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Angular correlations in the two-photon decay of heliumlike heavy ions
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The two-photon decay of heavy, helium-like ions is investigated based on second-order perturbation theory
and Dirac’s relativistic equation. Special attention has been paid to the angular emission of the two photons (i.e.,
how the angular correlation function depends on the shell structure of the ions in their initial and final states).
Moreover, the effects from the (electric and magnetic) nondipole terms in the expansion of the electron-photon
interaction are discussed. Detailed calculations have been carried out for the two-photon decay of the 1s2s 1S0,
1s2s 3S1, and 1s2p 3P0 states of helium-like Xe52+, Au77+, and U90+ ions.
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I. INTRODUCTION

Owing to the recent advances in heavy-ion accelerator
and trap facilities as well as in detection techniques, new
possibilities arise to study the electronic structure of simple
atomic systems in strong (nuclear) Coulomb fields. Rel-
ativistic, quantum electrodynamics (QED), or even parity
nonconservation (PNC) effects, which are difficult to isolate
in neutral atoms, often become enhanced in high-Z, few-
electron ions. In order to improve our understanding of
these fundamental interactions, a number of experiments
have been recently carried out on the characteristic photon
emission from heavy ions [1–3]. Apart from the one-photon
bound-bound transitions, the two-photon decays of metastable
ionic states have also attracted much interest since the
analysis of its properties may reveal unique information
about the complete spectrum of the ion, including negative
energy (positron) solutions of Dirac’s equation. Until now,
however, most two-photon studies were focused on measuring
the total and energy-differential decay rates [4–10] which
were found in good agreement with theoretical predictions,
based on relativistic calculations [11–20]. In contrast, much
less attention has been previously paid to the angular and
polarization correlations between the emitted photons. The
first two-photon correlation studies with heavy ions are likely
to be carried out at the GSI facility in Darmstadt, where
significant progress has been recently made in development
of solid-state, position-sensitive x-ray detectors [21,22]. By
means of these detectors, a detailed analysis of the angular and
polarization properties of two-photon emission will become
possible and will provide more insights into the electronic
structure of heavy, few-electron ions.

Despite the recent interest in two-photon coincidence
studies, not much theoretical work has been done so far to
explore the photon-photon correlations in the decay of heavy
atomic systems. While some predictions are available for the
hydrogen-like [23,24] and neutral atoms [14], no systematic

angular (and polarization) analysis was performed for the
helium-like ions which are the most suitable candidates for
two-photon investigations in high-Z domain. In the present
work, therefore, we apply the second-order perturbation theory
based on Dirac’s equation to investigate the γ -γ angular
correlations in the decay of two-electron systems. The basic
relations of such a (relativistic) perturbation approach will
be summarized in Sec. II. In particular, here we introduce
the second-order transition amplitude that describes a bound-
state transition under the simultaneous emission of two
photons. The evaluation of these (many-body) amplitudes
within the framework of the independent particle model (IPM)
is thereafter discussed in Sec. II B. Within this approximation
that is particularly justified for the high-Z regime [25–27],
the photon-photon correlation function from Sec. II C can be
traced back to the one-electron matrix elements. This reduction
enables us to implement the well-established Green’s function
as well as finite basis set methods [28–30] and to calculate the
correlation functions for the 1s2s 1S0 → 1s2 1S0, 1s2s 3S1 →
1s2 1S0, and 1s2p 3P0 → 1s2 1S0 transitions in helium-like
Xe52+, Au77+, and U90+ ions. Results from these computations
are displayed in Sec. III and indicate a strong dependence of the
photon emission pattern on the symmetry and parity of initial
and final ionic states. Moreover, the significant effects that
arise due the higher-multipole terms in the expansion of the
electron-photon interaction are also discussed in the context of
angular correlation studies. Finally, a brief summary is given
in Sec. IV.

II. THEORETICAL BACKGROUND

A. Second-order transition amplitude

Since the second-order perturbation theory has been fre-
quently applied in studying two-photon decay, here we may
restrict ourselves to a short compilation of the basic formulas
relevant for our analysis and refer for all further details to the
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literature [11,12,14,16,18,19,24–26]. Within the relativistic
framework, the second-order transition amplitude for the

emission of two photons with wave vectors ki (i = 1, 2) and
polarization vectors uλi

(λ = ±1) is given by

Mf i(Mf ,Mi, λ1, λ2) =
∑

γνJνMν

〈γf Jf Mf |R̂†(k1, uλ1

)|γνJνMν〉〈γνJνMν |R̂†(k2, uλ2

)|γiJiMi〉
Eν − Ei + ω2

+
∑

γνJνMν

〈γf Jf Mf |R̂†(k2, uλ2

)|γνJνMν〉〈γνJνMν |R̂†(k1, uλ1

)|γiJiMi〉
Eν − Ei + ω1

, (1)

where |γiJiMi〉 and |γf Jf Mf 〉 denote the (many-electron)
states with well-defined total angular momenta Ji,f and
their projections Mi,f of the ions just before and after
their decay, and γi,f all the additional quantum numbers
as necessary for a unique specification. The energies of
these states, Ei and Ef , are related to the energies ω1,2 =
ck1,2 of the emitted photons by the energy conservation
condition,

Ei − Ef = h̄ω1 + h̄ω2. (2)

Using this relation, it is convenient to define the so-called
energy sharing parameter y = ω1/(ω1 + ω2) (i.e., the frac-
tion of the energy which is carried away by the first
photon).

In Eq. (1), moreover, R̂ is the transition operator that de-
scribes the interaction of the electrons with the electromagnetic
radiation. In velocity (Coulomb) gauge for the coupling of
the radiation field this operator can be written as a sum of
one-particle operators:

R̂(k, uλ) =
∑
m

αmAλ,m =
∑
m

αmuλeik·rm, (3)

where αm = (αx,m, αy,m, αz,m) denotes the vector of the Dirac
matrices for the m-th particle and Aλ,m the vector potential of
the radiation field. To further simplify the second-order transi-
tion amplitude (1) for practical computations, it is convenient
to decompose the potential Aλ,m into spherical tensors (i.e.,
into its electric and magnetic multipole components). For the
emission of the photon in the direction k̂ = (θ, φ) with respect
to the quantization (z) axis such a decomposition reads [31]

uλeik·r =
√

2π

∞∑
L=1

L∑
M=−L

∑
p=0,1

iL[L]1/2(iλ)pâ
p

LM (k)DL
Mλ(k̂),

(4)

where [L] ≡ 2L + 1, DL
Mλ is the Wigner rotation matrix of

rank L and â
p=0,1
LM (k) refer to magnetic (p = 0) and electric

(p = 1) multipoles, respectively.
The multipole decomposition of the photon field in terms

of its irreducible components with well-defined transformation
properties enables us to simplify the second-order amplitude
by employing the techniques from Racah’s algebra. Inserting
Eqs. (3) and (4) into the matrix element (1) and by making use
of the Wigner-Eckart theorem, we obtain

Mf i(Mf ,Mi, λ1, λ2) = 2π
∑

L1M1p1

∑
L2M2p2

(−i)L1+L2 [L1, L2]1/2(−iλ1)p1 (−iλ2)p2D
L1∗
M1λ1

(k̂1)DL2∗
M2λ2

(k̂2)

×
∑
JνMν

1

[Ji, Jν]1/2

[
〈Jf Mf L1M1|JνMν〉〈JνMνL2M2|JiMi〉SJν

L1p1,L2p2
(ω2)

+〈Jf Mf L2M2|JνMν〉〈JνMνL1M1|JiMi〉SJν

L2p2,L1p1
(ω1)

]
, (5)

where the second-order reduced transition amplitude is given by

S
Jν

L1p1,L2p2
(ω2) =

∑
γν

〈γf Jf || ∑
m

αmâ
p1†
L1,m

(k1)||γνJν〉〈γνJν ||
∑
m

αmâ
p2†
L2,m

(k2)||γiJi〉
Eν − Ei + ω2

. (6)

Here, the summation over the intermediate states formally
runs over the complete spectrum of the ions, including a
summation over the discrete part of the spectrum as well as the
integration over the positive- and negative-energy continua. In
practice, such a summation is not a simple task especially

when performed over the many-electron states |γνJν〉. In
the next section, therefore, we shall employ the independent
particle model in order to express the reduced matrix ele-
ments (6) for many-electron ions in terms of their one-electron
analogs.
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B. Evaluation of the reduced transition amplitudes

As seen from Eqs. (5) and (6), one has first to generate a
complete set of many-electron states |γ J 〉 in order to calculate
the second-order transition amplitude Mf i . A number of
approximate methods, such as multiconfiguration Dirac-Fock
(MCDF) [32,33] and configuration interaction (CI) [15],
are known in atomic structure theory for constructing these
states. Moreover, the systematic perturbative QED approach
in combination with the CI method turned out to be most
appropriate for describing both transition probabilities [34,35]
and transition energies [36] in highly charged ions. In the
high-Z domain, however, the structure of few-electron ions can
already be reasonably well understood within the independent
particle model (IPM). This model is well justified for heavy
species especially, since the interelectronic effects scale with
1/Z and, hence, are much weaker than the electron-nucleus

interaction [25,26,37]. Within the IPM, which takes the Pauli
principle into account, the many-electron wave functions are
approximated by means of Slater determinants, built from
one-particle orbitals. For this particular choice of the many-
electron function, all the (first- and the second-order) matrix
elements can be easily decomposed into the corresponding
single-electron amplitudes.

For a helium-like system, the decomposition of the reduced
amplitude (6) reads

S
Jν

L1p1,L2p2
(ω2) = −δJνL1 [Ji, Jν]1/2

∑
jν

(−1)Ji+Jν+L2

×
{

jν j0 Jν

Ji L2 ji

}
S

jν

L1p1,L2p2
(ω2), (7)

where the one-electron matrix elements of the (electric and
magnetic) multipole field operators are given by

S
jν

L1p1,L2p2
(ω2) =

∑
nν

〈n0j0||αâ
p1†
L1

(k1)||nνjν〉〈nνjν ||αâ
p2†
L2

(k2)||niji〉
Eν − Ei + ω2

. (8)

We assume here that the “spectator” electron, being in
hydrogenic state |n0j0〉, stays passive in the decay process.
Moreover, |niji〉, |nνjν〉, and |nf jf 〉 = |n0j0〉 denote the
initial, intermediate, and final states of the “active” electron,
correspondingly. The great advantage of formula (7) is
that it helps us to immediately evaluate the many-electron
transition amplitude (6) in terms of the (one-particle) functions
S

jν

L1p1,L2p2
(ω2). The summation over the complete one-particle

spectrum that occurs in these functions can be performed
by means of various methods. In the present work, we
make use of (i) the relativistic Coulomb-Green’s function
[24,38,39] and (ii) a B-spline discrete basis set [16,20,28–30]
to evaluate all the second-order transition amplitudes. Indeed,
both approaches yield almost identical results for the angular
correlation functions in the two-photon decay of heavy helium-
like ions.

C. Differential decay rate

Equation (5) displays the general form of the relativistic
transition amplitude for the two-photon decay of many-
electron ions. Such an amplitude represents the “building
block” for studying various properties of the emitted radiation.
For instance, the differential two-photon decay rate can be
written in terms of (squared) transition amplitudes as

dw

dω1d
1d
2
= ω1ω2

(2π )3c2

1

2Ji + 1

×
∑

MiMf

∑
λ1λ2

|Mf i(Mf ,Mi, λ1, λ2)|2, (9)

if we assume that the excited ions are initially unpolarized and
that the spin states of the emitted photons remain unobserved
in a particular measurement. As seen from expression (9), the
two-photon rate is single differential—owing to the conserva-
tion law (2)—in the energy of one of the photons but double

differential in the emission angles. Accordingly, its further
evaluation requires one to determine the geometry under
which the photon emission is considered. Since no particular
direction is preferred for the decay of an unpolarized (as well
as unaligned) ion, it is convenient to adopt the quantization (z)
axis along the momentum of the “first” photon: k1||z. Such a
choice of the quantization axis allows us to simplify the rate (9)
and to define the angular correlation function:

W2γ (θ, y) = 8π2(Ei − Ef )

× dw

dω1d
1d
2
(θ1 = 0, φ1 = 0, φ2 = 0), (10)

which is characterized (apart from the relative energy y) by the
single polar angle θ = θ2 of the “second” photon momentum
with respect to this axis. In this expression, moreover, the factor
8π2 arises from the integration over the solid angle d
1 =
sin θ1dθ1dφ1 of the first photon as well as the integration over
the azimuthal angle dφ2 of the second photon. In the next
section, we shall investigate the dependence of the function
W2γ (θ, y) on this opening angle θ for various bound-bound
transitions and for a range of (relative) photon energies.

III. RESULTS AND DISCUSSION

With the formalism developed above, we are ready now
to analyze the angular correlations in the two-photon decay
of helium-like heavy ions. In experiments nowadays, the
excited states of these ions can be efficiently populated in
relativistic ion-atom collisions. For example, the formation
of the metastable 1s2s 1S0 state during the inner-shell impact
ionization of (initially) lithium-like heavy ions has been
studied recently at the GSI storage ring in Darmstadt [40].
The radiative deexcitation of this state can proceed only via
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the two-photon transition 1s2s 1S0 → 1s2 1S0 since a single-
photon decay to the 1s2 1S0 ground state is strictly forbidden
by the conservation of angular momentum. Figure 1 displays
the photon-photon angular correlation function for this experi-
mentally easily accessible decay of helium-like Xe52+, Au77+,
and U90+ ions and for the two energy sharing parameters
y = 0.1 (upper panel) and y = 0.5 (lower panel). Moreover,
because the radiative transitions in high-Z ions are known
to be affected by the higher terms of the electron–photon
interaction (3), calculations were performed within both, the
exact relativistic theory (solid line) to include all allowed
multipole components (p1L1, p2L2) in the amplitude (5) as
well as the electric dipole approximation (dashed line), if only
a single term with L1 = L2 = 1 and p1 = p2 = 1 is taken
into account. In the dipole 2E1 approach, as expected, the
angular distribution is well described by the formula 1 + cos2 θ

that predicts a symmetric—with respect to the opening angle
θ = 90◦—emission pattern of two photons. Within the exact
relativistic theory, in contrast, an asymmetric shift in the
angular correlation function is obtained. As can be deduced
from Eqs. (7)–(10), this shift arises from the interference
between the leading 2E1 decay channel and higher multipole
terms in the electron-photon interaction:

W2γ (θ, y) ∝ (1+ cos2 θ )+4
SM1

SE1
cos θ+20

5

SE2

SE1
cos3 θ + · · · ,

(11)

where, for the sake of brevity, we have introduced the
notation SLp = S

Jν=L
Lp,Lp(ω1) + S

Jν=L
Lp,Lp(ω2). For high-Z domain,

the photon emission occurs predominantly in the backward
directions if the nondipole terms are taken into account;
an effect which becomes more pronounced for the equal
energy sharing (cf. bottom panel of Fig. 1). Including the
higher multipoles into the photon-photon correlation function,
a similar asymmetry was found in the past for the 2s2/1 →
1s1/2 decay in hydrogen-like heavy ions both within the
nonrelativistic [23] and relativistic [24] theory.

Apart from the singlet 1s2s 1S0, the formation of the triplet
1s2s 3S1 state has been also observed in recent collision
experiments at the GSI storage ring [9,40]. Although much
weaker in intensity (owing to the dominant M1 transition), the
two-photon decay of this 1s2s 3S1 state has attracted recent
interest and might provide an important testing ground for
symmetry violations of Bose particles [26,41]. The angular
correlation between the photons emitted in this 1s2s 3S1 →
1s2 1S0 (two-photon) decay is displayed in Fig. 2, by comparing
again the results from the exact relativistic theory with the 2E1
dipole approximation. As seen from the figure, the photon-
photon correlation functions for the 2 3S1 → 1 1S0 transition is
much more sensitive with regard to higher multipoles in the
electron-photon interaction than obtained for the 2 1S0 → 1 1S0

decay. The strongest nondipole effect can be observed for the
equal energy sharing (y = 0.5), where the two-photon emission
is strictly forbidden within the electric dipole approximation.
This suppression of the 2E1 decay is a direct consequence
of the exchange symmetry of photons as required by the
Bose-Einstein statistics and, hence, a particular case of the
Landau-Yang theorem that forbids the decay of vector particles
into two photons (cf. Refs. [26,41–43] for further details). In
contrast to the 2E1 channel, the E1M2 2 3S1 → 1 1S0 transition
can proceed even if the energies of the two photons are equal.
This transition as well as higher multipole terms give rise to a
strongly anisotropic correlation function that vanishes for the
parallel and back-to-back photon emission and has a maximum
at θ = 90◦.

Large effects due to the higher multipole contributions to
the 1s2s 3S1 → 1s2 1S0 two-photon transition can be observed
not only for the case of equal energy sharing (y = 0.5). For
the relative energy y = 0.1, for example, the photon-photon
angular correlation function is found symmetric with regard
to θ = 90◦ in the electric dipole (2E1) approximation but
becomes asymmetric in an exact relativistic theory. In contrast
to the decay of the 2 1S0 state, however, a predominant
parallel emission of both photons appears to be more likely
if the higher multipoles are taken into account. For the
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FIG. 1. (Color online) Angular
correlation function (10) for the
1s2s 1S0 → 1s2 1S0 two-photon decay
of helium-like xenon, gold, and
uranium ions. Calculations obtained
within the electric dipole 2E1 approx-
imation (dashed line) are compared
with those including all the allowed
multipoles (solid line). Results are pre-
sented for the relative photon energies
y = 0.1 (upper panel) and 0.5 (lower
panel).
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FIG. 2. (Color online) Angular
correlation function (10) for the
1s2s 3S1 → 1s2 1S0 two-photon decay
of helium-like xenon, gold, and
uranium ions. Calculations obtained
within the electric dipole 2E1 approxi-
mation (dashed line) are compared with
those including all of the allowed multi-
poles (solid line). Results are presented
for the relative photon energies y = 0.1
(upper panel) and 0.5 (lower panel).

2 3S1 → 1 1S0 two-photon decay of helium-like uranium
U90+, for example, the intensity ratio W2γ (θ = 0◦, y =
0.1)/W2γ (θ = 180◦, y = 0.1) increases from unity within the
electric dipole approximation to almost 1.6 in the exact
relativistic treatment.

Until now we have discussed the photon-photon correla-
tions in the decay of 1s2s (singlet and triplet) helium-like
states. Besides these well-studied transitions, recent theoretical
interest has been focused also on the 1s2p 3P0 → 1s2 1S0 two-
photon decay whose properties are expected to be sensitive
to (parity violating) PNC phenomena in atomic systems [27].
Future investigations on such subtle parity nonconservation
effects will require first detailed knowledge on the angle (and
polarization) properties of two-photon emission as well as
the role of nondipole contributions. The angular correlation

function (10) for the 2 3P0 → 1 1S0 transition is displayed
in Fig. 3, again, for two relative photon energies y = 0.1
and 0.5 and for the nuclear charges Z = 54, 79, and 92.
Calculations have been performed both within the exact theory
and the (“electric and magnetic”) dipole approximation which
accounts for the leading E1M1-M1E1 decay channel. As
seen from the figure, the emission pattern strongly depends
on the energy sharing between the photons. If, for example,
one of the photons is more energetic than the second one
their parallel emission becomes dominant (cf. upper panel of
Fig. 3). In contrast, photons with equal energies (i.e., when
y = 0.5) are more likely to be emitted back-to-back while
the differential rate (9) vanishes identically for θ = 0◦. Such
a behavior of the photon-photon angular correlation function
is caused by the interference between two pathways which
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FIG. 3. (Color online) Angular
correlation function (10) for the
1s2p 3P0 → 1s2 1S0 two-photon de-
cay of helium-like xenon, gold, and
uranium ions. Calculations obtained
within the dipole E1M1 approximation
(dashed line) are compared with those
including all of the allowed multipoles
(solid line). Results are presented for
the relative photon energies y = 0.1
(upper panel) and 0.5 (lower panel).
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appear for each multipole component of the 2 3P0 → 1 1S0

transition. For instance, the leading E1M1-M1E1 decay may
proceed either via intermediate n 3S1 or n 3P1 states, thus
giving rise to a “double–slit” picture that becomes most
pronounced for the equal energy sharing. Simple analytical
expression for the angular correlation function which accounts
for such a Young-type interference effect can be obtained from
Eqs. (7)–(9) as

W2γ (θ, y) ∝ sin4 θ/2|SE1M1|2
(

1 + 2(1 + 2 cos θ )
SE2M2

SE1M1

)

+ cos4 θ/2|DE1M1|2
(

1 − 2(1 − 2 cos θ )
DE2M2

DE1M1

)
+ · · · ,

(12)

where, similar as before, we denote SLp1,Lp2 = S
Jν=L
Lp1,Lp2

(ω1) +
S

Jν=L
Lp1,Lp2

(ω2)+S
Jν=L
Lp2,Lp1

(ω2)+S
Jν=L
Lp2,Lp1

(ω1) and DLp1,Lp2 =
S

Jν=L
Lp1,Lp2

(ω1)−S
Jν=L
Lp1,Lp2

(ω2)+S
Jν=L
Lp2,Lp1

(ω2)−S
Jν=L
Lp2,Lp1

(ω1). Obv-
iously, if the energies of the two photons are equal, ω1 = ω2,
the second term in Eq. (12) turns out to be zero and
the photon emission is described by the sin4 θ/2 angular
distribution modified by the nondipole terms in the expansion
of electron-photon interaction. As seen from the lower panel
of Fig. 3, the contribution from these terms becomes more
pronounced for the back-to-back photon emission (θ = 180◦)
where they lead to about a 30% enhancement of the correlation
function. It is interesting to note that such an enhancement
remains almost constant along the helium isoelectronic
sequence for Z � 54 due to similar (∝ Z12) scaling of
the E1M1 and E2M2 transition probabilities. Therefore,
our calculations clearly indicate the importance of higher
multipoles for analyzing the photon-photon correlations not
only for high-Z domain but also for medium-Z ions.

IV. SUMMARY AND OUTLOOK

In summary, the two-photon decay of heavy, helium-like
ions has been investigated within the framework of the rela-
tivistic second-order perturbation theory and the independent
particle model. In this study, special emphasis was placed
on the angular correlations between the emitted photons. A
general expression for the photon-photon correlation function
was derived that accounts for the complete expansion of
the radiation field in terms of its multipole components.
Based on solutions of Dirac’s equation, this function has
been calculated for the two-photon decay of the 1s2s 1S0,
1s2s 3S1, and 1s2p 3P0 states of helium-like Xe52+, Au77+,

and U90+ ions. As seen from the results obtained, the photon
emission pattern appears to be sensitive to the symmetry and
parity of the particular excited state as well as to the higher
multipole contributions to the electron-photon interaction.
The strongest nondipole effects have been identified for the
1s2s 3S1 → 1 1S0 two-photon transition for which the 2E1
decay channel is forbidden owing to symmetrization properties
of the system. For the other two transitions, 1s2s 1S0 → 1 1S0

and 1s2p 3P0 → 1 1S0, the higher multipoles of the radiation
field typically result in a 10%–30% deviation of the photon-
photon correlation function from the (analytical) predictions
obtained within the dipole 2E1 approximation. This deviation
becomes most apparent for the parallel and back-to-back
photon emission and may be observed not only for high-Z
but also for medium-Z ions.

The second-order perturbation approach based on the
independent particle model, used in the present calculations,
is appropriate for the analysis of forthcoming experimental
studies on the two-photon transitions between the 2s+1LJ

excited and the ground states of helium-like, heavy ions.
Besides these spontaneous decays, whose energies usually
reach 100 keV, induced J = 0 → J = 0 + 2γ transitions
between excited states are also likely to be explored at the
GSI ion storage ring [44]. Having energies in the optical range
(2–3 eV), these transitions may provide an alternative and very
promising tool for studying the parity violation phenomena.
Their theoretical analysis, however, requires a more systematic
treatment of the electron-electron interaction effects. Based
on the multiconfiguration Dirac-Fock approach and B-spline
basis set method, investigations along this line are currently
underway and will be reported elsewhere.
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[22] Th. Stöhlker et al., J. Phys.: Conf. Ser. 58, 411 (2007).
[23] C. K. Au, Phys. Rev. A 14, 531 (1976).
[24] A. Surzhykov, P. Koval, and S. Fritzsche, Phys. Rev. A 71,

022509 (2005).
[25] G. W. F. Drake, Nucl. Instrum. Methods B 9, 465 (1989).
[26] R. W. Dunford, Phys. Rev. A 69, 062502 (2004).
[27] R. W. Dunford, Phys. Rev. A 54, 3820 (1996).
[28] P. Indelicato, Phys. Rev. A 51, 1132 (1995).
[29] J. Sapirstein and W. R. Johnson, J. Phys. B 29, 5213 (1996).
[30] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and

G. Soff, Phys. Rev. Lett. 93, 130405 (2004).

[31] M. E. Rose, Elementary Theory of Angular Momentum (Wiley,
New York, 1953).

[32] I. P. Grant, in Methods in Computational Chemistry, Vol.
2, edited by S. Wilson (Plenum Press, New York, 1988),
p. 1.

[33] S. Fritzsche, Phys. Scr., T 100, 37 (2002).
[34] I. I. Tupitsyn, A. V. Volotka, D. A. Glazov, V. M. Shabaev,
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