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Casimir-Polder interaction between an atom and a periodic nanostructure
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We present a theory for the calculation of the Casimir-Polder potential experienced by an atom near the
surface of a nanostructure. The potential is found by means of the electrodynamic Green’s tensor based on a
layer-multiple-scattering method. We calculate the distance law of the Casimir-Polder potential for a monolayer
of metallic and dielectric nanospheres arranged periodically on a square lattice. We find, in particular, that the
Casimir-Polder potential for a metallic nanostructure is practically independent of the type of the metal from
which the nanostructure is made. Also, the Casimir-Polder potential shows an exponential decay close to the
nanostructure and an inverse power-law decrease away from it wherein the exponent depends on the size of the
spheres of the nanostructure.

DOI: 10.1103/PhysRevA.81.042506 PACS number(s): 31.30.jh, 78.67.Bf, 42.50.Lc, 12.20.−m

I. INTRODUCTION

One of the most important manifestations of quantum
fluctuations is the occurrence of van der Waals forces among
atoms, molecules, and/or material bodies. Of particular interest
is the potential experienced by an atom in the close vicinity
of a surface: the exchange of virtual photons between the
atom and the surface results in a net force on the atom. This
type of interaction is known as Casimir-Polder (CP) potential
and, originally, it was calculated by a standard normal-mode
technique of quantum electrodynamics (QED) [1]. Recently,
the presence the CP potential has been increasingly important
in the context of atom chips and material traps where an atom is
trapped by optical means [2–4]. When the atom trap is formed
at a distance smaller than about a micron, the contribution of
the CP interaction to the total trapping potential is comparable
to that of the optical potential, even for large laser intensities.

Calculations of the CP potential are restricted to simple
geometries such as planar surfaces [5–16], cylinders [17,18],
and spheres [17,19–21]. However, theory and calculations for
more complex geometries such as periodic arrays of scatterers
or micro- and nanostructured surfaces is still lacking although
there is an increasing interest in such structures which can
provide a means to realize lattices of optical traps for individual
particles, atoms, and Bose-Einstein condensates [3,4,22–25].

The advent of new computational techniques of classi-
cal electrodynamics in the context of photonic micro- and
nanostructures has also enabled the development of new
techniques which solve exactly Maxwell’s equations with the
exact boundary conditions. This way, they describe accurately
the zero-point vacuum fluctuations and provide the van der
Waals–Casimir forces for complex geometries via application
of the fluctuation-dissipation theorem [26–29]. In this context,
we present calculations for the CP potential of a neutral
atom in close proximity to a two-dimensional (2D) lattice
of nanospheres based on a fluctuational-electrodynamics
approach [20,21]. The latter amounts to calculating the
electromagnetic (EM) Green’s tensor of the above lattice based
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on a layer-multiple-scattering method which is an efficient
computational method for the study of the EM response of
three-dimensional photonic structures consisting of nonover-
lapping spheres [30–32] and axisymmetric nonspherical parti-
cles [33]. The layer-multiple-scattering method was originally
introduced for the calculation of the transmission, reflection,
and absorption coefficients of an EM wave incident on a
composite slab consisting of a number of layers which can
be either planes of nonoverlapping particles with the same 2D
periodicity or homogeneous plates. For each plane of particles,
the method calculates the full multipole expansion of the total
multiply scattered wave field and deduces the corresponding
transmission and reflection matrices in the plane-wave basis.

II. THEORY

Following the quantization scheme and perturbative ap-
proach of Ref. [20,21] we can find the CP potential experienced
by an atom near a finite slab consisting of either several
homogeneous slabs or planes of spheres with the same 2D
periodicity or combinations of such. Namely

UCP (r) = 2h̄µ0

∫ ∞

0
dξξ 2α(iξ )

∑
i

GEE
ii (r,r;iξ ), (1)

where α is the ground-state polarizability of a given atom and
GEE

ii ′ the electric-field component of the EM Green’s tensor
associated with the trapping structure. For a finite slab of a
metamaterial, the Green’s tensor is given by

GEE
ii ′ (r,r;iξ ) = − i

8π2

∫ ∫
SBZ

d2k‖
∑
pg

1

c2K+
g;z

vpgk‖;i(r)

× exp(−iK+
g · r)ep;i ′ (K+

g ) (2)

with

vpgk‖;i(r) =
∑
p′g′

Rg′p′;gp exp(−iK−
g′ · r)ep′;i(K−

g′ ) (3)

K±
g = (k‖ + g, ±[q2 − (k‖ + g)2]1/2) (4)

and q = iξ/c. The vectors g denote the reciprocal-lattice
vectors corresponding to the 2D periodic lattice of the plane of
scatterers and k‖ is the reduced wave vector which lies within
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the surface Brillouin zone (SBZ) associated with the reciprocal
lattice (see the appendix). The symbol p = 1, 2 refers to the
two different polarizations states of the EM field. ê1(K±

g ) and
ê2(K±

g ) are the polar and azimuthal unit vector normal to K±
g ,

respectively. We note that the above expressions [Eqs. (2)
and (3)] are derived from the transverse part of the general
classical-wave Green’s tensor [34].

Rg′p′;gp is the reflection matrix which provides the sum
(over g’s) of reflected beams generated by the incidence of
plane wave from the left of the slab [30–32]. Details on how
it is calculated can be found in the appendix. It contains
the information for the multiple-scattering events which the
vacuum fluctuations undergo within the plane of spheres.
As such, its values depend on the angular-momentum cutoff
�max. However, the distance |r| between the atom and the
nanostructure appears in the CP potential only within the
exponential functions (plane waves) of Eqs. (2) and (3). This is
due to the fact that, away from the plane of spheres and in free
space, the vacuum fluctuations are expressed in plane and not
in spherical waves as it is the case for the fluctuations within the
plane of spheres [30–32]. Therefore, the angular-momentum
cutoff �max needed for converged values of the CP potential
is independent of the atom-plane distance and depends on
(increases with) the lattice constant and the sphere size
relative to the working wavelength. Moreover, since the main
contribution to the CP potential stems from long wavelengths,
the �max convergence is rapid. The rate of convergence of the
CP potential for the various atom-plane distances depends only
on the number of the reciprocal-lattice vectors g in the plane-
wave expansion of the vacuum fluctuations. However, due
to the exponential decay of the plane waves in the imaginary
frequency axis (see below) the number of the reciprocal-lattice
vectors needed to achieve convergence is small.

The k‖-integration in Eq. (2) is performed within the
area A0 of the SBZ associated with a given 2D lattice.
The spectral integration in Eq. (1) is done for imaginary
frequencies ω = iξ provided that ε and µ contained therein
are causal. In the calculations that follow, the SBZ integration
of Eq. (1) is performed by subdividing progressively the SBZ
into smaller and smaller squares, within which a nine-point
integration formula [35] is very efficient. Using this formula
we achieved excellent convergence with a total of 576 points
in the SBZ. Also, the inclusion of 13 reciprocal-lattice
g vectors in the summation of Eq. (2) provided converged
results for all distances. In the spherical-wave expansion of
the field within the plane of spheres we have considered terms
up to an angular-momentum cutoff �max = 3. Finally, since
the frequency integration is performed along the imaginary
axis, the lattice sum over the reciprocal-lattice vectors g in
Eq. (2) is performed by summation in direct space since
Ewald-summation schemes do not converge [31]. We note
that the method of Refs. [30–32] calculates accurately the
transmission, reflection, and absorption coefficients from
slabs of spheres. It incorporates both propagating (far-field)
and evanescent (near-field) EM waves. In this respect, the
method presented here can, in principle, calculate both
retarded and nonretarded limits of the Casimir-Polder in-
teraction. However, for the atom-nanostructure separations
considered here, the nonretarded contribution dominates the
retarded one.

D

FIG. 1. (Color online) Monolayer of spherical nanoparticles.
D is the distance of atom from the surface of a nanoparticle.

III. RESULTS

The above formalism is first applied to the case of a 2D
square lattice (monolayer) of period a = 50 nm, whose lattice
sites are occupied by spherical nanoparticles of radius S =
25 nm, i.e., we deal with a 2D array of close-packed spheres
(see Fig. 1). We study spheres made from metal (gold, silver,
copper) and dielectric (polystyrene). The dielectric functions
ε(iξ ) of the above materials needed for the calculation of the
Green’s tensor of Eq. (2) are obtained according to the formula
[36]

ε(iξ ) = 1 +
5∑

j=1

fj

ω2
j + gj ξ + ξ 2

, (5)

where the fitting coefficients ωj , fj , gj , j = 1, . . . , 5 for each
of the above materials are taken from available experimental
data [36]. We note that as dielectric material we have restricted
the simulations to polystyrene due to the lack of tabulated
data (ωj ,fj ,gj , j = 1, . . . ,5) for dielectrics usually used in
the fabrication of nanostructures. Near the nanostructures
described above we place a Cs atom whose polarizability
tensor α(iξ ) needed in Eq. (1) is taken from first-principles
atomic-structure calculations [37]. We note that the above
polarizability refers to an atom being in the ground state.
If the atom is in an excited state, there exists an additional
resonant term in the total CP potential which is proportional
to the real part of the EM Green’s tensor calculated at
the frequency difference between the ground and excited
states [38]. This case, however, will not be considered here
since the contribution of the excited states is important only
when the atomic element is chosen such that the frequency
difference between the ground and an excited states matches
the frequency of a material resonance of the nanostructure
[38], e.g., with a surface plasmon resonance or a negative
refractive-index resonance.
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FIG. 2. (Color online) The CP potential experienced by a Cs atom
as a function of distance D from a 2D square lattice (lattice constant
a = 50 nm) of 25-nm nanospheres made from gold, silver, copper, and
polystyrene in (a) log-linear and (b) log-log scale. The CP potential
is calculated along a direction normal to the plane of spheres and
passing through the center of one of the spheres. Note that in (b) we
actually plot log10[UCP (D)/UCP (D0)], where D0 = 25.6 nm is the
distance from the sphere center.

Figure 2 shows the CP potential felt by a Cs atom placed
in the proximity of a 2D square lattice of metal (gold,
silver, copper) and dielectric (polystyrene) nanospheres. The
CP potential is calculated along a direction normal to the
lattice of spheres and passing through the center of one of
the spheres, for various distances D from the surface of that
sphere. First, we note that the value of the CP potential
when the Cs atom is placed (almost) on top of a sphere is
shown only for completeness since for atomic distances from
the surface of a nanosphere, the macroscopic description of
the nanospheres is no longer valid since there occur several
other effects such as Born-repulsive potentials stemming from
exchange and electrostatic interactions which can be accounted
for only through a microscopic description of a nanosphere
[39,40]. From Fig. 2(a) it is evident that the CP potential is
practically the same for all arrays of metallic spheres while it is
significantly weaker for the case of polystyrene spheres due to
the smaller values of ε(iξ ) at low frequencies [36]. Especially,
the curves for copper and silver are almost indistinguishable.
These observations suggest that the main contribution to the
CP potential stems from the long-wavelength vacuum fluctu-
ations where the metals are essentially perfect conductors and
the actual (large) values assumed by the dielectric function are
not important. It is also worth noting that, from Fig. 2(b) where
we plot the logarithm of dimensionless CP potential, it is clear
that the CP potential for distances D > 20 nm obeys the same
power law (average exponent ν = 2.67 ± 0.03) regardless of
the type of material. For D < 20 nm, the CP potential shows a
linear behavior in the log-linear scale, suggesting, practically,
an exponential decay or power-law decay with large exponent
when the atom is close to the surface of the nanostructure. A
similar spatial dependence, i.e., a very fast decay close to the
surface and slower power-law decrease away from it, has been
reported for the van der Waals–Casimir force between two
metallic nanospheres [26] as well as between a nanoparticle
and a planar surface [41,42].

FIG. 3. (Color online) The CP potential experienced by a Cs atom
as a function of distance D from a 2D square lattice (lattice constant
a = 50 nm) of gold nanospheres for various radii, i.e., S = 25, 20,
15, 10, and 5 nm in (a) log-linear and (b) log-log scale.

Since the CP potential for the metallic nanostructures does
not depend dramatically on the type of the material from
which the nanostructure is made, we focus on a 2D lattice
of gold nanospheres. In Fig. 3 we calculate the CP potential
for gold nanostructures with the same period (a = 50 nm) but
different sphere sizes (shown in the legend). As expected, as
the sphere size decreases, the nanostructure becomes more
dilute, and, naturally, the amount of vacuum fluctuations is
reduced resulting in a suppressed CP potential experienced by
the atom. We note, however, that from Fig. 3(b) it is clear that
the long-distance power law is not the same for the various
sphere sizes. For the case of 25 nm spheres the exponent
is ν = 2.60 while for 5-nm spheres it is ν = 3.25. All the
inverse power-law exponents ν for the various sphere sizes are
shown in the legend of Fig. 3 (the same applies to Fig. 4).
Since we keep the lattice constant fixed (a = 50 nm), the
exponent ν essentially depends on the surface coverage of
the spheres, i.e., it decreases with increasing surface coverage.
Dependence of the inverse power-law exponent on the surface
coverage has also been predicted for the case of the Casimir
energy between a flat and a corrugated surface [43]. Namely

FIG. 4. (Color online) The same as Fig. 3 but for a 2D square
lattice of polystyrene spheres.

042506-3



V. YANNOPAPAS AND N. V. VITANOV PHYSICAL REVIEW A 81, 042506 (2010)

a noninteger overall exponent for the inverse power law has
been reported due to the contribution of terms corresponding to
exponents higher than 3. The contribution of each component
is proportional to a power of the ratio of the groove height
to the period of the corrugated surface [43]; the latter ratio
is similar to the ratio of the sphere radius to the 2D lattice
constant.

According to Fig. 3, the differences in the rate of decay of
the CP potential for the different sphere radii increase with the
distance of the atom from the plane of spheres. It is well known
[36] that, at short distances, the CP potential (and generally
the Casimir–van der Waals interactions) is determined by the
low-frequency components of the reflection matrix, while, for
larger distances higher-frequency components become more
significant in Eq. (1). The latter contribution is much more
important as the density of spheres increases (and subsequently
the density of EM modes) providing additional components to
the CP potential and delaying, this way, its decay with distance.

Figure 4 is the same as Fig. 3 but for a 2D square lattice of
polystyrene nanospheres. We observe a quite similar behavior
with that of the gold nanostructures of Fig. 3, implying that
the CP potential is described by same distance laws which are
more or less material independent.

A general remark which applies to Figs. 2–4 is the fact
that the CP potential assumes very large values (of the order
of several kelvins) even for distances of about 50 nm away
from the nanostructure. This is a serious drawback when
one attempts to trap cold atoms in lattices near illuminated
nanostructures via near-field optical potentials: great laser
powers are needed so that the optical potential could cancel
the CP potential and create a potential minimum within which
cold atoms can be trapped. Of course, far away from the
nanostructure, the CP potential is small; however, the optical
potential landscape is a near-field effect which decays in space
with, more or less, the same rate with CP potential. This
means that, although the optical potential would cancel the
CP potential for long distances with moderate laser power, the
total (optical + CP) potential would be too shallow to prevent
trapped atoms from escaping to free space.

Nanostructures such as those studied here have already been
realized in the laboratory [44,45]. Of course, the arrays of
nanoparticles are grown on top of planar substrates which
sometimes affect the optical response of the nanostructures,
e.g., its reflection and transmittance spectra [46]. We have
repeated our calculations by the inclusion of a dielectric
(quartz) substrate supporting the array of nanospheres without,
however, any effect on the presented graphs. This is an
anticipated result since the Casimir-Polder interaction is a
purely surface phenomenon.

IV. CONCLUSION

In conclusion, we have presented a formalism for the
calculation of the CP potential experienced by an atom residing
near a periodic nanostructure. The method is based on a
rigorous multiple-scattering technique for the calculation of
the Green’s tensor of the EM field. Using the above formalism,
we have shown that the CP potential is practically independent
of the material from which the nanostructure is made. Also,
for short distances from the nanostructure, the CP potential

decays exponentially while for longer distances it exhibits a
power-law decrease. The exponent of the power law increases
as the nanostructure becomes more dilute.
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APPENDIX

A plane EM wave of angular frequency ω and wave vector q,
propagating in a homogeneous medium characterized by a di-
electric function ε(ω)ε0 and a magnetic permeability µ(ω)µ0,
where ε0, µ0 are the dielectric constant and the magnetic
permeability of vacuum, has an electric-field component

E(r, t) = Re[E(r) exp(−iωt)] (A1)

defined by

E(r) = E0(q) exp(iq · r). (A2)

The magnitude of the wave vector is given by q = √
µε ω/c,

where c = 1/
√

µ0ε0 is the velocity of light in vacuum.
E0(q) ≡ E0(q)p̂, where E0 denotes the magnitude and p̂, a unit
vector, the polarization of the electric field. We need not write
down explicitly the magnetic-field component of the wave.
The plane wave given by Eq. (A2) is expanded in spherical
waves as follows [31,32]

E(r) =
∞∑

�=1

�∑
m=−�

(
i

q
a0E
�m∇ × j�(qr)X�m(r̂)

+ a0H
�m j�(qr)X�m(r̂)

)
, (A3)

where the coefficients a0P
�m, P = E,H , are constants to be

determined and j�(qr) is a spherical Bessel function. For � �
1, the vector spherical harmonics X�m(r̂), r̂ = (θ, φ), are given,
in spherical coordinates, by√

�(� + 1)X�m(r̂) = [
α−m

� cos θeiφYm−1
� (r̂) − m sin θYm

� (r̂)

+αm
� cos θe−iφYm+1

� (r̂)
]
ê1

+ i
[
α−m

� eiφYm−1
� (r̂)−αm

� e−iφYm+1
� (r̂)

]
ê2,

(A4)

where Ym
� denotes a spherical harmonic as usual, ê1, ê2 are the

polar and azimuthal unit vectors, respectively, and

αm
� ≡ 1

2 [(� − m)(� + m + 1)]1/2. (A5)

By definition X00(r̂) = 0.
We now consider a sphere of radius S with its center at

the origin of coordinates and assume that its relative dielectric
function and/or magnetic permeability, in general complex
functions of ω, are different from those of the surrounding
medium. When the plane wave described by Eq. (A3) is
incident on the sphere, it is scattered by it, so that the wavefield
outside the sphere consists of the incident wave (A3) and
a corresponding scattered wave, which can be expanded in
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spherical waves as follows

Esc(r) =
∞∑

�=1

�∑
m=−�

(
i

q
a+E
�m ∇ × h+

� (qr)X�m(r̂)

+ a+H
�m h+

� (qr)X�m(r̂)

)
, (A6)

where h+
� (qr) is the spherical Hankel function. Because of the

spherical symmetry of the scatterer, each spherical wave in
Eq. (A3) scatters independently of all others; therefore

a+P
�m = T P

� a0P
�m. (A7)

Explicit expressions for T E
� , T H

� are given in Refs. [31,32].
Provided qS is not much larger than unity, a limited number
of partial waves, corresponding to � � �max, is sufficient for
the description of the scattered field. We note, however, that
when multiple scattering from a plane of spheres is considered,
�max must be determined from the requirement of convergence
as far as the scattering by the plane is concerned, and in this
respect �max may be greater than that obtained for scattering
by a single sphere.

We consider a plane of spheres at z = 0 in which case the
spheres, which do not overlap with each other, are centered on
the sites Rn of a given 2D lattice. We define the 2D reciprocal
vectors g, and the SBZ corresponding to this lattice in the usual
manner [31,32].

Let the plane wave, described by Eq. (A2), be incident on
this plane of spheres. We can always write the component of
its wave vector parallel to the plane of spheres, as follows

q‖ = k‖ + g′, (A8)

where the reduced wave vector k‖ lies in the SBZ and g′ is a
certain reciprocal vector. In what follows we shall write the
wave vector of a plane wave of given q = √

µε ω/c and given
q‖ = k‖ + g as follows

K±
g = {k‖ + g, ±[q2 − (k‖ + g)2]1/2}, (A9)

where the +,− sign defines the sign of the z component of the
wave vector.

We write the electric field of the incident wave in the form

Es ′
in(r) =

2∑
i ′=1

[Ein]s
′

g′i ′ exp
(
iKs ′

g′ · r
)
êi ′ , (A10)

where s ′ = +(−) corresponds to a propagating or decaying
wave incident on the plane of spheres from the left (right) and
ê1, ê2 are the polar and azimuthal unit vectors, respectively,
which are perpendicular to Ks ′

g′ . In the same manner [according
to Eq. (A9)] we define, for given k‖ and q, a wave vector Ks

g
and the corresponding êi for any g and s = ±. In this way we
can expand the electric-field component of an EM wave into p-
and s-polarized transverse plane waves, i.e., polarized along
ê1 and ê2, respectively. We note that, in the case of a decaying
wave, the unit vectors ê1 and ê2 are complex but they are still
orthonormal (êi · êj = δij , i, j = 1, 2). The coefficients a0P

�m

in the expansion (A3) of the plane wave (A10) can be written
in the following form

a0P
�m =

2∑
i ′=1

A0P
�m;i ′

(
Ks ′

g′
)
[Ein]s

′
g′i ′ , for P = E,H, (A11)

where

A0E
�m

(
K̂s ′

g′
) = 4π i�(−1)m+1

√
�(� + 1)

{
i
[
αm

� eiφY−m−1
�

(
K̂s ′

g′
)

−α−m
� e−iφY−m+1

�

(
K̂s ′

g′
)]

ê1

− [
αm

� cos θeiφY−m−1
�

(
K̂s ′

g′
) + m sin θY−m

�

(
K̂s ′

g′
)

+α−m
� cos θe−iφY−m+1

�

(
K̂s ′

g′
)]

ê2
}

(A12)

and

A0H
�m

(
K̂s ′

g′
) = 4π i�(−1)m+1

√
�(� + 1)

{[
αm

� cos θeiφY−m−1
�

(
K̂s ′

g′
)

+m sin θY−m
�

(
K̂s ′

g′
) + α−m

� cos θe−iφ

×Y−m+1
�

(
K̂s ′

g′
)]

ê1 + i
[
αm

� eiφY−m−1
�

(
K̂s ′

g′
)

−α−m
� e−iφY−m+1

�

(
K̂s ′

g′
)]

ê2
}
, (A13)

where θ , φ are the angular variables (K̂s ′
g′) of Ks ′

g′ .
Because of the 2D periodicity of the plane of spheres, the

wave scattered from it, when the wave (A10) is incident on it,
has the following form

Esc(r)

=
�max∑
�=1

�∑
m=−�

⎛
⎝ i

q
b+E

�m ∇ ×
∑
Rn

exp(ik‖ · Rn)h+
� (qrn)X�m(r̂n)

+ b+H
�m

∑
Rn

exp(ik‖ · Rn)h+
� (qrn)X�m(r̂n)

⎞
⎠ , (A14)

where rn = r − Rn. The coefficients b+P
�m , which depend

linearly on the amplitude of the incident wave, can be written
as follows

b+P
�m =

2∑
i ′=1

B+P
�m;i ′

(
Ks ′

g′
)
[Ein]s

′
g′i ′ . (A15)

We obtain B+P
�m in terms of the coefficients A0P

�m which are given
by Eqs. (A12) and (A13), by solving the following system of
linear equations [31,32]

∑
P ′=E,H

�max∑
�′=1

�′∑
m′=−�′

[
δPP ′δ��′δmm′ − T P

� �PP ′
�m;�′m′

]
B+P ′

�′m′;i ′
(
Ks ′

g′
)

= T P
� A0P

�m;i ′
(
Ks ′

g′
)

(A16)

The matrix elements �PP ′
�m;�′m′ depend on the geometry of the

plane, on the reduced wave vector k‖, and on the frequency ω of
the incident wave; they depend also on the dielectric function
of the medium surrounding the spheres, but they do not
depend on the scattering properties of the individual spheres.
Explicit expressions for these matrix elements are given in
Refs. [31,32].

Finally, the scattered wave (A14) is expressed as a sum of
plane waves as follows

Es
sc(r) =

2∑
i=1

∑
g

[Esc]sgi exp
(
iKs

g · r
)
êi , (A17)
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where the superscript s = +(−) holds for z > 0 (z < 0). The
scattered wave consists, in general, of a number of diffracted
beams corresponding to different g vectors. The coefficients
in Eq. (A17) are given by

[Esc]sgi =
∑

P=E,H

�max∑
�=1

�∑
m=−�

�P
�m;i

(
Ks

g

)
B+P

�m;i ′
(
Ks ′

g′
)
, (A18)

where

�E
�m

(
Ks

g

) = 2π (−i)�

qA0K
+
gz

√
�(� + 1)

{
i
[
α−m
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(
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)

−αm
� e−iφYm+1

�

(
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g

)]
ê1−

[
α−m

� cos θeiφYm−1
�

(
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g

)
−m sin θYm

�

(
K̂s

g

) + αm
� cos θe−iφYm+1

�

(
K̂s
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ê2
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(A19)
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(
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−m sin θYm
�

(
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) + αm
� cos θe−iφYm+1
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(
K̂s
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ê1

+ i
[
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�

(
K̂s

g

) − αm
� e−iφYm+1

�

(
K̂s

g

)]
ê2

}
,

(A20)

where θ , φ denote the angular variables (K̂s
g) of Ks

g.
We point out that, according to Eq. (A18), [Esc]sgi depend on

the incident plane wave through the coefficients B+P
�m;i ′(K

s ′
g′).

These coefficients are to be evaluated for an incident plane
wave with parallel wave vector k‖ + g′, incident from the
left (right) corresponding to s ′ = +(−), with an electric field,
along the i ′th direction, of magnitude equal to unity. In other
words, B+P

�m;i ′(K
s ′
g′ ) are calculated from Eq. (A16), substituting,

on the right-hand side of this equation, A0P
�m;i ′ (K

s ′
g′) from

Eqs. (A12) and (A13).
When a plane wave (A10) is incident on the plane of spheres

from the left, the reflected wave on the left of the plane of
spheres is given by

E−
rf (r) =

2∑
i=1

∑
g

[Erf ]−gi exp(iK−
g · r)êi z < 0 (A21)

with
[Erf ]−gi = [Esc]−gi =

∑
i ′

Rgi;g′i ′[Ein]+g′i ′ . (A22)

Using Eq. (A18) we finally obtain

Rgi;g′i ′ =
∑

P=E,H

�max∑
�=1

�∑
m=−�

�P
�m;i

(
Ks

g

)
B+P

�m;i ′
(
Ks ′

g′
)
. (A23)
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