo-
retically, singly ionized alkaline-earth-metal ion. There is a
large variation in the experimental results of 4s 2S1/2 and
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TABLE III. Magnetic dipole hyperfine structure constants (in MHz) of 25Mg+, 43Ca+, 87Sr+, and 137Ba+ ions.

Ion State This work Other works Expt.

25Mg+ 3s1/2 −596.785 −597.6l, −554s, −(602 ± 8)t −596.254m

3p1/2 −102.997 −103.4l, −100s

3p3/2 −19.546 −19.29l, −19s

3d3/2 −1.083 −1.140l, −1.25s

3d5/2 0.118 0.1196l, 0.107a, 0.17s

43Ca+ 4s1/2 −808.126 −805.35b, −819g, −794.7h,−806.4(2.5)u −797.5(2.4)c, −805(2)d

4p1/2 −142.782 −143.07b, −148g, −144.8h,−143s, −145.4(4)u, −158(3.3)c, −145.5(1.0)d, −142(8)e, −145.4(0.1)f

4p3/2 −32.185 −30.50b, −30.9g, −29.3h,−30s, −30.4(4)u −29.7(1.6)c, −31.9(0.2)d, −31.0(0.2)f

3d3/2 −45.294 −47.82b, −52g,−49.4h, −47.3(3)u −48.3(1.6)e, −47.3(0.2)f

3d5/2 −4.008 −3.351a,−3.55b, −5.2g, −4.2h, −3.6(3)u −3.8(0.6)f, 3.8931(2)v

87Sr+ 5s1/2 −990.638 −10003.18b, −1000k −1000.5(1.0)i

5p1/2 −169.988 −178.40b, −177k, −175s

5p3/2 −36.225 −35.11b,−35.3k−30s −36.0i

4d3/2 −44.320 −47.36b, −46.7k

4d5/2 2.168 2.156a, 2.51b, 1.1k 2.17j

137Ba+ 6s1/2 4021.721 4072.83p 4018.2q

6p1/2 705.039 736.98p

6p3/2 130.191 130.94p,126s 126.9o, 112.77r

5d3/2 185.013 192.99n, 188.76p, 215o 189.730o, 170.88r

5d5/2 −12.593 9.39n, −11.717a, −18o −12.028o

aReference [37].
bReference [32].
cReference [38].
dReference [39].
eReference [40].
fReference [41].
gReference [42].
hReference [43].
iReference [44].
jReference [18].
kReference [34].
lReference [31].
mReference [16].
nReference [33].
oReference [45].
pReference [35].
qReference [46].
rReference [47].
sReference [29].
tReference [30].
uReference [10].
vReference [48].

4p 2P1/2, and less in the results of 4p 2P3/2, 3d 2D3/2, and
3d 2D5/2 states. On the other hand, the theoretical results
exhibit significant variations for all the states except 4p 2P3/2.
The DF values of 4s 2S1/2 reported in previous works are
−589 [29] and −588.933 [32], which are calculated with
numerical and B-spline basis sets, respectively. Our value
−589.09 is in very good agreement with these results. The
core-valence correlation from S†H̃hfs accounts for 22% of
the total value. This is much larger than in Mg+ (17%).
On the other hand, core-core correlation, contribution from
H̃hfs − DF, is smaller. Our total value −808.12 is marginally
higher than the experimental values but lies between the other
theoretical results.

In previous studies, DF values of the 4p 2P1/2 are −102
[29] and −101.492 [32]. Similarly, for 4p 2P3/2 the values
are −19.2 [29] and −19.646 [32]. These are in very good
agreement with our results −101.47 and 19.65. As in 4s 2S1/2,
there is an increase, compared to Mg+, in S†H̃hfs contribution.
It accounts for 26% and 30% of the total value for the two
states. Our total values of 4p 2P1/2 is lower than the other
theoretical results, whereas 4p 2P3/2 exhibits opposite trend.

For 3d 2D3/2, the DF values in the previous studies are −33
[29], −33.206 [32], and −39.12 [33]. The first two compare
well with our value −33.55. Similarly, our 3d 2D5/2 DF value
−14.29 is in good agreement with the previous results −14
[29] and −14.144 [32]. There is a change in the nature of
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TABLE IV. Contributions from different terms in the coupled-cluster, magnetic dipole hyperfine constant properties expression. The values
listed are in MHz.

Coupled-cluster terms

S†H̃hfs S
†
2H̃hfsS1

Ion State DF H̃hfs-DF +c.c. +c.c. S
†
1H̃hfsS1 S

†
2H̃hfsS2 Norm

25Mg+ 3s1/2 −463.297 −16.136 −111.099 −1.637 −0.396 −5.560 1.002
3p1/2 −76.984 −2.754 −21.951 −0.348 −0.089 −0.989 1.001
3p3/2 −15.242 −0.695 −3.340 0.000 −0.018 −0.277 1.001
3d3/2 −1.259 −0.007 0.186 0.004 −0.001 −0.008 1.001
3d5/2 −0.540 −0.003 0.648 0.017 −0.000 −0.004 1.001

43Ca+ 4s1/2 −589.087 −12.696 −196.519 −4.782 −1.802 −10.717 1.009
4p1/2 −101.473 −0.497 −39.042 −1.089 −0.446 −1.031 1.006
4p3/2 −19.648 −0.321 −11.094 −0.244 −0.094 −1.004 1.007
3d3/2 −33.554 −2.553 −7.464 −0.128 −0.260 −2.153 1.018
3d5/2 −14.294 −1.247 13.531 0.490 −0.111 −2.449 1.018

87Sr+ 5s1/2 −738.204 −3.667 −235.962 −5.980 −3.046 −15.027 1.011
5p1/2 −122.363 −0.675 −44.789 −1.199 −0.678 −1.446 1.007
5p3/2 −21.501 −0.398 −13.096 −0.353 −0.126 −1.043 1.008
4d3/2 −31.368 −3.084 −8.184 −0.263 −0.139 −1.979 1.016
4d5/2 −13.080 −1.626 18.484 0.473 −0.058 −1.991 1.016

137Ba+ 6s1/2 3003.105 −39.093 1003.841 27.452 17.598 66.108 1.014
6p1/2 504.196 −5.948 197.723 5.728 4.072 6.064 1.010
6p3/2 73.674 0.665 50.583 1.605 0.619 4.480 1.011
5d3/2 129.875 12.565 35.669 1.067 0.462 9.495 1.022
5d5/2 52.085 7.240 −80.381 −1.553 0.191 9.554 1.022

S†H̃hfs contribution to 3d 2D3/2. Unlike in Mg+, it is in phase
with DF and a similar trend is observed in Sr+ and Ba+ as
well. The contribution from (S†H̃hfs + c.c.) to 3d 2D5/2 is the
only one which is lower in magnitude than the DF value. In
all the other ions (Mg+, Sr+, and Ba+) DF values are lower in
magnitude. The impact of core-core correlation is not large but
not negligible. Our total value for 3d 2D3/2 is lower than all
the theoretical and experimental values. However, our result
for 3d 2D5/2 matches very well with the experimental data.

Taking the core-polarization results from Ref. [32] and
following the procedure in Mg+, we estimate the pair cor-
relation effects. We get the pair correlation contributions as
−108.61, −19.37, −4.25, −11.96, and −7.99 for the 4s 2S1/2

and 4p 2P1/2, 4p 2P3/2, 3d 2D3/2, and 3d 2D5/2, respectively.
Except for 4p 2P3/2 and 3d 2D3/2, these are in very good
agreement with the pair correlation listed in Ref. [32]. Not
surprisingly, our results for these two states deviate from the
other theoretical and experimental data.

3. Sr+

Experimental data are limited to 5s 2S1/2, 4p 2P1/2, and
4d 2D5/2. However, several theoretical investigations have
examined the hyperfine structure of Sr+. The 5s 2S1/2 DF
value in earlier works are −735 [34] and −736.547 [32]. Our
value −738.204 is higher than both of the values. There is a
large contribution from S†H̃hfs. It is 22% of the total value
and the same as that seen with 4s 2S1/2 of Ca+. The core-core
correlation is less significant. Our total result is lower than the
experimental data and other theoretical results.

The DF values of 5p 2P3/2 from previous works are
−122 [34] and −121.576 [32], and values for 5p 2P3/2 are

−21.4 [34] and −21.331 [32]. These are less than our values
−122.363 and −21.501. The core-core correlation effects are
negligibly small, 0.3% of the total value. Compared to Ca+
(4p 2PJ ), there is an enhanced role of S†H̃hfs in 5p 2P3/2. It
accounts for 33% of the total value. Our total value for 5p 2P1/2

is less than the previous theoretical results. However, the value
of 5p 2P3/2 is in excellent agreement with the experimental
data.

The DF values of 4d 2D3/2 from previous works are
−31.2 [34], −31.126 [32], and −34.23 [33]. And values for
4d 2D5/2 are −13.0 [34], −12.977 [32], and −14.27 [33].
These compare well with our values −31.368 and −13.080.
There is a marked change in the role of S†H̃hfs for the 4d 2D5/2

state. It has larger magnitude (135%) than the DF value. Our
total value for 4d 2D3/2 is lower than the other theoretical
values. However, 4d 2D5/2 is in excellent agreement with the
experimental data.

There are noticeable differences in the estimates of the
core-polarization effects in the earlier works [32,34]. For
example, the core-polarization contribution to 4d 2D3/2 is
estimated as −6.3 in Ref. [34], whereas it is −2.413 in
Ref. [32]. For consistency of analysis, with the choice in Ca+,
we adopt the core-polarization results of Ref. [32] and estimate
pair correlation effects in our results. These are −127.795,
−24.241, −3.938, −11.235, and −6.594. After accounting
for the difference in the DF results, the results for 5s 2S1/2 and
4d 2D5/2 are in very good agreement with those of Ref. [32].

4. Ba+

Ba+ is a candidate system, as mentioned earlier, for
a technique for measuring parity nonconservation (PNC)
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experiment [19]. In this context, theoretical study of Ba+
hyperfine constants is very important. It is a good proxy
for the PNC in ions or atoms arising from neutral weak
currents. Except for 6p 2P1/2, there are experimental data
for the low-lying states and theoretical results are available
for 6s 2S1/2, 6p 2P1/2, 6p 2P3/2, 5d 2D3/2, and 5d 2D5/2. The
DF values of 6s 2S1/2 in previous calculations are 2929.41
[35] and 3055 [36]. Our result is 3003.105, significantly
different from both of the values. The contribution from the
core-core correlation H̃hfs − DF is of opposite phase to the
DF contribution. This is in contrast to the states we have
discussed so far. The total value is in very good agreement
with experimental data but significantly different from the
other theoretical results. It has 23% contribution from S†H̃hfs.

The DF values of 6p 2P1/2 and 6p 2P3/2 in the previous
work are 492.74 [35] and 71.84 [35], respectively, which are
different from our values of 504.196 and 73.674, respectively.
The core-core correlation H̃hfs − DF, as in 6s 2S1/2, is of
opposite phase for 6p 2P1/2. The total results of the two
states are 705.039 and 130.191, respectively. The first is lower
than the previous theoretical result, and the latter is in very
good agreement with the theoretical result but lower than the
experimental data.

The DF values of 5d 2D3/2 in the previous studies are
128.27 [35] and 139.23 [33], and for 5d 2D5/2 the values
are 53.213 [37] and 55.82 [33]. Our results are 129.875
and 52.085, which are closer to Ref. [35] and Ref. [37],
respectively. The S†H̃hfs contribution to 5d 2D5/2 is large,
141% of the DF value and opposite in phase. Our total
total values 185.013 and −12.592 are close to experimental
data.

For Ba+, except for the ground state, there are no systematic
studies of core-polarization effects. The previous work of
Ref. [35] uses methods, GTO basis, and relativistic coupled
cluster, similar to what we have used in the present article.
Comparing the two, there is a good correlation between dif-
ferent coupled-cluster terms for all the states except 6s 2S1/2.

C. All order calculations

In the previous section we analyzed and compared our
results with earlier ones in some detail. The majority of our
results are in very good agreement with the experimental
data, some are perhaps the best match. The earlier works
chosen for comparison are based on diverse types of orbitals:
numerical, finite discrete spectrum, B-spline, and GTO. These
are an accurate representation of the tried and tested types
of single orbital in atomic calculations. Similarly, there is a
variation in the many-body methods: MBPT, MCDF-EOL, and
coupled-cluster. This is a large data set for comparison. More
importantly, among the ions considered there are large changes
in the role of electron correlations. This choice is essential to
deliberate on the consequence of higher-order terms and avoid
erroneous inference from an incomplete sample. This sets the
stage for a systematic appraisal of the higher-order terms in
the properties calculations.

As discussed in Sec. IV, we implement the iterative method
to calculate the hyperfine constant to all orders for LOE 1. To
frame the iterative equation in terms of components, we define
τ as c numbers in the second quantized representation of H.

That is,

H =
∑
ij

τ
j

i a
†
i aj +

∑
ijkl

τ kl
ij a

†
ka

†
l aj ai + · · · . (39)

Equation (28) then assumes the form

τp
a = hpa + hpqt

q
a + hbat

p

b + hbq t̃
pq

ab + hbqt
q
a t

q

b

+ τ
q

b t̃
∗qr

bc t̃pr
ca + τp

c t
∗qr

bc t̃
qr

ab + τ r
a t

∗qr

bc t̃
qp

bc , (40)

where hij is the matrix element 〈i|hhfs|j 〉 and t̃ kl
ij = t kl

ij − t kl
j i

is the antisymmetrized cluster amplitude. This is the equation
we solve iteratively until convergence. After each iteration,
we evaluate the contribution from the effective operator to the
hyperfine constant S

†
2H1. The results of our calculations are

given in Table V. For most of the cases, the results converge
to KHz accuracy after two iterations.

In terms of absolute changes, the largest is observed in
6s 2S1/2 of Ba+. For this state the zeroth iteration, arising from
H0

1, as given in Table V, is 469.636. It converges to 467.450
at the second iteration and the change is −2.186, which is
0.5% of the zeroth iteration and 0.05% of the total value,
whereas in terms of fractional change, the largest is 5d 2D5/2.
Upon convergence, the change is −0.702, which is 1.9% of
zeroth iteration. However, this is 5.5% of the total value. This
arises from the large cancellation between the DF and S†H̃hfs.
Here, to obtain correct result, the iterated calculation should
be applied to the other terms as well. Not very surprisingly,
the changes in Mg+, Ca+, and Sr+ which have lower Z are
negligibly small.

Considering that iteration is implemented for the LOE
which contributes maximally. Contributions from the other
LOEs are expected to be much smaller. Indeed, the contribution
from LOE 0, as discussed in the next section is smaller by more
than order of magnitude.

D. Error estimates

There are three important sources of error for the results
listed in Table III. These are omission of higher-l basis states,
truncation of the dressed properties operator in Eq. (22), and
truncation of the cluster operator in Eq. (4). In the following
we analyze and estimate the upper bound on the error arising
from each of these sources.

The values in Table III are the converged results for basis
functions up to the h symmetry. To estimate the contributions
from higher symmetries, we include i symmetry and compute
the hyperfine interaction constant. The largest contributions
from i symmetry to 2S1/2, 2P1/2, and 2P3/2 states are observed
in Ba+ and the changes are 0.01%, 0.06%, and 0.10%
respectively. For the 2D3/2 and 2D5/2 states, the largest changes
occur in the values of Mg+, and these are 0.19% and 5.29%,
respectively. In the present implementation of relativistic
coupled-cluster theory, incorporating j and higher symmetry
basis states renders the basis set too large for computations.
However, a leading-order analysis is possible with MBPT and
we find the contribution from j symmetry is negligible.

To estimate the error arising from the truncation of the
dressed operator properties, we examine the higher-order terms
computed with the iterative scheme. From Table V, the largest
contributions from the LOE one are 0.11%, 0.28%, 0.40%,
0.36%, and 11.11% for the 2S1/2, 2P1/2, 2P3/2, 2D3/2, and 2D5/2
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TABLE V. Magnetic dipole hyperfine structure constant, contributions from higher-order terms in the all-order scheme [Eq. (22)].

S†H̃hfs

Ion State (Hhfse
T )1 T

†
2 (Hhfse

T )1T2 T
†

2

2
(Hhfse

T )1T
2

2 T
†

2

3
(Hhfse

T )1T
3

2 Converged value

25Mg+ 3s1/2 −53.663 −53.502 −53.503 −53.503 −53.503
3p1/2 −10.627 −10.563 −10.564 −10.564 −10.564
3p3/2 −1.592 −1.577 −1.577 −1.577 −1.577
3d3/2 0.093 0.091 0.091 0.091 0.091
3d5/2 0.324 0.321 0.321 0.321 0.321

43Ca+ 4s1/2 −90.109 −89.776 −89.778 −89.778 −89.778
4p1/2 −18.757 −18.570 −18.574 −18.574 −18.574
4p3/2 −4.845 −4.792 −4.793 −4.793 −4.793
3d3/2 −3.851 −3.887 −3.885 −3.885 −3.885
3d5/2 6.715 6.638 6.639 6.639 6.639

87Sr+ 5s1/2 −109.153 −108.716 −108.720 −108.720 −108.720
5p1/2 −22.116 −21.908 −21.912 −21.912 −21.912
5p3/2 −6.006 −5.943 −5.944 −5.944 −5.944
4d3/2 −4.216 −4.267 −4.265 −4.265 −4.265
4d5/2 8.822 8.687 8.689 8.689 8.689

137Ba+ 6s1/2 469.636 467.423 467.450 467.449 467.449
6p1/2 98.036 97.052 97.075 97.074 97.074
6p3/2 22.917 22.655 22.660 22.660 22.660
5d3/2 18.959 19.161 19.150 19.150 19.150
5d5/2 −36.806 −36.092 −36.104 −36.104 −36.104

states, respectively. Although not mentioned in the article, we
also implement the iterative scheme for LOE 0 and find the
largest contributions are 0.01%, 0.01%, 0.02%, 0.05%, and
1.64% for the 2S1/2, 2P1/2, 2P3/2, 2D3/2, and 2D5/2 states,
respectively. The contributions from LOE 2 and higher involve
higher-order terms in T , hence have smaller contribution than
LOE 0.

It is possible to estimate the errors arising from neglecting
triples and higher cluster operators with a perturbative calcula-
tion [26]. For this we use the results from previous works. The
contribution from the triples reported in computations similar
to ours, using relativistic coupled-cluster theory, are 0.08%,
0.10%, 0.11%, and 0.29% for the 2P1/2, 2P3/2, 2D3/2, and
2D5/2 states in Ca+ [49]. For the 2S1/2 state contribution from
triples is negligible. A similar trend is expected for the other
ions as well.

To put a bound on the error in the results of 2S1/2, 2P1/2,
2P3/2, and 2D3/2, we select and add the largest change from
each of the sources. This gives a value of 0.70%, which can
be considered as the upper bound on the error in the results of
Mg+, Ca+, and Sr+. For the heavier ion Ba+, another important
source of error is the Breit interaction. Based on previous
work [50], this can contribute up to 0.2%; hence, 0.9% is the
appropriate upper bound for Ba+ results. For the 2D5/2 state,
which has large cancellations, a comprehensive analysis is
necessary to arrive at a meaningful error estimate. We shall
address this rigorously in a our future works.

VII. CONCLUSIONS

We have calculated, as well as surveyed and compared, the
magnetic hyperfine structure constants of low-lying states of
Mg+, Ca+, Sr+, and Ba+ available in the literature. For the

states 3s 2S1/2 (25Mg+), 3d 2D5/2 (43Ca+), 4d 2D5/2 (87Sr+),
and 6s 2S1/2 (137Ba+), our results provides the best match
with the experimental data. Furthermore, results for most of
the other states are in very good agreement with the available
experimental data.

The chosen systems have hyperfine constants with varying
dependence on electron correlations. It is a suitable data set
for examining the impact of higher-order terms in properties
calculations with relativistic coupled-cluster theory. This is
of paramount importance for high-precision properties cal-
culations with relativistic coupled-cluster theory. Our study
establish without any ambiguity that the higher-order terms
are not important when the leading terms DF and S†H̃hfs con-
tribute coherently. However, when large cancellation occurs,
as in 2D5/2 state of alkaline-earth-metal ions, a consistent
calculation of the different terms to equal orders is a must.
Except for such cases, based on the present study, we
recommend

〈�v|Hhfs|�v〉 = 〈�v|Hhfs + 2HhfsT1 + T
†

1 Hhfs(T1 + 2T2)

+ T
†

2 HhfsT2 + 2S†(Hhfse
T )1

+ S
†
1Hhfs(S1 + 2S2) + S

†
2HhfsS2|�v〉 (41)

for calculating hyperfine and similar properties for single-
valence systems. It is sufficient to include terms up to quadratic
in T for properties calculations. Higher-order terms, all
together, have less than 0.1% of the total value and can be
neglected.
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