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for ensembles of initial orthopositronium atoms having arbitrary polarization.

DOI: 10.1103/PhysRevA.81.042507 PACS number(s): 36.10.Dr, 12.20.Ds, 11.30.Er

I. INTRODUCTION

Positronium physics has been a rich source of tests of
QED and the discrete symmetries C, P , and T , singly and
in various combinations. (For reviews see [1–4].) Positronium
is described almost completely by pure QED—standard model
strong and weak interaction effects are small [5–8]. Any
deviations from QED predictions for positronium properties at
present and proposed levels of experimental sensitivity would
indicate new physics in the leptonic sector. Positronium is
relatively easy to prepare and study and so forms an attractive
system to use in the search for new physics.

In this work we will focus on the three-photon decay of the
spin-1, C = −1 state orthopositronium (ortho-Ps). The lowest
order ortho-Ps decay rate contribution was calculated by Ore
and Powell [9] in 1949 as

�0 = 2

9π
(π2 − 9)mα6. (1)

The O(α) correction was computed with increasing precision
over the years [10–13], culminating with the analytic evalua-
tion in 2008 [14]. The analytic expression is too long to quote
here, but the numerical value to seventeen digits is

γ1 = −10.286 614 808 628 262 (2)

in units of (α/π )�0. The corrections to �0 of relative orders
α2 ln α [11], α2 [15,16], α3 ln2 α [17], and α3 ln α [18–20]
have all been worked out. The calculated ortho-Ps decay rate
is in excellent agreement with the latest experimental results
[21–23].

Our goals for this paper are twofold. First, we will give
explicit forms for the three O(α) ortho-Ps → 3γ form factors.
These form factors are in analytic form, and with their use all
one-loop ortho-Ps decay calculations are greatly simplified.
For example, the calculation of γ1 in [14] was set up as a
two-dimensional integration of a function found by use of
these form factors. The ortho-Ps decay form factors were
employed earlier in high-precision numerical calculations of
γ1 and in obtaining some contributions to the O(α2) decay-rate
correction [13,24], but explicit forms were not given then due
to their length. Now the form factors are available on the
EPAPS electronic depository [25].

*gadkins@fandm.edu

Our second goal for this paper is to give results for a number
of two-photon momentum correlations of the form 〈kAikBj 〉
and 〈k̂Ai k̂Bj 〉 among photons produced in ortho-Ps → 3γ

decay for ortho-Ps ensembles of arbitrary polarization. Our
results include the effects of one-loop radiation corrections.
These correlations include but are more general than the
cross-product average 〈(�kA × �kB)a〉 = εaij 〈kAikBj 〉 that has
been used for tests of CPT [5,26–32].

This paper is organized as follows. In Sec. II we give a
general discussion of the ortho-Ps decay calculation for ortho-
Ps ensembles of arbitrary polarization. In Sec. III we define the
ortho-Ps → 3γ form factors and give an EPAPS link where
they may be found. In Sec. IV we show how the form factors
can be used to calculate one-loop corrections, specifically,
the one-loop decay rate correction γ1. In Sec. V we present
the calculations and results for the two-photon momentum
correlations at lowest and one-loop orders. Finally, in Sec. VI
we give a discussion of our results.

II. ORTHOPOSITRONIUM DECAY

The expression for the decay rate of ortho-Ps to three
photons is

� = 1

3!

1

2(2W )

∫
d3k1

(2π )32ω1

d3k2

(2π )32ω2

d3k3

(2π )32ω3

× (2π )4δ(P − k1 − k2 − k3)|M|2, (3)

where P = (2W,�0 ) in the ortho-Ps rest frame, W is half the
ortho-Ps mass, ωi = k0

i = |�ki | is the ith photon energy, and
|M|2 is the decay amplitude squared and summed over final-
state photon polarizations. The initial ortho-Ps ensemble is
described by a density matrix [26]

ρ =
∑
ij

|Ps,i〉ρij 〈Ps,j |, (4)

where |Ps,i〉 is the ortho-Ps state with polarization given by
the ith Cartesian basis vector êi . The density matrix elements
can be expressed as

ρij = 1

3
δij − i

2
εijksk − tij , (5)

where tij = tj i , tii = 0. (We make use of the summation
convention to sum over repeated indices.) The quantities sk

and tij measure the vector and tensor polarizations present in
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the initial ensemble of ortho-Ps atoms. For example, the m = 0
pure state has

�s = 0, t =

⎛
⎜⎝

1/3 0 0

0 1/3 0

0 0 −2/3

⎞
⎟⎠ , (6)

and the m = ±1 pure states have

�s =
⎛
⎝ 0

0
±1

⎞
⎠ , t =

⎛
⎜⎝

−1/6 0 0

0 −1/6 0

0 0 1/3

⎞
⎟⎠ . (7)

The spin-averaged mixed state has �s = �0 and tij = 0.
We will use the energy-momentum conserving delta func-

tion to perform four of the nine phase-space integrals. The
five remaining integrals will be separated into three over Euler
angles and two describing the relative orientation of the three
photons in the decay plane. To start with, we evaluate the �k3

integral using the three-momentum δ function to find

� = 1

3!4W

∫
d3k1 d3k2

(2π )68ω1ω2ω3
(2π )

× δ(2W − ω1 − ω2 − ω3)|M|2. (8)

The remaining integration variables will be parametrized as
follows. We form the momentum vectors �k1, �k2 by first placing
the decay plane in the x ′y ′ plane with photon 1 along the x ′
axis and photon 2 at angle β:

k̂′
1 = (1, 0, 0), k̂′

2 = (cos β, sin β, 0). (9)

The xyz frame is obtained from this x ′y ′z′ frame by an Euler
angle rotation RE = Rz′ (χ )Rx ′(θ )Rz′(φ). The momentum unit
vectors in the xyz frame are

k̂1 = REk̂′
1, k̂2 = REk̂′

2, k̂3 = −(ω1k̂1 + ω2k̂2)

|ω1k̂1 + ω2k̂2|
. (10)

The volume elements are related by

d3k1 d3k2 = ω2
1ω

2
2dω1dω2 sin βdβdω, (11)

where

dω = dχ sin θdθ dφ (12)

is the volume element in the space of Euler angles. The β

integral can be done by using the energy-conserving delta
function. We write xi = ωi/W , in terms of which energy
conservation states

x1 + x2 + x3 = 2. (13)

Moreover, momentum conservation

�k1 + �k2 + �k3 = �0 (14)

allows us to express the angle αij between any two photons,
say i and j , in the decay plane in terms of the xi as

cos(αij ) = k̂i · k̂j = 1 − 2x̄k

xixj

(15)

among many equivalent forms, where (ijk) = (123) or a
permutation thereof, and x̄k ≡ 1 − xk . The decay rate is

� = W

768π3

∫
dω

8π2

∫
d|M|2, (16)

where
∫

d is the integral over a triangular region in the x1x2

plane:

0 � x1 � 1, 1 − x1 � x2 � 1. (17)

We note that W , half of the ortho-Ps mass, is nearly equal to m:
W = m

[
1 + O(α2)

]
. In our work here, which is only through

O(α) corrections, we can always take W → m.
Correlations such as 〈kAikBj 〉 can be calculated according

to

〈O〉 =
∫

d
∫

dω
8π2 Op∫

d
∫

dω
8π2 p

, (18)

where p is a probability density proportional to |M|2. We label
the photons according to the magnitudes of their energies, so
that A and B represent one of I, II, or III with ωI > ωII > ωIII.
We show that the denominator of (18) is proportional to the
spin-averaged decay rate. This is so because p is proportional
to the photon-polarization-averaged decay amplitude squared
|M|2, and |M|2 contains a factor of ρij . It follows that p can
be written as a sum of terms representing the spin-averaged
contribution, the vector polarization contribution, and the
tensor polarization contribution:

p = pR + pS + pT . (19)

The spin-averaged part, which we call pR , depends only on
the dot products of the �ki , so pR can be expressed as a function
of the xi only with no Euler angle dependence. The vector
polarization part pS is proportional to εijksk with two free
indices, so it involves terms like k1ik2j that do depend on
Euler angles. Likewise, the tensor polarization part pT is
proportional to tij and involves terms like k1ik1j and k1ik2j ,
etc., and depends on the Euler angles. The denominator of (18)
is integrated over Euler angles, and

∫
dω kaikbj ∝ δij , so the

εijksk and tij terms do not contribute. The denominator of (18)
is just proportional to the spin-averaged decay rate, which we
obtain in Sec. IV.

III. ORTHOPOSITRONIUM DECAY FORM FACTORS

In this section we describe the calculation of the ortho-
Ps decay form factors and present the results. These form
factors were obtained and used earlier [13,24] but not explicitly
written there due to their length. We now make them available
through the EPAPS service [25].

Orthopositronium decay is governed by the decay matrix
element, which can be written as

M = ε∗
1µ1

ε∗
2µ2

ε∗
3µ3

εα Mµ1µ2µ3α(k1,k2,k3) (20)

for the decay of a state with polarization ε to three photons
having polarizations ε1, ε2, ε3. It can be shown, based on
Lorentz symmetry, gauge invariance, and Bose statistics, that
the decay tensor can be expressed as

Mµ1µ2µ3α(k1,k2,k3) =
∑
S3

Mµ1µ2µ3α(k1,k2,k3), (21)

where the sum is over the six photon permutations [24,33].
The tensor Mµ1µ2µ3α can be written in terms of three scalar
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functions A1, A2, A3 as

Mµ1µ2µ3α(k1,k2,k3)

= A1(k1,k2,k3)
1

k1k3

(
k

µ1
3 k

µ3
1

k1k3
− gµ1µ3

)

× kα
1

(
k

µ2
3

k2k3
− k

µ2
1

k1k2

)
+ A2(k1,k2,k3)

×
{

1

k2k3

(
kα

1 k
µ1
3

k1k3
−gαµ1

) (
k

µ2
1 k

µ3
2

k1k2
−gµ2µ3

)

+ 1

k1k3

(
k

µ2
1

k1k2
− k

µ2
3

k2k3

) (
k

µ3
1 gαµ1 − kα

1 gµ1µ3
)}

+A3(k1,k2,k3)
1

k1k3

(
kα

1 k
µ1
3

k1k3
− gαµ1

)

×
(

k
µ2
3 k

µ3
2

k2k3
− gµ2µ3

)
. (22)

The scalar functions Ai depend only on scalar products of the
ki and so are really functions of x1, x2, x3 (of which only two
are independent). It is convenient to define form factors by
removing a common factor from the Ai according to

Ai(k1,k2,k3) = A0Fi(x1,x2,x3), (23)

where

A0 = 16iπm2α3 x̄1x̄2x̄3

x1x2x3
. (24)

Explicit calculation shows that the lowest order (in α)
contributions to F1, F2, and F3 are 0, 1, and 0, respectively [24].
The expansions in α of the form factors Fi have the form

F1 = 0 + α

π
F

(1)
1 + O(α2), (25a)

F2 = 1 + α

π
F

(1)
2 + O(α2), (25b)

F3 = 0 + α

π
F

(1)
3 + O(α2). (25c)

The one-loop form factors are linear combinations of the
functions h1(xi), . . . , h5(xi), and h6(xi, xj ) times rational
functions of the xi [34], where

h1(x1) = ln(2x1), (26a)

h2(x1) =
√

x1

x̄1
θ1, (26b)

h3(x1) = 1

2x1
{ζ (2) − Li2(1 − 2x1)}, (26c)

h4(x1) = 1

2x1

{(π

2

)2
− θ2

1

}
, (26d)

h5(x1) = 1

2x̄1
θ2

1 , (26e)

h6(x1,x3) = 1√
x1x̄1x3x̄3

{Li2(r+,θ̄1) − Li2(r−,θ̄1)}, (26f)

with

θ1 = arctan(
√

x̄1/x1), (27a)

θ̄1 = arctan(
√

x1/x̄1), (27b)

r± = √
x̄1

(
1 ±

√
x1x̄3

x̄1x3

)
. (27c)

The dilogarithm functions used here are defined by Lewin
[35]. Explicit results for the O(α) form factors are given in
EPAPS as text files in a form readable by MATHEMATICA, in
FORTRAN and C formats, and as a MATHEMATICA notebook
[25].

IV. ORTHOPOSITRONIUM DECAY RATE THROUGH
ONE-LOOP ORDER

In this section we describe the calculation of the ortho-Ps
decay rate. Up to a factor, this decay rate gives us the denom-
inator of expression (18) for the two-photon correlations. As
described at the end of Sec. II, the S and T parts of the density
matrix do not affect the decay rate, so

� = W

768π3

∫
d|M|2R, (28)

where R indicates the spin-averaged part of |M|2. The Euler
angle integral is trivial because the integrand is independent
of Euler angles. We obtain |M|2 by taking the complex square
of M [in (20)]. The result, for physical (spatial) photon and
ortho-Ps polarization vectors, is

|M|2 =
∑
ε1

ε1i1ε
∗
1j1

∑
ε2

ε2i2ε
∗
2j2

∑
ε3

ε3i3ε
∗
3j3

ρijM
∗i1i2i3iMj1j2j3j .

(29)

The photon polarization sums are done by using the transverse
delta function ∑

ε

εiε
∗
j = δT

ij (k̂) = δij − k̂i k̂j , (30)

so

|M|2 = δT
i1j1

(k̂1)δT
i2j2

(k̂2)δT
i3j3

(k̂3)ρijM
∗i1i2i3iMj1j2j3j . (31)

Here Mi1i2i3i is given in terms of the form factors by (21)–(24).
For the lowest order spin-averaged contribution, we find

|M|2R0 = 29π2α6

3

{(
x̄1

x2x3

)2

+
(

x̄2

x3x1

)2

+
(

x̄3

x1x2

)2
}

.

(32)

The lowest order decay rate comes by integration:

�0 = m

768π3

∫ 1

0
dx1

∫ 1

1−x1

dx2|M|2R0 = 2

9π
(π2 − 9)mα6,

(33)

which is the result of Ore and Powell [9]. The spin-averaged
contribution to |M|2 at one-loop order can be expressed in
terms of the one-loop form factors as

|M|2R1 = 2

3m4
|A0|2

∑
S3

{ −1

x̄1x̄3
F

(1)
1 (x1,x2,x3)

+ (x2x̄2 + x3x̄3)

x̄2
1 x̄2x̄3

F
(1)
2 (x1,x2,x3)

+ x1

x̄2
2 x̄3

F
(1)
3 (x1,x2,x3)

}
. (34)

We set up a numerical integration of |M|2R1 using MATH-
EMATICA and easily obtained high precision. We found it
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convenient to break the integration region into the six parts
connected by the S3 symmetry—and then just integrate over
one of them. We used the region specified by ω1 � ω2 � ω3.
We then broke the integration region into parts inside of
which the various denominators present in the one-loop form
factors (such as 1 − 2x3) are not singular. (We note, despite
the dangerous denominator factors, that the one-loop form
factors are continuous functions.) Specifically, we evaluated
the integration according to

�1 = m

768π3

∫
d|M|2R1 = m

768π3
3!

{∫ 1/2

0
dx3

∫ 1−x3/2

1−x3

dx2

+
∫ 2/3

1/2
dx3

∫ 1−x3/2

x3

dx2

}
|M|2R1. (35)

The result, to 17 digits, is �1 = γ1�0, where γ1 is given
in (2). This result is consistent with earlier, less precise,
evaluations [10,12,13] and with the recent analytic result of
Kniehl, Kotikov, and Veretin [14].

V. TWO-PHOTON MOMENTUM CORRELATIONS

In this section we describe the calculation of two-photon
momentum correlations and give our results. According to
(18), the correlations 〈kAikBj 〉 can be written as

〈kAikBj 〉 = 1

D
〈kAikBj 〉N, (36)

where the numerator is

〈kAikBj 〉N =
∫

d

∫
dω

8π2
p kAikBj (37)

and the denominator is

D =
∫

d

∫
dω

8π2
p =

∫
d

∫
dω

8π2
pR =

∫
dpR. (38)

[The S and T contributions to the denominator D vanish as
discussed after Eq. (18).] We have chosen to normalize p so
that the lowest order term is exactly one:

D =
∫

dpR = �

�0
= 1 + α

π
γ1 + O(α2). (39)

The numerator factor in the correlation is

〈kAikBj 〉N = 〈kAikBj 〉N0 + α

π
〈kAikBj 〉N1 + O(α2) (40)

so that

〈kAikBj 〉 = 〈kAikBj 〉N0
+ α

π

{〈kAikBj 〉N1 − γ1〈kAikBj 〉N0
} + O(α2). (41)

There are two nonvanishing contributions to the correlations
through one-loop order, the spin-averaged part with ρij →
δij /3 (labeled R) and the tensor polarization part with ρij →
−tij (labeled T ):

〈kAikBj 〉 = 〈kAikBj 〉R + 〈kAikBj 〉T . (42)

We calculate the two contributions in turn. For the spin-
averaged contribution, the relevant probability distribution is

pR = 1

�0

m

768π3
|M|2R = pR0 + α

π
pR1 + O(α2) (43)

with

pR0 = 1

π2 − 9

{(
x̄1

x2x3

)2

+
(

x̄2

x3x1

)2

+
(

x̄3

x1x2

)2
}

(44)

and

pR1 = 1

π2 − 9

(
x̄1x̄2x̄3

x1x2x3

)2 ∑
S3

{ −1

x̄1x̄3
F

(1)
1 (x1,x2,x3)

+ (x2x̄2 + x3x̄3)

x̄2
1 x̄2x̄3

F
(1)
2 (x1,x2,x3)

+ x1

x̄2
2 x̄3

F
(1)
3 (x1,x2,x3)

}
. (45)

The Euler angle integrals are immediate since pR does not
depend on them:

〈kAikBj 〉NR = m2

3
δij

∫
dxAxB cos(αAB)pR ≡ m2δijR

N
AB.

(46)

Phase space consists of six regions corresponding to the
various orderings of x1, x2, x3 (see Fig. 1). In region I, for
instance, we have x1 � x2 � x3, while in region IV x3 � x2 �
x1. It follows that the identity of �kA varies by region. For
example, for the correlation of the most energetic and second
most energetic photons one has

〈kA=1,ikB=2,j 〉NR = 〈k1ik2j 〉NRI + 〈k1ik3j 〉NRII + 〈k3ik1j 〉NRIII

+〈k3ik2j 〉NRIV + 〈k2ik3j 〉NRV + 〈k2ik1j 〉NRVI

= 6〈k1ik2j 〉NRI, (47)

the last equality following by symmetry. The lowest order
contribution is

RN
AB0 = 2

∫
I

d xAxB cos(αAB)pR0, (48)

where region I of phase space is parametrized as in (35). The
results for the various RN

AB0 were obtained analytically and are

FIG. 1. Phase space for the three-photon decay of a massive
particle. The physical region is the triangle in the upper right half
of the diagram. Phase space can be decomposed into six regions:
region I where the order of (x1,x2,x3) is (123), II with order (132),
III with order (312), IV with order (321), V with order (231), and VI
with order (213).
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TABLE I. Coefficients of the various terms appearing in the
lowest order spin-averaged correlation factors RN

AB0. The results still
must be divided by (π 2 − 9).

AB Li2(1/3) ln2 3 ln 3 ln 2 ln2 2 ln 3 ln 2 π 2 1

11 −52 −26 52 −26 −40 40 13/3 −3
12 −52 −26 52 −52 −40 80 13/6 11/4
13 104 52 −104 78 80 −120 −13/2 1/4
22 104 52 −104 78 80 −120 −13/3 −251/12
23 −52 −26 52 −26 −40 40 13/6 109/6
33 −52 −26 52 −52 −40 80 13/3 −221/12

displayed in Table I. For example,

RN
110 = 1

π2 − 9

{
−52Li2

(
1

3

)
− 26 ln2

(
3

2

)

− 40 ln

(
3

2

)
+ 13

3
π2 − 3

}
, (49)

where Li2(x) is a dilogarithm (see Lewin [35]). Because of
momentum conservation �k1 + �k2 + �k3 = �0, the results satisfy

RN
110 + RN

120 + RN
130 = 0, (50a)

RN
120 + RN

220 + RN
230 = 0, (50b)

RN
130 + RN

230 + RN
330 = 0. (50c)

Numerical results for the lowest order contributions are
shown in the first column of Table II. The one-loop contribu-
tions

RN
AB1 = 2

∫
I

d xAxB cos(αAB)pR1 (51)

were obtained numerically and are given in the second column
of Table II. Total results for

RAB = RN
AB0 + α

π

{
RN

AB1 − γ1R
N
AB0

}
(52)

including both lowest and first orders are shown in the third
column of Table II.

TABLE II. Numerical values for the spin-averaged correlations of
photon momentum vectors. The three columns give the numerical val-
ues for the lowest order contribution RN

AB0, the one-loop contribution
RN

AB1, and the total result through one-loop order RAB . The numerical
uncertainty of each entry is less than one in the least significant digit
shown.

AB RN
AB0 RN

AB1 RAB

11 0.2669520 −2.775663 0.266883
12 −0.1930664 2.036270 −0.192950
13 −0.0738857 0.739392 −0.073934
22 0.1762007 −1.856327 0.176099
23 0.0168657 −0.179943 0.016851
33 0.0570200 −0.559449 0.057083

TABLE III. Coefficients of the various terms appearing in the
lowest order spin-averaged correlation factors R̂N

AB0. The results still
must be divided by 24(π 2 − 9).

AB π 2 1

12 7 −301/4
13 7 −294/4
23 7 −269/4

We also calculated the correlations of unit vectors in the
directions of the photon momenta:

〈k̂Ai k̂Bj 〉NR = 1

3
δij

∫
d cos(αAB)pR ≡ δij R̂

N
AB. (53)

Our definitions regarding R̂N
AB0, R̂N

AB1, and R̂AB parallel those
of RN

AB0, RN
AB1, and RAB . Clearly R̂N

AA0 = 1/3 and R̂N
AA1 =

γ1/3 (no sum over A), but there are no longer consistency
conditions coming from momentum conservation. The results
from the lowest order spin-averaged quantities R̂N

AB0 appear
in Table III, and numerical results for the one-loop and total
results are shown in Table IV.

We turn now to the tensor polarization part of 〈kAikBj 〉T .
The tensor probability distribution has contributions at O(α0)
and O(α1):

pT = 1

�0

m

768π3
|M|2T = pT 0 + α

π
pT 1 + O(α2). (54)

The distribution contains tmn linearly and is a Cartesian scalar,
so it also contains factors of k̂amk̂bn:

pT = {P11k̂1mk̂1n + P12k̂1mk̂2n + P13k̂1mk̂3n + P22k̂2mk̂2n

+P23k̂2mk̂3n + P33k̂3mk̂3n}tmn. (55)

There is some ambiguity in the definition of Pab because of
relations among the k̂amk̂bn due to momentum conservation.
At lowest order we can choose

P (0)
aa = 3

2(π2 − 9)

(
x̄a

xbxc

)2

, (56)

P
(0)
ab = 0 (57)

TABLE IV. Numerical values for the spin-averaged correlations
of photon momentum unit vectors. The three columns give the
numerical values for the lowest order contribution R̂N

AB0, the one-loop
contribution R̂N

AB1, and the total result through one-loop order R̂AB .
The numerical uncertainty of each entry is less than one in the least
significant digit shown.

AB R̂N
AB0 R̂N

AB1 R̂AB

11 0.3333333 −3.428872 0.333333
12 −0.2952861 3.059727 −0.295234
13 −0.2114357 2.176862 −0.211431
22 0.3333333 −3.428872 0.333333
23 0.0880300 −0.964953 0.087892
33 0.3333333 −3.428872 0.333333
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for (abc) a permutation of (123). This leads to

pT 0 = 3

2(π2 − 9)

{(
x̄1

x2x3

)2

k̂1mk̂1n +
(

x̄2

x3x1

)2

k̂2mk̂2n

+
(

x̄3

x1x2

)2

k̂3mk̂3n

}
tmn. (58)

The one-loop distribution can be written as

pT 1 = 1

2

∑
S3

(
P

(1)
11 k̂1mk̂1n + P

(1)
12 k̂1mk̂2n

)
tmn, (59)

where

(π2 − 9)P (1)
11 = 3x̄1x̄2x̄3

4x2
2x2

3

{
x2

x̄3
F

(1)
1 (x1,x2,x3) + x3

x̄2
F

(1)
1 (x1,x3,x2)

}

+ 3x̄3
1

4x2
2x2

3

{
F

(1)
2 (x2,x1,x3) + F

(1)
2 (x2,x3,x1) + F

(1)
2 (x3,x1,x2) + F

(1)
2 (x3,x2,x1)

}
+ 3x̄3

1

4x2
2 x̄2x

2
3 x̄3

{
x̄2

3F
(1)
3 (x1,x2,x3) + x̄2

2F
(1)
3 (x1,x3,x2)

}
(60)

and

(π2 − 9)P (1)
12 = 3

4x1x2x
2
3

{
(x1 − x3)x̄2

2F
(1)
1 (x1,x2,x3) + (x2 − x3)x̄2

1F
(1)
1 (x2,x1,x3) − x3x̄2x̄3F

(1)
1 (x1,x3,x2)

− x̄1x3x̄3F
(1)
1 (x2,x3,x1) − (x2 + x̄3)x̄2

2

[
F

(1)
2 (x1,x2,x3) + F

(1)
2 (x1,x3,x2)

]
−(x1 + x̄3)x̄2

1

[
F

(1)
2 (x2,x1,x3) + F

(1)
2 (x2,x3,x1)

] − x̄1x̄2x3
[
F

(1)
2 (x3,x1,x2) + F

(1)
2 (x3,x2,x1)

]}
− 3x̄3

4x1x2x
2
3

{
x̄2

1F
(1)
3 (x1,x2,x3) + x̄2

2F
(1)
3 (x2,x1,x3)

}
− 3x̄1x̄2

4x1x2x
2
3 x̄3

{
(x1 + x̄3)x̄1F

(1)
3 (x1,x3,x2) + (x2 + x̄3)x̄2F

(1)
3 (x2,x3,x1)

}
. (61)

The Euler averages involved in the calculation of the correlations are straightforward. The Euler average of any product of an
odd number of momenta vanishes. The required even Euler averages are∫

dω

8π2
k̂Ai k̂Bj = 1

3
cos(αAB)δij , (62a)∫

dω

8π2
k̂Ai k̂Aj k̂Bkk̂C� =

{
2

15
cos(αBC) − 1

15
cos(αAB) cos(αAC)

}
δij δk�

+
{−1

30
cos(αBC) + 1

10
cos(αAB) cos(αAC)

}
(δikδj� + δi�δjk), (62b)

which hold even when A, B, and C are not distinct. The tensor
correlation numerator is

〈kAikBj 〉NT =
∫

d

∫
dω

8π2
kAikBj

{
pT 0 + α

π
pT 1 + O(α2)

}
≡

[
T N

AB0 + α

π
T N

AB1 + O(α2)
]
tij . (63)

TABLE V. Coefficients of the various terms appearing in the
lowest order tensor correlation factors T N

AB0. The results still must
be divided by (π 2 − 9).

AB Li2(1/3) ln2 3 ln 3 ln 2 ln2 2 ln 3 ln 2 π 2 1

11 −24 −12 24 −12 −6 6 67/20 −99/5
12 −24 −12 24 −24 −6 12 13/40 231/20
13 48 24 −48 36 12 −18 −147/40 33/4
22 48 24 −48 36 12 −18 −13/20 −431/20
23 −24 −12 24 −12 −6 6 13/40 10
33 −24 −12 24 −24 −6 12 67/20 −73/4

Analytic results for the various T N
AB0 are shown in Table V.

These expressions satisfy momentum conservation consis-
tency conditions analogous to (50). Numerical results for these

TABLE VI. Numerical values for the tensor correlations of photon
momentum vectors. The three columns give the numerical values
for the lowest order contribution T N

AB0, the one-loop contribution
T N

AB1, and the total result through one-loop order TAB . The numerical
uncertainty of each entry is less than one in the least significant digit
shown.

AB T N
AB0 T N

AB1 TAB

11 0.0787061 −0.921559 0.078446
12 −0.0502105 0.632466 −0.049941
13 −0.0284956 0.289093 −0.028505
22 0.0353879 −0.471884 0.035137
23 0.0148226 −0.160582 0.014804
33 0.0136729 −0.128511 0.013701
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TABLE VII. Coefficients of the various terms appearing in the
lowest order tensor correlation factors T̂ N

AB0. The results still must be
divided by 160(π 2 − 9).

AB π 2 1

11 32 −303
12 19 −793/4
13 19 −399/2
22 32 −306
23 19 −713/4
33 32 −303

lowest order contributions are shown in the first column of
Table VI. The one-loop numerator factors T N

AB1 are given
numerically in the second column of Table VI. Total results
for

TAB = T N
AB0 + α

π

{
T N

AB1 − γ1T
N
AB0

}
(64)

are given in the third column of Table VI.
Finally, we obtained the tensor contribution to the unit

vector correlations

〈k̂Ai k̂Bj 〉T = T̂ABtij . (65)

Analytic results for the lowest order tensor quantities T̂ N
AB0 are

given in Table VII, and numerical results for the lowest order
terms T̂ N

AB0, the one-loop numerators T̂ N
AB1, and total results

T̂AB are shown in Table VIII.

VI. DISCUSSION

Form factors, such as the ones given in this work, provide an
efficient encoding of the effects of radiative corrections. These
one-loop form factors are given in analytic form and involve
functions no more complicated than dilogarithms. Through
their use, the decay matrix element, and all things that follow
from it, can be obtained analytically through one-loop order.

TABLE VIII. Numerical values for the tensor correlations of
photon momentum unit vectors. The three columns give the nu-
merical values for the lowest order contribution T̂ N

AB0, the one-loop
contribution T̂ N

AB1, and the total result through one-loop order T̂AB .
The numerical uncertainty of each entry is less than one in the least
significant digit shown.

AB T̂ N
AB0 T̂ N

AB1 T̂AB

11 0.0921924 −1.075395 0.091897
12 −0.0771005 0.941265 −0.076756
13 −0.0860845 0.901127 −0.086048
22 0.0706308 −0.879555 0.070275
23 0.0666430 −0.740360 0.066516
33 0.0921924 −0.875417 0.092362

We have obtained results for the two-momentum corre-
lations 〈kAikBj 〉 and 〈k̂Ai k̂Bj 〉 through one-loop order for
polarized positronium. To this order, the only parts of the
density matrix ρij that contribute are the spin-average part
1
3δij and the tensor-polarization part −tij . Since these are

both symmetric in ij , the CPT-sensitive correlation 〈�kA × �kB〉
vanishes to one-loop order. It is evident from (28) that
|M|2 will only have an antisymmetric vector-polarization
contribution when the form factors, and hence the decay
matrix element M , have nonvanishing imaginary parts. For
positronium decay, this occurs first at two-loop order due
to final-state interactions. (See Bigi and Sanda [36] for a
discussion of final-state interactions in this context.) The
QED contributions to 〈�kA × �kB〉 and related correlations were
calculated by Bernreuther et al. [26] and are small compared
to experimental limits [27,28,30–32].
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