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The relativistic nuclear recoil, higher-order interelectronic-interaction, and screened QED corrections to the
transition energies in Li-like ions are evaluated. The calculation of the relativistic recoil effect is performed to
all orders in 1/Z. The interelectronic-interaction correction to the transition energies beyond the two-photon-
exchange level is evaluated to all orders in 1/Z within the Breit approximation. The evaluation is carried
out employing the large-scale configuration-interaction Dirac-Fock-Sturm method. The rigorous calculation of
the complete gauge invariant sets of the screened self-energy and vacuum-polarization diagrams is performed
utilizing a local screening potential as the zeroth-order approximation. The theoretical predictions for the 2pj -2s

transition energies are compiled and compared with available experimental data in the range of the nuclear charge
number Z = 10–60.
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I. INTRODUCTION

High-precision spectroscopy of Li-like ions continues to
be of interest both theoretically and experimentally. On the
one hand such ions are among the simplest few-electron
systems that can be theoretically described with high accuracy;
on the other hand high precision measurements are also
available. Investigations of such systems enable precision tests
of quantum electrodynamics (QED) at strong fields, as well
as studying various nuclear properties probed by the atomic
structure. During the past decades significant theoretical
efforts have been undertaken to evaluate various contributions
to the energy levels in high-Z Li-like ions [1–16]. However,
further improvements in theoretical calculations are required in
order to meet the high level of experimental accuracy [17–26].

This work is devoted to high-precision calculations of
the 2pj -2s transition energies in middle-Z Li-like ions. As
was noticed in Ref. [13], the leading sources of theoretical
uncertainty originate from the relativistic recoil and higher-
order screened QED corrections. Therefore, the present article
is mainly focused on evaluation of these corrections. The
article is organized as follows: Sec. II is devoted to the
calculation of the relativistic nuclear recoil effect employing
the large-scale configuration-interaction Dirac-Fock-Sturm
method (CI-DFS). The method used for the calculation of the
higher-order (in 1/Z) relativistic recoil corrections allows us
also to obtain accurate numerical values for the interelectronic-
interaction contributions to the transition energies within the
Breit approximation. In Sec. III these results are combined
with the rigorous QED calculation of the one- and two-photon-
exchange contributions to obtain the higher-order electron-
electron interaction corrections to the transition energies with
the same accuracy level as in Ref. [13]. The calculation
of the screened QED corrections is presented in Sec. IV.
A local screening potential is included in the zeroth-order
Hamiltonian. Then, the first- and second-order diagrams repre-
senting the screened self-energy (SE) and vacuum-polarization

(VP) corrections are rigorously evaluated. In the last section,
we compile all the contributions to get the most accurate
theoretical predictions for the 2p1/2-2s and 2p3/2-2s transition
energies of Li-like ions in the range of the nuclear charge
number Z = 10–60 and compare them with the experimental
data available.

Relativistic units (h̄ = 1, c = 1, m = 1) and the Heaviside
charge unit [α = e2/(4π ), e < 0] are used throughout the
paper.

II. RELATIVISTIC THEORY OF THE NUCLEAR
RECOIL EFFECT

Since the electron mass is small compared to the nucleus
mass, most of the contributions to the binding energies can
be evaluated within the infinite nuclear mass approximation.
Taking into account a finite nuclear mass shifts the energies.
This is the so-called nuclear recoil effect. Since this effect
is different for different isotopes, it also results in an isotope
shift of the energy levels. Generally, the isotope shift arises
as a sum of the finite nuclear mass effect (mass shift) and
a nonzero nuclear size effect (field shift). In this section we
focus on calculations of the mass shift in Li-like ions.

A. Basic formulas

In the nonrelativistic theory, the mass shift (MS) is usually
represented as a sum of the normal mass shift (NMS) and the
specific mass shift (SMS), H

(nonrel)
M = HNMS + HSMS, where

[27]

HNMS = 1

2M

∑
i

p2
i ,

(1)
HSMS = 1

2M

∑
i �=j

pi · pj .
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Here, pi is the electron momentum operator and M is the
nuclear mass.

A rigorous relativistic theory of the mass shift can be
formulated only in the framework of QED. Such a theory
is formulated in Refs. [28,29] (see also Refs. [30,31] and ref-
erences therein), where the complete αZ-dependent formulas
for the recoil correction to the atomic energy levels to first
order in m/M are derived. Within the Breit approximation
this theory leads to the following many-body relativistic MS
Hamiltonian:

HM = 1

2M

∑
i,j

{
pi · pj − αZ

ri

[
αi + (αi · ri) ri

r2
i

]
· pj

}
,

(2)

where α is a vector incorporating the Dirac matrices. An
independent derivation of the Hamiltonian (2) is presented
in Ref. [32]. As follows from expression (2), the lowest-order
relativistic correction to the one-electron mass shift operator
is given by

HRNMS = − 1

2M

∑
i

αZ

ri

[
αi + (αi · ri) ri

r2
i

]
· pi , (3)

where RNMS denotes the relativistic NMS. The corresponding
two-electron correction is

HRSMS = − 1

2M

∑
i �=j

αZ

ri

[
αi + (αi · ri) ri

r2
i

]
· pj , (4)

where RSMS denotes the relativistic SMS.
The recoil correction to a given atomic state to first order

in m/M is obtained as the expectation value of HM on the
Dirac wave function (here and in what follows, the Dirac wave
functions are the eigenvectors of the Dirac-Coulomb-Breit
Hamiltonian). In Ref. [33] the Hamiltonian (2) was employed
to calculate the (αZ)4m/M corrections to the energy levels
in He- and Li-like ions to zeroth order in 1/Z. Later in
Refs. [34,35], this Hamiltonian was used to evaluate the
relativistic recoil effect in low- and middle-Z ions and atoms
to all orders in 1/Z.

The recoil correction of the first order in m/M is conve-
niently expressed in terms of the constant K defined by

�E = 〈ψ |HM |ψ〉 ≡ K/M, (5)

where |ψ〉 is the eigenvector of the Dirac-Coulomb-Breit
Hamiltonian. With this constant, the mass isotope shift for
two different isotopes with nuclear masses M1 and M2 can be
written as δE = K( 1

M1
− 1

M2
).

The recoil correction which is beyond the Breit approxima-
tion (2) is referred to a QED recoil effect. This effect has to be
also taken into account, especially for high-Z ions. For H- and
Li-like ions the QED recoil corrections have been calculated to
all orders in αZ and to zeroth order in 1/Z in Refs. [36,37]. In
what follows, we focus on the calculations of the coefficient K
to all orders in 1/Z for the 2pj -2s transitions in a wide range
of Li-like ions. We investigate relative contributions of the
relativistic and QED corrections to the total recoil effect and
the influence of the electron correlations on the recoil effect.

B. Method of calculation

Expectation values of the MS operator (2) are very sensitive
to the electron correlations. In the present investigation
the large-scale configuration-interaction Dirac-Fock-Sturm
(CI-DFS) method is employed to solve the Dirac-Coulomb-
Breit equation with high accuracy. This method was developed
by Tupitsyn and partially presented in Ref. [38]. It was
successfully used for calculations of the recoil effect in
Refs. [14,34,39,40]. The MS is calculated as the expectation
value of the recoil operator with the many-electron Dirac wave
function. Additionally, we apply an alternative approach which
consists of adding the operator HM (2) to the many-electron
Hamiltonian H with an arbitrary coefficient λ,

H (λ) = H + λHM, (6)

and evaluating the MS by

�E = d

dλ
E(λ)|λ=0. (7)

Here the derivative is determined numerically and λ is chosen
obeying the numerical stability and smallness of the nonlinear
terms. We have reformulated the CI-DFS method to adopt the
alternative scheme and independently evaluated the normal
and specific parts of the MS by both methods.

C. Results of the calculations and discussion

Here we examine our calculations of the mass shift
coefficient K in Li-like ions and compare them with the
related results obtained by other authors. In Tables I, II, III,
and IV we present numerical results for the coefficient K

calculated for the 2p1/2-2s and 2p3/2-2s transitions in lithium,
Li-like zinc, neodymium, and uranium, respectively. The first
line shows the contribution obtained by employing the MS

TABLE I. Individual contributions to the mass shift coefficient
K (GHz amu) for the 2p1/2-2s and 2p3/2-2s transitions in lithium
(Z = 3). Values marked with “nr” show the nonrelativistic values
of the corresponding contributions. Values marked with “hyd” are
results obtained with hydrogenlike wave functions.

Subset 2p1/2-2s 2p3/2-2s Ref.

MS operator −443.81(20) −443.82(20)
−443.86nr −443.86nr

−2534.48hyd −2535.12hyd

NMS −245.48 −245.49
SMS −198.78 −198.77

−198.73nr −198.73nr

−198.920(2)nr −198.920(2)nr [41–43]
−198.8nr −198.8nr [44]

RNMS 0.33 0.38
RSMS 0.12 0.06

QED −0.08(3) −0.08(3)
1-el QED −0.08 −0.08
2-el QED 0.00 0.00

Total theory −443.9(2) −443.9(2)
−444.086 −444.103 [45,46]

−447(12) −447(12) [35]
Experimenta −444.09(3) [47]

−444.04(4) −444.06(4) [48]

aThe experimental values include also terms of higher orders in m/M .
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TABLE II. Individual contributions to the mass shift coefficient
K (GHz amu) for the 2p1/2-2s and 2p3/2-2s transitions in Li-like zinc
(Z = 30). Values marked with “nr” show the nonrelativistic values
of the corresponding contributions. Values marked with “hyd” are
results obtained with hydrogenlike wave functions.

Subset 2p1/2-2s 2p3/2-2s

MS operator −224600(3) −230073(3)
−230161nr −230161nr

−246954hyd −253951hyd

NMS −21862.0 −34139.7
SMS −235922.0 −225509.0

RNMS 13807.8 22890.0
RSMS 19377.1 6685.8

QED −591(20) × 10 −560(20) × 10
1-el QED −5411 −5504
2-el QED −497 −98

Total theory −23051(20) × 10 −23568(20) × 10

TABLE III. Individual contributions to the mass shift coefficient
K (GHz amu) for the 2p1/2-2s and 2p3/2-2s transitions in Li-like
neodymium (Z = 60). Values marked with “nr” show the nonrela-
tivistic values of the corresponding contributions. Values marked with
“hyd” are results obtained with hydrogenlike wave functions.

Subset 2p1/2-2s 2p3/2-2s

MS operator −834508(25) −962662(25)
−967156nr −967156nr

−868746hyd −1014056hyd

NMS −339895 −625227
SMS −1227059 −998772

RNMS 323477 539494
RSMS 408969 121843

QED −2133(35) × 102 −1958(35) × 102

1-el QED −175010 −188435
2-el QED −38285 −7332

Total theory −10478(35) × 102 −11584(35) × 102

TABLE IV. Individual contributions to the mass shift coefficient
K (1000 GHz amu) for the 2p1/2-2s and 2p3/2-2s transitions in Li-like
uranium (Z = 92). Values marked with “nr” show the nonrelativistic
values of the corresponding contributions. Values marked with “hyd”
are results obtained with hydrogenlike wave functions.

Subset 2p1/2-2s 2p3/2-2s

MS operator −733 −2010
−2312nr −2312nr

−768hyd −2174hyd

NMS −3665 −6671
SMS −4633 −2547

RNMS 3892 6443
RSMS 3673 764

QED −3000(32) −2851(32)
1-el QED −2222 −2729
2-el QED −778 −122

Total theory −3734(32) −4861(32)

operator (2). The entries labeled NMS, SMS, RNMS, and
RSMS represent the corresponding contributions of the mass
shift operators. Since the expectation values of the NMS and
SMS operators are evaluated with the Dirac wave functions, the
values denoted by NMS and SMS in the tables partly contain
the relativistic contributions. The values marked by “nr” show
the nonrelativistic values of the corresponding contributions,
obtained within the same computing procedure but with a
1000 times increased value of the speed of light (in atomic
units). We have verified this nonrelativistic limit by comparing
our values with the results of the fully nonrelativistic method
based on the Schrödinger Hamiltonian and on the same
calculation scheme. The values have exactly coincided with
each other for all the ions under consideration. To demonstrate
the importance of the electron-electron interaction effects we
present also the related results obtained with the hydrogenlike
wave functions. These values are marked as “hyd” in the tables.
Obviously, the CI-DFS approach is not the best for very-low-Z
Li-like systems. The most accurate results for lithium are
presently obtained by utilizing variational solutions of the
three-body Schrödinger problem and accounting for the rela-
tivistic and QED corrections within the αZ expansion [45,46].
We use these results to estimate the residual correlation effects
in our calculations. By analyzing the convergence of the
calculated atomic properties as a function of the configuration
basis set, the difference between the results obtained by the two
alternative methods described previously, and the deviation of
our nonrelativistic SMS values from the related results by
other nonrelativistic calculations, we estimate an uncertainty
associated with the electron correlation as 0.05% for lithium,
0.002% for Li-like boron, and much less for ions with larger
nuclear charge numbers.

One-electron and two-electron QED recoil corrections were
calculated in accordance with our previous works [36,37,49].
The evaluation is performed for extended nuclei within the ap-
proximation of noninteracting electrons. The electron-electron
interaction is suppressed by a factor 1/Z; therefore we estimate
the uncertainty of the QED recoil contribution by multiplying
it by 1/Z.

As one can see, in the case of Li our values agree well with
the previous theoretical predictions [35,41–46] as well as with
the experimental data [47,48].

In Fig. 1 we plot the individual contributions to the MS
coefficient K for the 2p1/2-2s and 2p3/2-2s transitions in
Li-like ions. The dotted line indicates the relative contribution
of the electron-electron interaction, the dashed line represents
the relativistic correction, and the dashed-dotted line stands
for the QED part of the coefficient. We observe that for low-Z
ions it is extremely important to include the electron-electron
interaction effects. For middle-Z ions all parts are equally
important. For the high-Z region the QED and relativistic
contributions become dominant. It is interesting to note that
for the high-Z region the QED contribution is larger than
the relativistic one. One can see also that the relativistic
contribution for the 2p3/2-2s transition is much smaller than
that for the 2p1/2-2s one. This is due to a large cancellation
of the relativistic NMS and relativistic SMS contributions for
the 2p3/2-2s transition. We note also that for the 2p1/2-2s

transition the NMS is equal to zero in hydrogenlike ions with
a pointlike nucleus.
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FIG. 1. Relative values (in %) of the individual contributions to
the mass shift coefficient K for the 2p1/2-2s and 2p3/2-2s transitions
in Li-like ions. The dotted line represents the relative contribution
of the electron-electron interaction, the dashed line denotes the
relativistic correction, and the dashed-dotted line indicates the QED
correction.

The total results for the MS coefficient K for the 2p1/2-2s

and 2p3/2-2s transitions in Li-like ions with nuclear charge
numbers Z = 3–92 are presented in Table V. Now the
leading theoretical uncertainty for middle- and high-Z ions
is determined by uncalculated electron-electron interaction
effects of the QED recoil contribution.

III. HIGHER-ORDER ELECTRON-CORRELATION
CORRECTIONS TO THE TRANSITION ENERGIES

Electron-electron interaction within the basic principles of
QED is described by exchange of virtual photons. The one-
photon exchange leads to the operator

I (ω) = e2α
µ

1 αν
2Dµν(ω, r12), (8)

where Dµν is the photon propagator, which in the Coulomb
gauge is written as

D00(ω, r12) = 1

4πr12
, Di0 = D0i = 0 (i = 1, 2, 3),

Dil(ω, r12) =
∫

dk
(2π )3

exp(ik · r12)

ω2 − k2 + i0

(
δil − kikl

k2

)
(9)

(i, l = 1, 2, 3).

Here r12 = |r12| = |r1 − r2|, r i is the position vector of the
ith electron, and αµ = (1,α) are the Dirac matrices.

Expanding expression (9) in powers of the photon fre-
quency one can derive a simplified form of the interaction.
The low-frequency limit of this interaction consists of two
parts, referred to as the Coulomb and the Breit interaction,

V (i, j ) = VC(i, j ) + VB(i, j )

= α

rij

− α

[
αi · αj

2rij

+ (αi · rij )(αj · rij )

2r3
ij

]
. (10)

The most traditional approach for the treatment of the electron-
electron interaction in relativistic many-electron atoms con-
sists of using the so-called Breit approximation. In this
approximation the total Hamiltonian can be represented as
the sum of the one-electron Dirac Hamiltonians and the
Coulomb and Breit electron-electron interactions, projected

TABLE V. Mass shift coefficient K (GHz amu) for the 2p1/2-2s and 2p3/2-2s transitions in Li-like ions.

2p1/2-2s 2p3/2-2s

Z MS operator QED Total MS operator QED Total

3 −443.8(2) −0.08(3) −443.9(2) −443.8(2) −0.08(3) −443.9(2)
5 −3281.4(5) −0.89(18) −3282.3(5) −3282.2(5) −0.92(18) −3283.1(5)
10 −20 420.0(5) −27.4(3.0) −20447(3) −20456.6(5) −26.7(3.0) −20483(3)
20 −96 182(2) −802(40) −9698(4)×10 −97092(2) −774(40) −9787(4)×10
30 −22 460.0(3) × 10 −591(20) ×10 −23 051(20) ×10 −23 007.3(3) ×10 −560(20) ×10 −23 568(20) ×10
40 −3997.4(1) ×102 −251(7) ×102 −4248(7) ×102 −4194(7) ×102 −234.1(2) ×102 −4428(7) ×102

50 −6102.5(2) ×102 −796(16) ×102 −6899(16) ×102 −6643.7(2) ×102 −735(16) ×102 −7379(16) ×102

60 −8345.1(3) ×102 −2133(35) ×102 −10 478(35) ×102 −9626.6(3) ×102 −1958(35) ×102 −11 584(35) ×102

70 −1029.41(4) ×103 −515(7) ×103 −1544(7) ×103 −1305.85(4) ×103 −473(7) ×103 −1779(7) ×103

80 −1105.6 ×103 −1167(14) ×103 −2272(14) ×103 −1669.5 ×103 −1082(14) ×103 −2751(14) ×103

92 −733 ×103 −3000(32) ×103 −3734(32) ×103 −2010 ×103 −2851(32) ×103 −4861(32) ×103
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on the positive-energy Dirac’s states. In this way one gets
the Dirac-Coulomb-Breit equation. Traditional methods for
solving the Dirac-Coulomb-Breit equation are the many-body
perturbation theory (MBPT) [50,51], the multiconfiguration
Dirac-Fock method [52], and the configuration-interaction
(CI) method [3,34]. All these methods treat the one-photon
exchange exactly and the higher-order electron correlation is
accounted for within the Breit approximation only.

The current level of experimental accuracy demands rigor-
ous QED calculations of two-photon-exchange contributions,
which for n = 2 states of Li-like ions were performed in
Refs. [6,8–11,13,53]. Meanwhile rigorous QED calculations
of three and more photon-exchange contributions have not
been performed up to now. For high-Z few-electron ions evalu-
ations of these contributions within the Breit approximation are
generally sufficient. Previously such calculations for Li-like
ions were performed in Refs. [7,9,10,13]. The evaluations of
Refs. [7,10] were carried out with the hydrogenic wave func-
tions while in Refs. [9,13,54] the perturbation expansion starts
with a local screening potential, which partly incorporates the
electron-electron interaction effects.

In the present investigation, to evaluate the interelectronic-
interaction corrections of the third and higher orders we
proceed as follows. The large-scale CI-DFS method (see,
e.g., Refs. [34,38]) was used to solve the Dirac-Coulomb-
Breit equation yielding the energies. The operator of the
interelectronic interaction in the Breit approximation reads

V (λ) = λα
∑
i>j

[
1

rij

− αi · αj

2rij

− (αi · rij )(αj · rij )

2r3
ij

]
, (11)

where a scaling parameter λ is introduced to separate terms
of different order in 1/Z using the numerical results obtained
for different values of λ. Thus, for small λ, the total energy of
the system can be expanded in powers of λ:

E(λ) = E0 + E1λ + E2λ
2 +

∞∑
k=3

Ekλ
k, (12)

Ek = 1

k!

dk

dλk
E(λ)|λ=0. (13)

The higher-order contribution E�3 ≡ ∑∞
k=3 Ek is calculated as

E�3 = E(λ = 1) − E0 − E1 − E2,

where the terms E0, E1, and E2 are determined numerically
according to Eq. (13).

The results of the numerical calculation of the higher-order
interelectronic-interaction contributions for the 2p1/2-2s and
2p3/2-2s transition energies in Li-like ions are collected in
Table VI. “C” in the second column indicates that only
Coulomb interaction is taken into account, while “C + B”
means that both Coulomb and Breit interactions are included.
As one can see from the table, in accordance with Refs. [7,13],
the Breit interaction contribution is rather significant, espe-
cially for middle- and high-Z ions. We note that the third-order
contribution monotonously increases and changes the sign
when Z increases. The uncertainty of the results consists of
two parts: an uncertainty due to some approximations made
in the numerical procedure, which in the table is given in
the first set of parentheses, and an uncertainty due to the Breit

approximation, which is given in the second set of parentheses.
To estimate the first uncertainty we studied the convergence
of the calculation depending on the configuration basis set
and compared our results with very accurate data obtained
for lithium with the variational solution of the three-body
Schrödinger problem that includes the relativistic corrections
obtained within the αZ expansion [45,56,57]. The estimation
of the residual three and more photon-exchange QED effects is
more difficult. As was found in Refs. [8,13] the QED part of the
two-photon-exchange correction is anomalously small for the
2s and 2p1/2 states. Moreover, the third order of the electron-
electron interaction changes its sign when Z increases. Thus,
the value based on the ratio of the two-photon-exchange
QED correction to corresponding non-QED contribution might
underestimate the three-photon QED effects. For this reason,
to estimate the uncertainty due to the QED effects, we take the
ratio of the QED and non-QED two-photon contributions for
the 2p3/2-2s transition, where the QED effect is adequate, and
multiply it by the maximal value of the third-order contribution
among the 2s, 2p1/2, and 2p3/2 states.

Comparing the results for the third and higher orders (E�3)
with the third order (E3), we conclude that corrections of
the fourth and higher orders (E�3–E3) are rather important,
especially for low- and middle-Z ions.

We observe a reasonable agreement with Zherebtsov et al.
[7] and Yerokhin et al. [13]. A small discrepancy with the
results of Yerokhin et al. [13] is caused by a different way of
taking into account the Breit interaction. Yerokhin et al. [13]
treated the Breit interaction to the first order only (exchange
by only one Breit and two Coulomb photons), whereas we
calculated the so-called “iterated” Breit interaction (exchange
by two Breit and one Coulomb photons and by three Breit
photons). It should be also mentioned that Yerokhin et al. [13]
included the negative-energy contribution for the correction
considered. However, this contribution is relatively small.
As compared to Andreev et al. [53], a distinct deviation is
found. Most probably, as indicated in Ref. [13], it is due to an
overestimation of the contribution induced by two Breit and
one Coulomb photon exchange in Ref. [53]. The results with
this contribution subtracted are marked with a superscript “a”
in the table. They are much closer to our results.

In Table VII we collect all the electronic-structure con-
tributions to the transition energies and compare our results
with those of other authors. For comparison we chose the
most recent data from Ref. [13], which are in reasonable
agreement with others’ calculations. Only for light ions
with small Z = 3–15, where the correlation effects are large
compared to the relativistic contributions, results of other
works (without QED effects) are also presented. The column
labeled “Dirac” contains the energy value obtained from the
Dirac equation with an extended nucleus. The Fermi nuclear
charge distribution was employed. Except for uranium, the
root-mean-square (rms) radii were taken from Ref. [58]. In
the case of uranium, we use the rms value from Ref. [16]
and take into account the nuclear deformation effect (see
Ref. [16] for details). The two-photon-exchange correction
is evaluated within the framework of QED, following our
previous investigations [8,11]. The uncertainty given is due
to the higher-order interelectronic interaction only. In addition
to a different treatment of the Breit interaction in the present
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TABLE VI. The third- and higher-order interelectronic-interaction contributions to the 2p1/2-2s and 2p3/2-2s

transition energies in Li-like ions, in eV. The uncertainty due to the numerical procedure is presented in the first set of
parentheses while the uncertainty due to the Breit approximation is given in the second set of parentheses.

Z Interaction Contribution 2p1/2-2s 2p3/2-2s Ref.

3 C + B E3 −0.4823 −0.4839
3 C + B E�3 −0.6483(20)(0) −0.6499(20)(0)
5 C + B E3 −0.2860 −0.2887
5 C + B E�3 −0.3522(15)(0) −0.3548(15)(0)

10 C E3 −0.1433 −0.1466
10 C E�3 −0.1583 −0.1614
10 C + B E3 −0.1369 −0.1423
10 C + B E�3 −0.1545(6)(0) −0.1598(6)(0)
15 C + B E3 −0.0858 −0.0938
15 C + B E�3 −0.0942(3)(0) −0.1025(3)(0)
20 C + B E3 −0.0606 −0.0719
20 C + B E3 −0.065 [55]
20 C + B E3 −0.069 [7]
20 C + B E�3 −0.0635(3)(0) −0.0747(3)(0)
20 C + B E�3 −0.070 [7]
30 C E3 −0.0406 −0.0511
30 C E3 −0.045 [7]
30 C E�3 −0.0418 −0.0518
30 C E�3 −0.046 [7]
30 C + B E3 −0.0284 −0.0470
30 C + B E3 −0.0276 −0.0463 [13]
30 C + B E3 −0.060(8) [53]
30 C + B E3 −0.030a [53]
30 C + B E3 −0.036 [7]
30 C + B E�3 −0.0296(3)(1) −0.0481(3)(1)
30 C + B E�3 −0.036 [7]
35 C + B E3 −0.0173 −0.0401
35 C + B E�3 −0.0181(3)(5) −0.0403(3)(5)
40 C + B E3 −0.0070 −0.0344
40 C + B E3 −0.009 [55]
40 C + B E3 −0.015 [7]
40 C + B E�3 −0.0077(4)(10) −0.0348(4)(10)
40 C + B E�3 −0.015 [7]
45 C + B E3 0.0043 −0.0286
45 C + B E�3 0.0017(6)(15) −0.0314(6)(15)
50 C E3 −0.0120 −0.0333
50 C E3 −0.014 [55]
50 C E3 −0.016 [7]
50 C E�3 −0.0133 −0.0340
50 C + B E3 0.0136 −0.0271
50 C + B E3 0.011 [55]
50 C + B E3 0.004 [7]
50 C + B E�3 0.0113(7)(20) −0.0283(7)(20)
54 C + B E3 0.0214 −0.0250
54 C + B E3 0.020 [55]
54 C + B E3 0.012 [7]
54 C + B E�3 0.0195(8)(25) −0.0260(8)(25)
60 C + B E3 0.0329 −0.0236
60 C + B E3 0.033 [55]
60 C + B E3 0.024 [7]
60 C + B E3 0.043 [53]
60 C + B E�3 0.0322(10)(30) −0.0239(10)(30)
70 C + B E3 0.055 −0.025
70 C + B E3 0.047 [7]
70 C + B E3 0.059(9) [53]
70 C + B E3 0.052a [53]
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TABLE VI. (Continued.)

Z Interaction Contribution 2p1/2-2s 2p3/2-2s Ref.

70 C + B E�3 0.054(2)(10) −0.024(2)(10)
80 C + B E3 0.084 −0.029
80 C + B E3 0.095 [55]
80 C + B E3 0.076 [7]
80 C + B E3 0.099(14) [53]
80 C + B E3 0.089a [53]
80 C + B E�3 0.084(4)(13) −0.028(4)(13)
83 C E3 0.0328 −0.0261
83 C E3 0.031 [55]
83 C E3 0.029 [7]
83 C E3 0.041 −0.024 [9]
83 C E�3 0.0312 −0.0275
83 C + B E3 0.098 −0.030
83 C + B E3 0.103 −0.019 [13]
83 C + B E3 0.104 [55]
83 C + B E3 0.087 [7]
83 C + B E�3 0.097(5)(15) −0.029(5)(15)
90 C + B E3 0.127 −0.036
90 C + B E3 0.147 [55]
90 C + B E3 0.118 [7]
90 C + B E�3 0.127(6)(40) −0.035(6)(40)
92 C + B E3 0.137 −0.041
92 C + B E3 0.160 [55]
92 C + B E3 0.131 [7]
92 C + B E3 0.167(23) [53]
92 C + B E3 0.147a [53]
92 C + B E�3 0.137(7)(50) −0.039(7)(50)

aThe results of Ref. [53] with the two Breit and one Coulomb photon-exchange contributions subtracted.

work and in Ref. [13] (see the related discussion above), we
note some difference in the evaluation of the QED part of
the two-photon-exchange contribution. In our work it was
calculated with the pure Coulomb potential while in Ref. [13]
a local screening potential was employed. We also remind
the reader that, in accordance with our definition of the
electronic-structure part, the values in Table VII are given
in the nonrecoil limit.

IV. SCREENED QED CORRECTIONS

The screened QED contribution �EscrQED incorporates the
screened SE �EscrSE and screened VP �EscrVP corrections. As
concerns the QED part of the two-photon-exchange correction,
it is included in the electronic-structure contribution (see the
previous section). Therefore, here we restrict ourself to the
contributions of the screened SE and VP terms to the 2pj -2s

transition energies of Li-like ions.
First estimates of the screened QED corrections in Li-like

ions were performed in Refs. [1–3,51,52], where these correc-
tions were included either phenomenologically or partly. The
rigorous evaluations of the screened SE and VP corrections
were first performed in Refs. [4,59] and [5], respectively.
These calculations incorporate the second-order QED effects
starting with the pure Coulomb potential as the zeroth-order
approximation (the original Furry picture). Later, in case of
Li-like bismuth, these corrections were calculated starting with
a local screening potential (the extended Furry picture) [9].

In the present article the screened SE and VP corrections
are evaluated within the extended Furry representation for
the ionization energies of the 2s, 2p1/2, and 2p3/2 states of
Li-like ions in the range of the nuclear charge number Z =
10–92. By employing the extended Furry representation, one
partially takes into account the higher-order electron-electron
interaction effects that are beyond the considered order of
the perturbative expansion. This approach can accelerate the
convergence of the QED perturbation theory with respect to the
interelectronic-interaction effects, especially for small values
of Z, where the convergence of the perturbative expansion
becomes slower.

The Dirac equation in the extended Furry representation
can be written as

[−iα · ∇ + β + Vnuc + Vscr]|n〉 = εn|n〉 , (14)

where Vnuc is the Coulomb potential of the extended nucleus
and Vscr is a local screening potential, which partially accounts
for the interaction between the valence electron and the closed
core electrons. We employ here the Kohn-Sham screening
potential derived within the density-functional theory [60],

Vscr(r) = α

∫ ∞

0
dr ′ 1

r>

ρt (r
′) − 2

3

α

r

(
81

32π2
rρt (r)

)1/3

.

(15)

This potential was successfully utilized in our previous QED
calculations for the g factor and hyperfine splitting of Li-
like ions [61–63]. Here, ρt denotes the total radial charge
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TABLE VII. Electronic-structure contributions to the 2p1/2-2s and 2p3/2-2s transition energies in Li-like ions, in eV. The nuclear charge
rms radii 〈r2〉1/2 (in fm) are taken from Refs. [16,58]. The uncertainty given is due to the higher-order interelectronic interaction only. The first
one is caused by the numerical procedure while the second one is due to the Breit approximation.

Z 〈r2〉1/2 Transition Dirac 1ph 2ph �3ph Total Total Ref. [13]

3 2.431 2p1/2-2s 0.00000 5.77750 −3.28214 −0.6484 1.8470(20)(0) 1.8466(105)
1.84812a

1.8486b

3 2.431 2p3/2-2s 0.00367 5.76900 −3.27566 −0.6499 1.8471(20)(0) 1.8466(105)
1.84816a

1.8486b

5 2.406 2p1/2-2s 0.00000 9.64178 −3.29242 −0.3522 5.9972(15)(0) 5.9963(32)
5.9986(3)b

5 2.406 2p3/2-2s 0.02832 9.60222 −3.27437 −0.3548 6.0014(15)(0) 6.0004(32)
6.0027(3)b

7 2.558 2p1/2-2s −0.00001 13.52503 −3.30788 −0.2354 9.9817(10)(0) 9.9814(21)
9.9823(3)b

7 2.558 2p3/2-2s 0.10889 13.41639 −3.27242 −0.2391 10.0138(10)(0) 10.0133(21)
10.0144(3)b

10 3.005 2p1/2-2s −0.00008 19.40227 −3.34105 −0.1545 15.9067(6)(0) 15.9064(10)
15.9068(3)b

10 3.005 2p3/2-2s 0.45426 19.08472 −3.26835 −0.1598 16.1108(6)(0) 16.1105(10)
16.1111(3)b

15 3.189 2p1/2-2s −0.00046 29.40265 −3.42321 −0.0942 25.8848(3)(0) 25.8851(5)
25.8848(3)b

15 3.189 2p3/2-2s 2.30928 28.32447 −3.25801 −0.1025 27.2732(3)(0) 27.2734(5)
27.2735(3)b

18 3.427 2p1/2-2s −0.00114 35.57028 −3.48920 −0.0738 32.0061(3)(0) 32.0060(5)
18 3.427 2p3/2-2s 4.80429 33.69830 −3.24944 −0.0838 35.1694(3)(0) 35.1691(5)
20 3.476 2p1/2-2s −0.00185 39.76906 −3.54046 −0.0635 36.1633(3)(0) 36.1634(5)
20 3.476 2p3/2-2s 7.34120 37.19179 −3.24261 −0.0747 41.2157(3)(0) 41.2155(5)
21 3.544 2p1/2-2s −0.00237 41.89790 −3.56830 −0.0593 38.2679(3)(0) 38.2682(5)
21 3.544 2p3/2-2s 8.93553 38.90849 −3.23885 −0.0712 44.5340(3)(0) 44.5339(5)
26 3.737 2p1/2-2s −0.00676 52.88124 −3.73042 −0.0411 49.1030(3)(0) 49.1029(5)
26 3.737 2p3/2-2s 21.16322 47.14284 −3.21611 −0.0561 65.0339(3)(0) 65.0333(5)
28 3.775 2p1/2-2s −0.00965 57.45499 −3.80693 −0.0353 53.6031(3)(1) 53.6034(5)
28 3.775 2p3/2-2s 28.57046 50.25007 −3.20517 −0.0518 75.5636(3)(1) 75.5633(5)
30 3.929 2p1/2-2s −0.01434 62.14676 −3.88932 −0.0296 58.2135(3)(1) 58.2130(5)
30 3.929 2p3/2-2s 37.79922 53.23463 −3.19217 −0.0481 87.7936(3)(1) 87.7926(5)
36 4.188 2p1/2-2s −0.03884 77.03795 −4.18113 −0.0159 72.8021(3)(5) 72.8013(6)
36 4.188 2p3/2-2s 79.45643 61.33404 −3.14609 −0.0390 137.6054(3)(5) 137.6044(6)
40 4.270 2p1/2-2s −0.06839 87.76278 −4.41614 −0.0077 83.2706(4)(10) 83.2701(8)
40 4.270 2p3/2-2s 122.39809 65.89147 −3.10591 −0.0347 185.1490(4)(10) 185.1476(10)
47 4.544 2p1/2-2s −0.18121 108.43093 −4.91254 0.0054 103.3426(6)(15) 103.3418(14)
47 4.544 2p3/2-2s 238.40726 71.83668 −3.01448 −0.0303 307.1992(6)(15) 307.1988(17)
50 4.654 2p1/2-2s −0.26811 118.16524 −5.16445 0.0113 112.7440(7)(20) 112.7433(16)
50 4.654 2p3/2-2s 308.58586 73.43976 −2.96522 −0.0283 379.0321(7)(20) 379.0323(19)
52 4.743 2p1/2-2s −0.34806 124.99085 −5.34549 0.0154 119.3127(8)(22) 119.3110(16)
52 4.743 2p3/2-2s 363.69747 74.14337 −2.92756 −0.0271 434.8862(8)(22) 434.8850(20)
54 4.787 2p1/2-2s −0.44234 132.10903 −5.53908 0.0195 126.1471(8)(28) 126.1444(20)
54 4.787 2p3/2-2s 426.27988 74.52795 −2.88604 −0.0260 497.8958(8)(28) 497.8940(24)
60 4.912 2p1/2-2s −0.88944 155.44266 −6.20420 0.0322 148.3812(10)(40) 148.3786(25)
60 4.912 2p3/2-2s 666.61398 73.51308 −2.73855 −0.0239 737.3646(10)(40) 737.3621(35)
70 5.311 2p1/2-2s −2.91444 202.61211 −7.64776 0.0544 192.104(2)(10) 192.1023(38)
70 5.311 2p3/2-2s 1299.24227 62.72945 −2.38263 −0.0242 1359.565(2)(10) 1359.5629(52)
80 5.463 2p1/2-2s −8.57680 264.30462 −9.68045 0.0837 246.131(4)(13) 246.130(6)
80 5.463 2p3/2-2s 2359.15998 36.01281 −1.82616 −0.0279 2393.319(4)(13) 2393.317(8)
83 5.521 2p1/2-2s −11.89801 286.67896 −10.44836 0.0970 264.430(5)(15) 264.427(7)
83 5.521 2p3/2-2s 2792.20782 23.81784 −1.60493 −0.0290 2814.391(5)(15) 2814.392(9)
90 5.710 2p1/2-2s −26.00449 348.27283 −12.62608 0.1270 309.769(6)(40) 309.780(10)
90 5.710 2p3/2-2s 4077.38297 −14.49611 −0.95621 −0.0350 4061.896(6)(40) 4061.908(11)
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TABLE VII. (Continued.)

Z 〈r2〉1/2 Transition Dirac 1ph 2ph �3ph Total Total Ref. [13]

92 5.857 2p1/2-2s −33.304 368.83426 −13.37086 0.1370 322.296(7)(50) 322.292(11)c

92 5.857 2p3/2-2s 4527.933 −28.41302 −0.72818 −0.0390 4498.753(7)(50) 4498.750(12)c

aRef. [57].
bRef. [50].
cCorrected for the nuclear deformation effect and the rms value from Ref. [16].

density distribution of the core electrons (b) and the valence
electron (a)

ρt (r) =
∑

b

[
G2

b(r) + F 2
b (r)

] + [
G2

a(r) + F 2
a (r)

]
(16)∫ ∞

0
dr ρt (r) = nb + 1,

where nb is the number of the core electrons. The Kohn-Sham
potential is constructed for the lithiumlike ground state,
namely, for the (1s2)2s state. In order to estimate the sensitivity
of the result on the choice of the potential we consider also
the core-Hartree potential, which is just a Coulomb potential
generated by the core electrons. The screening potentials are
generated self-consistently by solving the Dirac equation (14)
until the energies of the core and valence states become
stable on the level of 10−9. The asymptotic behavior of
the Kohn-Sham potentials at large distances is restored by
introducing the Latter correction [64].

The complete gauge invariant set of diagrams which have to
be considered are shown in Fig. 2. They are referred to as the SE
(panels a–c) and VP (panels d–f) diagrams. The counterterm
associated with the extra interaction term Vscr is represented
graphically by the symbol ⊗. The formal expressions for these
diagrams are derived from the first principles of QED by
employing the two-time Green-function method [65].

We consider here only the diagrams contributing to the
ionization energy of the valence state. It means that the one-
electron core and core-core interaction diagrams are omitted
in our consideration. The corresponding contribution from the
SE screening diagrams can be written as

�E
(b)a
scrSE = �E

(0)
scrSE + �E

(1, irr)
scrSE + �E

(1, red)
scrSE + �E

(1, ver)
scrSE . (17)

The zero-order contribution �E
(0)
scrSE, depicted in Fig. 2(a), is

the difference between the SE corrections calculated with and
without the screening potential,

�E
(0)
scrSE = 〈a|�(εa)|a〉 − 〈aC|�(εaC )|aC〉. (18)

Here, the subscript C labels the energies and wave functions
calculated with the Coulomb potential of the nucleus only,
while �(ε) denotes the unrenormalized self-energy operator.
The contribution of the diagrams depicted in Fig. 2(b) is
conveniently divided into irreducible and reducible parts [65].
The irreducible part is represented by the expression

�E
(1, irr)
scrSE

= 2
∑

b

∑
P

(−1)P
[

εn �=εa∑
n

〈PaPb|I (�)|nb〉〈n|�(εa)|a〉
εa − εn

+
εn �=εb∑

n

〈PaPb|I (�)|an〉〈n|�(εb)|b〉
εb − εn

]

− 2
εn �=εa∑

n

〈a|Vscr|n〉〈n|�(εa)|a〉
εa − εn

, (19)

where the sum over b runs over all core electron states, P is
the permutation operator, giving rise to the sign (−1)P of the
permutation, � = εPa − εa , and I (ω) is the interelectronic-
interaction operator defined in the Coulomb gauge by
Eqs. (8) and (9). The expression for the reducible part is

(a)

−

(d)

−

(b)

−

×

(e)

−
×

(c)

− ×

(f)

− ×

FIG. 2. Feynman diagrams representing the screened SE (a–c)
and VP (d–f) corrections in the extended Furry representation. The
wavy line indicates the photon propagator, the triple line displays
the electron propagators in the effective potential, and the double line
indicates the electron propagators in the Coulomb field of the nucleus.
The symbol ⊗ represents the extra interaction term associated with
the local screening potential.
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given by

�E
(1, red)
scrSE =

∑
b

∑
P

(−1)P [〈PaPb|I (�)|ab〉(〈a|�′(εa)|a〉

+ 〈b|�′(εb)|b〉) − 〈PaPb|I ′(�)|ab〉(〈a|�(εa)|a〉
− 〈b|�(εb)|b〉)] − 〈a|Vscr|a〉〈a|�′(εa)|a〉. (20)

The vertex part, corresponding to Fig. 2(c), is given by

�E
(1, ver)
scrSE =

∑
b

∑
P

(−1)P
i

2π

∫ ∞

−∞
dω

×
∑
n1, n2

[
〈Pbn1|I (�)|bn2〉〈Pan2|I (ω)|n1a〉(
εPa − ω − uεn1

)(
εa − ω − uεn2

)
+ 〈Pan1|I (�)|an2〉〈Pbn2|I (ω)|n1b〉(

εPb − ω − uεn1

)(
εb − ω − uεn2

)
]
− i

2π

×
∫ ∞

−∞
dω

∑
n1, n2

〈n1|Vscr|n2〉〈an2|I (ω)|n1a〉(
εa−ω−uεn1

)(
εa − ω − uεn2

) ,

(21)

where u = 1 − i0 preserves the proper treatment of poles of
the electron propagators. Expressions (18)–(21) suffer from
ultraviolet divergences. To cancel these divergences explicitly
we have employed the renormalization scheme presented in
detail in Refs. [4,66]. The infrared divergences which occur in
some terms of the expressions (20) and (21) are regularized by
introducing a nonzero photon mass and canceled analytically.

The corresponding contributions of the screened VP dia-
grams, depicted in Figs. 2(d)–2(f), are

�E
(b)a
scrVP = �E

(0)
scrVP + �E

(1, irr)
scrVP + �E

(1, red)
scrVP + �E

(1, b)
scrVP,

(22)

�E
(0)
scrVP = 〈a|UVP|a〉 − 〈aC|UVP|aC〉, (23)

�E
(1, irr)
scrVP

= 2
∑

b

∑
P

(−1)P
[

εn �=εa∑
n

〈PaPb|I (�)|nb〉〈n|UVP|a〉
εa − εn

+
εn �=εb∑

n

〈PaPb|I (�)|an〉〈n|UVP|b〉
εb − εn

]

− 2
εn �=εa∑

n

〈a|Vscr|n〉〈n|UVP|a〉
εa − εn

,
(24)

�E
(1, red)
scrVP = −

∑
b

∑
P

(−1)P 〈PaPb|I ′(�)|ab〉

× (〈a|UVP|a〉 − 〈b|UVP|b〉), (25)

�E
(1, b)
scrVP =

∑
b

∑
P

(−1)P 〈PaPb|IVP(�)|ab〉 − 〈a|U scr
VP|a〉,

(26)

where UVP denotes the VP potential and IVP(�) is the
interelectronic-interaction operator modified by the electron
loop. For the renormalization of the expressions (23)–(26)
we refer to Refs. [5,67]. Accordingly, these contributions
are divided into the Uehling and Wichmann-Kroll parts. The
renormalized Uehling parts of the VP operators UVP and

IVP(�) are given by the expressions (see, e.g., Ref. [5])

UVP(r) = −2α2Z

3r

∫ ∞

1
dt

√
t2 − 1

t3

(
1 + 1

2t2

)∫ ∞

0
dr ′ r ′

× ρeff(r
′)[exp (−2|r − r ′|t) − exp (−2|r + r ′|t)],

(27)

IVP(�, r12) = α
α1µα

µ

2

r12

2α

3π

∫ ∞

1
dt

√
t2 − 1

t2

(
1 + 1

2t2

)

× exp (−
√

4t2 − �2 r12), (28)

where the density ρeff is related to the nuclear binding
and local screening potentials via the Poisson equation
�Vnuc(r) + �Vscr(r) = 4παZρeff(r). U scr

VP differs from UVP

only by replacing ρeff with ρscr, where the density ρscr is related
to the screening potential Vscr. The Wichmann-Kroll parts
of the expressions (23)–(25) are evaluated by employing the
approximate formula for the Wichmann-Kroll potential [68].
The Wichmann-Kroll contribution to Eq. (26) is relatively
small [5] and is neglected in the present consideration.

The numerical evaluation is based on the wave func-
tions constructed from B-splines employing the dual-kinetic-
balance finite basis set method [69]. The sphere model for the
nuclear charge distribution is used together with the rms radii
taken from Ref. [58], with the exception of the uranium ion, for
which the rms value is taken from Ref. [16]. The calculations
have been performed in both Feynman and Coulomb gauges
for the photon propagator describing the electron-electron
interaction. The results agree very well with each other, thus
providing an accurate check of the numerical procedure. In
Table VIII we compare our values of the screened SE and
VP corrections, calculated in the Kohn-Sham, core-Hartree,
and Coulomb potentials (as zeroth-order approximation), with
other theoretical results. As one can see from the table, our
values for the screened SE and VP corrections in the Coulomb
potential are in perfect agreement with the corresponding
results of Refs. [4,59] and [5], respectively. As to comparison
with the related values from Ref. [9], some deviation can
be stated for both screened SE and VP contributions. This
discrepancy is especially noticeable for the 2p1/2 and 2p3/2

screened SE terms. The reason for this disagreement is unclear
for us.

In Table IX we present our results for the total screened
QED correction to the ionization energies of the 2s, 2p1/2, and
2p3/2 valence states as well as to the energy differences 2pj -2s,
calculated in the Kohn-Sham potential. The corresponding
results obtained in the core-Hartree potential are rather close
to the Kohn-Sham ones. Therefore, for the conservative
estimation of the theoretical uncertainty of the ionization
energies due to the higher-order contributions we consider
the difference between the values obtained in the Coulomb
and Kohn-Sham potentials and assign the uncertainty to be
30% of this difference. The related uncertainty for the energy
differences 2pj -2s is determined to be the maximum of the
error bars for the 2pj and 2s states.

V. 2 p j -2s TRANSITION ENERGIES IN LI-LIKE IONS

In this section, we collect all theoretical contributions
available for the 2p1/2-2s and 2p3/2-2s transition energies
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TABLE VIII. The contributions of the screened self-energy �E
(b)a
scrSE and screened vacuum-polarization �E

(b)a
scrVP

corrections for the 2s, 2p1/2, and 2p3/2 states of Li-like ions for different starting potentials, in eV. Comparison with
the other theoretical calculations is given.

Kohn-Sham core-Hartree Coulomb

Z �E
(b)a
scrSE �E

(b)a
scrVP �E

(b)a
scrSE �E

(b)a
scrVP �E

(b)a
scrSE �E

(b)a
scrVP

2s state
20 −0.0444 0.0030 −0.0443 0.0030 −0.0462 0.0032

−0.04624(3)a 0.0032b

50 −0.4782 0.0587 −0.4775 0.0586 −0.4879 0.0599
−0.4881(3)a 0.0599b

83 −2.318 0.494 −2.315 0.494 −2.356 0.503
−2.3553(2)a 0.5034(3)b

−2.317c 0.516c −2.311c 0.523c −2.363c 0.527c

2p1/2 state

20 −0.0083 0.0007 −0.0083 0.0007 −0.0098 0.0009
−0.00983(10)d 0.0009b

50 −0.1240 0.0186 −0.1239 0.0186 −0.1341 0.0199
−0.1341(3)d 0.0200b

83 −1.069 0.244 −1.065 0.243 −1.123 0.256
−1.1218(12)d 0.2564(1)b

−1.120c 0.268c −1.102c 0.268c −1.168c 0.276c

2p3/2 state
20 −0.0126 0.0007 −0.0126 0.0007 −0.0145 0.0008

−0.01458(3)a 0.0008b

50 −0.1603 0.0121 −0.1603 0.0121 −0.1701 0.0129
−0.1702(3)a 0.0129b

83 −0.752 0.069 −0.751 0.069 −0.776 0.072
−0.7763(6)a 0.0719b

−0.748c 0.088c −0.737c 0.087c −0.816c 0.087c

aYerokhin et al. [59].
bArtemyev et al. [5].
cSapirstein and Cheng [9].
dYerokhin et al. [4].

for middle-Z Li-like ions, compare them with experimental
results, and discuss prospects for further improvement of the
theoretical accuracy. Individual contributions to the 2p1/2-2s

and 2p3/2-2s transition energies are presented in Tables X
and XI, respectively. The rms radii and their uncertainties are
listed in the second column of the tables. These values are taken
from Ref. [58]. The uncertainty of the electronic-structure
values includes an error due to the model dependence of
the nuclear charge distribution. It is conservatively estimated
by comparing the results obtained within the Fermi and
the homogeneously charged-sphere model. Except for neon
(Z = 10), the electronic-structure contributions given are
obtained in this work. In the case of neon, we use the related
result of Ref. [50], which has a higher accuracy.

Next, one should take into account the first-order one-
electron QED corrections. They are determined by the SE
and the VP. The SE correction is obtained by interpolating
the values presented in Ref. [70] for the 2s and 2p1/2 states
and in Ref. [71] for the 2p3/2 state. The Uehling part of the
VP contribution was calculated in the present work while the
Wichmann-Kroll part is taken from Ref. [72].

The next corrections, which caused the largest theoretical
uncertainties for middle-Z ions [13], are the nuclear recoil and
screened QED contributions. The recoil effect is considered in

Sec. II, while the evaluation of the screened QED corrections is
presented in Sec. IV. These calculations improve considerably
the accuracy of the theoretical predictions for the 2pj -2s

transition energies in middle-Z Li-like ions.
Finally, we should account for the two-loop one-electron

QED effect. So-called SEVP, VPVP, and S(VP)E subsets
were recently tabulated in Ref. [15]. The remaining two-
loop SE correction (the SESE subset) for n = 2 states was
accomplished only for several ions with Z � 60 [12]. In order
to obtain the SESE correction for middle-Z ions we use an
extrapolation procedure. For the 2s state, the extrapolation is
performed in two steps. First, the numerical values for the
1s state are obtained by interpolating the numerical results of
Refs. [12,73,74]. Then the weighted difference �s = 8δE2s −
δE1s is achieved by using low-order terms of the αZ-expansion
and extrapolating the higher-order contributions from the
all-order results (see Ref. [75] and references therein). An
uncertainty of 30% is assigned to these results. For the 2pj

states, the correction is much smaller and, for our purpose, it
is sufficient to use the αZ expansion [75] with the boundaries
for the higher-order remainder ±2α2(αZ)6/(8π2).

As one can see from the tables, the total theoretical results
agree well with the experimental data. Compared to the
experimental accuracy, the theoretical one is generally better,
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TABLE IX. The screened QED contributions to the ionization energies of the 2s, 2p1/2, and 2p3/2 states and to the energy differences
2p1/2-2s and 2p3/2-2s in Li-like ions, in eV.

Z 〈r2〉1/2 2s 2p1/2 2p3/2 2p1/2-2s 2p3/2-2s

10 3.005 −0.0070(2) −0.0012(1) −0.0017(2) 0.0058(2) 0.0053(2)
12 3.057 −0.0113(2) −0.0019(2) −0.0028(3) 0.0094(2) 0.0085(3)
14 3.122 −0.0168(3) −0.0029(2) −0.0044(3) 0.0138(3) 0.0123(3)
15 3.189 −0.0200(3) −0.0035(3) −0.0053(4) 0.0165(3) 0.0146(4)
18 3.427 −0.0317(4) −0.0057(4) −0.0089(5) 0.0260(4) 0.0228(5)
20 3.476 −0.0414(5) −0.0076(4) −0.0119(5) 0.0338(5) 0.0294(5)
21 3.544 −0.0467(6) −0.0087(4) −0.0137(5) 0.0380(6) 0.0330(6)
26 3.737 −0.0797(8) −0.0151(7) −0.0243(8) 0.0646(8) 0.0554(8)
28 3.775 −0.0959(9) −0.0184(8) −0.0296(10) 0.0775(9) 0.0662(10)
30 3.929 −0.1139(10) −0.0221(9) −0.0357(11) 0.0917(10) 0.0782(11)
32 4.074 −0.1339(11) −0.0266(10) −0.0426(12) 0.1073(11) 0.0913(12)
36 4.188 −0.1800(14) −0.0372(13) −0.0590(15) 0.1428(14) 0.1211(15)
40 4.270 −0.2351(17) −0.0511(15) −0.0790(18) 0.1840(17) 0.1561(18)
47 4.544 −0.3564(22) −0.0856(22) −0.1243(24) 0.2708(22) 0.2322(24)
50 4.654 −0.4195(26) −0.1054(26) −0.1482(27) 0.3141(26) 0.2713(27)
52 4.735 −0.4657(27) −0.1210(28) −0.1663(27) 0.3447(28) 0.2994(27)
54 4.787 −0.5154(30) −0.1381(32) −0.1851(31) 0.3773(32) 0.3303(31)
60 4.912 −0.6883(38) −0.2042(42) −0.2522(38) 0.4841(42) 0.4361(38)
66 5.221 −0.903(5) −0.298(5) −0.335(4) 0.604(5) 0.567(5)
70 5.312 −1.073(5) −0.381(7) −0.401(5) 0.692(7) 0.672(5)
74 5.367 −1.269(6) −0.485(8) −0.475(6) 0.784(8) 0.794(6)
79 5.436 −1.556(7) −0.652(10) −0.583(6) 0.904(10) 0.973(7)
80 5.463 −1.620(8) −0.692(11) −0.606(7) 0.928(11) 1.014(8)
82 5.501 −1.753(8) −0.778(12) −0.656(7) 0.976(12) 1.097(8)
83 5.521 −1.824(9) −0.824(13) −0.683(6) 1.000(13) 1.141(9)
90 5.710 −2.394(11) −1.241(17) −0.882(8) 1.153(17) 1.512(11)
92 5.857 −2.584(11) −1.394(19) −0.948(9) 1.190(19) 1.637(11)

almost the same in the cases of argon (Z = 18) and iron
(Z = 26), and worse for neon (Z = 10) and scandium (Z =
21, the 2p3/2-2s transition). For middle-Z ions, the leading
theoretical uncertainties arise from the higher-order screened
QED and the electronic-structure contributions. For Z greater

than 40 the uncertainty due to the two-loop one-electron QED
corrections becomes also considerable. We conclude that the
present status of the theory and experiment for middle-Z
Li-like ions provides a test of QED on a level of a few tenths
of a percent.

TABLE X. Individual contributions to the 2p1/2-2s transition energy in Li-like ions, in eV.

Z 〈r2〉1/2 Electronic structure One-loop QED Scr.QED Recoil Two-loop QED Total theory Experiment Ref.

10 3.005(2) 15.9068(3) −0.0200 0.0058(2) −0.0042 0.0000 15.8883(4) 15.8887(2) [17]
15 3.189(2) 25.8848(3) −0.0833 0.0165(3) −0.0071 0.00005 25.8110(4) 25.814(3) [76]
18 3.427(2) 32.0061(3) −0.1569 0.0260(4) −0.0081 0.0001 31.8673(5) 31.8664(9) [17]
20 3.476(1) 36.1633(3) −0.2260 0.0338(5) −0.0100 0.0002 35.9612(6) 35.9625(25) [77]
21 3.544(2) 38.2679(3) −0.2673 0.0380(6) −0.0099 0.00024 38.0289(7) 38.02(4) [78]
26 3.737(2) 49.1030(3) −0.5565 0.0646(8) −0.0126 0.0007(1) 48.5991(9) 48.5982(8) [24]

48.5997(10) [79]
28 3.775(1) 53.6031(3) −0.7169 0.0775(9) −0.0142 0.0009(1) 52.9504(10) 52.9501(11) [80,81]
30 3.929(1) 58.2135(3) −0.9070 0.0917(10) −0.0149 0.0013(2) 57.3846(10) 57.3839(30) [82]
36 4.188(1) 72.8021(6) −1.6859 0.1428(14) −0.0167 0.0029(5) 71.2451(15) 71.243(8) [83]

71.241(11) [84]
40 4.270(1) 83.2706(11) −2.4107 0.1840(17) −0.0195 0.0046(10) 81.0289(23)
47 4.544(4) 103.3426(17) −4.1673 0.2708(22) −0.0233 0.0094(21) 99.4321(35) 99.438(7) [85]
50 4.654(1) 112.7440(22) −5.1431 0.3141(26) −0.0238 0.0124(30) 107.9036(45) 107.911(7) [20]
52 4.743(3) 119.3127(24) −5.8777 0.3447(28) −0.0243 0.0147(35) 113.770(5)
54 4.787(5) 126.1471(31) −6.6851 0.3773(32) −0.0257 0.0175(40) 119.831(6) 119.820(8) [20]
60 4.912(2) 148.3812(40) −9.5873 0.4841(42) −0.0305 0.0271(15) 139.275(6)
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TABLE XI. Individual contributions to the 2p3/2-2s transition energy in Li-like ions, in eV.

Z 〈r2〉1/2 Electronic structure One-loop QED Scr.QED Recoil Two-loop QED Total theory Experiment Ref.

10 3.005(2) 16.1111(3) −0.0190 0.0053(2) −0.0042 0.0000 16.0932(4) 16.0932(2) [17]
15 3.189(2) 27.2732(3) −0.0781 0.0146(4) −0.0071 0.00004 27.2026(5) 27.206(3) [76]
18 3.427(2) 35.1694(3) −0.1463 0.0228(5) −0.0082 0.0001 35.0378(6) 35.0370(12) [17]
20 3.476(1) 41.2157(3) −0.2100 0.0294(5) −0.0101 0.0002 41.0251(7) 41.0286(25) [77]
21 3.544(2) 44.5340(3) −0.2480 0.0330(6) −0.0100 0.0002 44.3092(7) 44.3094(2) [25]
26 3.737(2) 65.0339(3) −0.5119 0.0554(8) −0.0128 0.0005(1) 64.5650(9) 64.5657(17) [79]
28 3.775(1) 75.5636(3) −0.6574 0.0662(10) −0.0145 0.0008(1) 74.9586(11) 74.9602(22) [80,81]
30 3.929(1) 87.7936(3) −0.8294 0.0782(11) −0.0153 0.0011(2) 87.0282(12) 87.0302(37) [82]
36 4.188(1) 137.6054(6) −1.5298 0.1211(15) −0.0173 0.0024(5) 136.1818(17) 136.202 [86]

136.173(37) [84]
40 4.270(1) 185.1490(11) −2.1781 0.1561(18) −0.0204 0.0039(10) 183.1106(23)
47 4.544(4) 307.1992(16) −3.7439 0.2322(24) −0.0247 0.0081(21) 303.6709(36) 303.67(3) [85]
50 4.654(1) 379.0321(22) −4.6129 0.2713(27) −0.0255 0.0107(30) 374.6757(46)
52 4.743(3) 434.8862(24) −5.2677 0.2994(27) −0.0262 0.0128(35) 429.904(5)
54 4.787(5) 497.8958(31) −5.9880 0.3303(31) −0.0278 0.0152(40) 492.225(6) 492.34(62) [87]
60 4.912(2) 737.3646(40) −8.5884 0.4361(38) −0.0338 0.0253(20) 729.204(6)

Further improvements of the theoretical predictions can
be achieved by calculating the screened QED corrections of
the second order in 1/Z and the three-photon-exchange QED
corrections.

VI. CONCLUSION

We have presented a systematic evaluation of the relativistic
nuclear recoil effect in Li-like ions. The recoil correction
within the leading relativistic approximation was calculated
with many-electron wave functions in order to take into ac-
count the electron correlation effect. It relies on the large-scale
CI-DFS method. The higher-order relativistic recoil correction
effects were also taken into account. The results obtained are
used to evaluate the 2pj -2s transition energies. They can also
be employed to get the isotope shifts in Li-like ions.

A systematic QED treatment of the electron correlation for
the 2pj -2s transitions in Li-like ions was presented. The rig-
orous QED calculations of the one- and two-photon-exchange
contributions are combined with the electron correlations
of third and higher orders that have been evaluated within
the Breit approximation employing the CI-DFS method. The
complete gauge invariant sets of the screened one-loop QED
corrections have been rigorously evaluated. Different local po-
tentials were used as the zeroth-order approximation, namely,
the Coulomb, core-Hartree, and Kohn-Sham potentials. The
screened QED contributions to the ionization energies of the
2s, 2p1/2, and 2p3/2 states as well as to the 2pj -2s transition
energies are presented for Li-like ions in the range Z = 10–92.

Finally, we have compiled all available theoretical contri-
butions to the 2pj -2s transition energies in middle-Z Li-like
ions for Z = 10–60. Due to the more elaborative evaluations
of the electron-electron interaction in the relativistic recoil
and QED contributions we have substantially reduced the total
uncertainty of the theoretical predictions. A good agreement
with the experimental results has been found.
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Rev. A 77, 032501 (2008).

[17] B. Edlen, Phys. Scr. 28, 51 (1983).
[18] J. Schweppe, A. Belkacem, L. Blumenfeld, N. Claytor,

B. Feinberg, H. Gould, V. E. Kostroun, L. Levy, S. Misawa,
J. R. Mowat, and M. H. Prior, Phys. Rev. Lett. 66, 1434
(1991).

[19] P. Beiersdorfer, A. L. Osterheld, J. H. Scofield, J. R. Crespo
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F. Nolden, M. Steck, T. Stöhlker, and Z. Stachura, Phys. Rev.
Lett. 91, 073202 (2003).

[22] P. Beiersdorfer, H. Chen, D. B. Thorn, and E. Träbert, Phys. Rev.
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