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Charged hydrogenic, helium, and helium-hydrogenic molecular chains in a strong magnetic field
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A nonrelativistic classification of charged molecular hydrogenic, helium, and mixed helium-hydrogenic chains
with one or two electrons which can exist in a strong magnetic field B <∼ 1016 G is given. It is shown that for both
1e-2e cases at the strongest studied magnetic fields the longest hydrogenic chain contains at most five protons,
indicating the existence of H5

4+ and H5
3+ ions, respectively. In the case of the helium chains, the longest chains

can exist at the strongest studied magnetic fields with three and four α particles for 1e-2e cases with the possible
existence of He3

5+ and He4
6+, respectively. For mixed helium-hydrogenic chains, the number of heavy centers

can reach five for the highest magnetic fields studied. In general, for a fixed magnetic field, two-electron chains
are more bound than one-electron chains.
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I. INTRODUCTION

The behavior of atoms, molecules, and ions placed in a
strong magnetic field has attracted significant attention during
the past two decades (see, for example, the review papers
[1–3]). This attention is motivated by both pure theoretical
interest and by possible practical applications in astrophysics.
From the point of theory, such studies would lead to the
creation of a theory of atoms and molecules in a magnetic
field similar to standard atomic-molecular physics. In practice,
even the basic elements of such a theory—a knowledge of the
energy levels of the simplest Coulomb systems which can
exist in a magnetic field—can be important for interpretation
of the spectra of white dwarfs, where the surface magnetic field
ranges over B ≈ 106–109 G; neutron stars, where the surface
magnetic field varies over B ≈ 1012–1013 G; and even values
of B ≈ 1014–1016 G for the case of magnetars.

It was conjectured long ago [4,5] that unusual chemical
compounds can appear in a strong magnetic field. In particular,
it was suggested by Ruderman [5] and then further developed
(see [2] and references therein) that the presence of a strong
magnetic field can lead to the formation of linear hydrogenic
neutral molecules (linear chains) situated along magnetic lines.
It was assumed that in the ground state all electrons are in
the same spin state with all spins antiparallel to the magnetic
field line. To avoid a contradiction with the Pauli principle, it
was further assumed that all electrons have different magnetic
quantum numbers, as a characteristic of the ground state.
This assumption seems obviously correct in the case of atoms
and atomic ions, where the electrons are close to each other.
However, it is not that obvious for the case of molecules
for which the electrons are situated in far distant places in
space. All of them (or, at least, some of them) can be in
the same quantum state, with the same spin projection and
magnetic quantum number [6]. This situation was observed
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for H2 [7] and H3
+ [8], where in a domain of large magnetic

fields the ground state was given by the state of the maximal
total spin but with the electrons having the same zero
magnetic quantum number (see discussion that follows). In [5]
qualitative arguments were presented that such chains can be
of any length and, thus, can contain arbitrarily many protons.
It seems that such a picture is oversimplified; it intrinsically
assumes that the magnetic field is “infinitely” strong. For
instance, for any exotic chain (which does not exist in the
field-free case), there must be a certain threshold magnetic
field for it to begin to exist. It is possible that such a threshold
magnetic field is beyond realistic magnetic fields that occur in
nature. This phenomenon is absent in the qualitative theory [5].
Thus, some very general features of Ruderman’s picture only,
like the growth of the binding energies, shrinking of the size
of the molecules with increasing magnetic field, and maximal
total electronic spin can hold for realistic high magnetic fields.

It is well known that in the absence of a magnetic field,
in general, the hydrogenic linear chains (polymers) do not
exist; the only exceptions are the two shortest ones, H2

+ and
H2.1 Therefore, for each other chain there must be a threshold
magnetic field from which the chain begins to exist if it is
realized. It seems natural to assume that the threshold magnetic
field grows with the length of the chain, which is defined by the
number of heavy particles therein. At the moment, only H2

+
and H2—the shortest chains—are studied in detail (see, e.g.,
[3] and [7], respectively). The results are far more sophisticated
than those predicted in a simple qualitative picture in [5]. For
example, the H2 molecule does not exist at a large domain of
strong magnetic fields.

The aim of this article is to provide a classification of one-
and two-electron linear molecular systems made from protons
and/or α particles in nonrelativistic consideration, which
can exist in a strong magnetic field of 102 � B � 107 a.u.
(=2.35 × 1016 G). To make the classification complete, we
include a description of the (meta)stability of each existing

1The H+
3 ion exists in triangular geometry.
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system with an indication of possible decay modes. A
realization of such an aim implies a detailed quantitative study
of hydrogen, helium, and mixed helium-hydrogen linear chains
with one or two electrons. Since our study is limited to the
question of the existence of a particular Coulomb system, the
most attention is paid to an exploration of the ground state.
The spectroscopy of each particular chain (classification of
states, radiative transitions, etc.) is not discussed and is left for
a future study.

It is shown in the one-electron case, depending on the
magnetic field strength, that the hydrogenic systems H2

+,
H3

2+, H4
3+, and even H5

4+ can exist in linear geometry. It is
also shown that, as the magnetic field grows, the exotic helium-
hydrogenic chains He2

3+, (HeH)2+, (HHeH)3+, (HeHHe)4+,
and He3

5+ begin to exist in linear geometry (for a brief review,
see [6]). For all magnetic fields the system H2

+ (as well as the
hydrogen atom) is stable, whereas the system H3

2+ becomes
stable at B >∼ 1013 G. A detailed review of the current status
of some one-electron hydrogenic molecular systems, both
traditional and exotic, that might exist in a magnetic field
at B � 109 G up to the Schwinger limit can be found in [3].
For the two-electron case, depending on the magnetic field
strength, the hydrogenic chains H2, H3

+, H4
2+, and at most

H5
3+ can exist in linear geometry, as well as the two-electron

helium chains He2
2+, He3

4+, and He4
6+, and the mixed

hydrogen-helium chains (HeH)+, (HHeH)2+, (HeHHe)3+,
(HHeHeH)4+, (HeHHHe)4+, (HHHeHH)4+, (HHeHHeH)5+,
and (HeHeHHeHe)7+. The overall study is made in the
framework of a nonrelativistic consideration by solving the
Schroedinger equation. It is also assumed that the Born-
Oppenheimer approximation of zero order holds, which
implies that the positions of positively charged heavy particles
are kept fixed (they are assumed to be infinitely massive).
Relativistic corrections are always neglected, assuming that the
longitudinal motion of electrons is nonrelativistic for magnetic
field <∼1016 G while there are no relativistic corrections to
the energies of transverse motion because the spectra of
nonrelativistic and relativistic harmonic oscillators coincide
(we call it the “Duncan argument”; for a discussion see [9]).
Some preliminary results were announced in [6]. We perform
such a nonrelativistic consideration with infinitely massive
positively charged centers as a first basic step toward a realistic
theory of simple positively charged molecular species in a
strong magnetic field. In turn, it could be considered an
important ingredient in a theory of gases, liquids, and solids
made from these species. In our understanding, such a theory,
even on the basic level, is needed for the construction of a
meaningful model of a neutron star atmosphere.

Atomic units are used throughout (h̄ = me = e = 1),
although energies are expressed in rydbergs (Ry). The
magnetic field B is given in a.u. with a conversion factor
B0 = 2.35 × 109 G.

II. ONE-ELECTRON HYDROGENIC CHAINS

A. Generalities

Let us consider the electron and n infinitely massive
particles (protons) situated on a line that coincides with the
magnetic line (see Fig. 1). We call this system a linear finite

H
(n−1) +
n

B

p p p p

1

z

2 3 n

e

FIG. 1. H(n−1)+
n linear molecular ion in parallel configuration with

a magnetic field B oriented along the z axis.

chain of size n. If for such a system a bound state can be found,
it implies the existence of the ion H(n−1)+

n in linear geometry.
The Hamiltonian that describes this system when the

magnetic field is oriented along the z direction, B = (0, 0, B),
is2

Hn = (p̂ + A)2 − 2
∑
i=1,n

Zi

ri

+
∑
i �=j

i,j=1,n

ZiZj

Rij

+ 2B · S (1)

(see Fig. 1 for the geometrical setting and notations), where
Zi = Zj = 1 in the case of protons, p̂ = −i∇ is the momen-
tum of the electron, S is the operator of the spin, ri is the
distance from the electron to the ith proton, and Rij is the
distance between the ith and j th protons. The vector potential
A corresponds to the constant uniform magnetic field B. It is
chosen to be in the symmetric gauge,

A = 1

2
(B × r) = B

2
(−y, x, 0). (2)

Finally, the Hamiltonian can be written as

Hn =
(

−∇2 + B2

4
ρ2

)
−2

n∑
i=1

Zi

ri

+
n∑

i �=j

i,j=1

ZiZj

Rij

+B(L̂z + 2Ŝz), (3)

where L̂z and Ŝz are the z components of the total angular
momentum and total spin operators, respectively, and ρ =√

x2 + y2. Both L̂z and Ŝz are integrals of motion. Thus,
the operators L̂z and Ŝz in Eq. (3) can be replaced by their
eigenvalues m and ms , respectively. Since we are interested
in the ground state for which m = 0 and ms = −1/2, the last
term in Eq. (3) can be omitted and the reference point for
energy becomes −B.

In the equilibrium configuration the problem is charac-
terized by two integrals of motion: (i) angular momentum
projection m on the magnetic field direction (z direction)
and (ii) spatial parity p. The problem for parallel symmetric
configuration is characterized by the z parity, Pz(z → −z),
with eigenvalues σ = ±1. One can relate the magnetic
quantum number m, spatial parity p, and z parity σ as follows:

p = σ (−1)|m|.

2The Hamiltonian is normalized by multiplying by a factor of 2 in
order to get the energies in rydbergs.
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In the case that m is even, both parities coincide (p = σ ). Thus,
any eigenstate has two definite quantum numbers: the magnetic
quantum number m and the parity p with respect �r → −�r .
Therefore, the space of eigenstates is split into subspaces
(sectors), each of which is characterized by definite m and σ ,
or m and p. The notation for the states is based on the following
convention: the first number corresponds to the number of the
excitation, the “principal quantum number” (e.g., the number
1 is assigned to the ground state); then a Greek letter σ, π, δ

corresponds to m = 0,−1,−2, respectively, with subscript
g (u) for gerade (ungerade) corresponding to positive (nega-
tive) eigenvalues of the spacial parity operator P . Thus, the
1σg state is the ground state, and its coordinate eigenfunction
is nodeless.

B. Method

The variational method is used for a study of Hamiltonian
(3). Trial functions are chosen following the physics relevance
arguments [10]. Their explicit expression is a linear superpo-
sition of K terms given by

ψ
(trial)
n,K =

K∑
k=1

Ak

{
e− ∑n

i=1 αk,i ri
}

k
e
−Bβk

ρ2

4 (4)

(see [3]), where Ak and αk,i , βk are linear and nonlinear pa-
rameters, respectively. Interproton distances R are considered
as variational parameters as well. The notation {} indicates the
symmetrization of identical nuclei of the expression inside the
brackets. Usually, a certain physical meaning is given to each
term in Eq. (4). For example, one term had all αk,i equal
as an analog of the Heitler-London wave function for the
H2

+ ion, describing the coherent interaction of the electron
with all protons. For another term when all values of αk,i ,
except for one, vanish, it is an analog of the Hund-Mulliken
wave function, describing the incoherent interaction of the
electron with all protons. All other terms are different nonlinear
superpositions of these two—an analog of the Guillemin-
Zener wave function for the H2

+ ion. We call a term for
which all αk,i are different and unconstrained the general
term. Needless to say, in each particular term in Eq. (4)
the parameters are chosen in such a way that ensures the
normalizability of this term as the overall function.

Calculations were performed using the minimization pack-
age MINUIT from CERNLIB. Two-dimensional integration was
carried out using a dynamical partitioning procedure: a domain
of integration is manually divided into subdomains following
an integrand profile with a localization of domains of large
gradients of the integrand. Each subdomain is integrated (for
details, see, e.g., [3]). Numerical integration of subdomains is
done with a relative accuracy of ∼10−9–10−10 by use of the
adaptive D01FCF routine from NAGLIB.

1. n = 1

This case was considered for the sake of completeness.
It is known that the hydrogen atom exists for any magnetic
field strength. It is the least bound system among one-electron
systems. The results for the H atom at B = 106, 107 a.u.
are calculated with a ten-parameter variational trial function,

which is a modification of the function introduced in [10,11].
It is described elsewhere.

2. n = 2

The results for H2
+ ion are found with a three-term trial

function (4), which depends on the ten free parameters includ-
ing the interproton distance R, which is a linear superposition
of the Heitler-London, Hund-Mulliken, and Guillemin-Zener
(general term) wave functions. For B � 104 a.u., results are
from [3].

3. n = 3

The results for the H3
2+ ion are found with a three-term trial

function (4), which depends on 22 free parameters including
two interproton distances R, which is a linear superposition
of the Heitler-London, Hund-Mulliken, and a type of the
Guillemin-Zener (general term) wave functions. For B �
104 a.u., results are from [3].

4. n = 4

Results for the H4
3+ ion are found with a one-term trial

function (4), which depends on the seven free parameters
including three interproton distances R, two of which are
assumed to be equal (symmetric configuration). For B �
104 a.u., the results obtained with three- and seven-term trial
function (4) can be found in [3]. They lead to slightly better
binding energies but do not change the qualitative picture.

5. n = 5

It is the first study of this system. The results for the H5
4+ ion

are obtained using a two-term trial function (4), which depends
on the 15 free parameters including four interproton distances
R, two pairs of which are assumed to be equal (symmetric
configuration). In fact, it implies that a linear superposition of
two general terms is taken. It is worth noting that the one-term
trial function at B = 107 a.u. already gives a clear indication
of the existence of the H5

4+ ion with binding energy Eb =
206.11 Ry and equilibrium distances R1 = 0.053 a.u., R2 =
0.032 a.u. The smallest magnetic field for which a minimum
of the total energy surface in R was observed is 5 × 106 a.u.
The H5

4+ ion for these magnetic fields looks like the H3
2+ ion

bound with a far-distant proton from each side.

6. n = 6

No indication of the existence of the H6
5+ ion in the domain

B � 107 a.u. was found.

C. Results

The results of the calculations are presented in Tables I
and II and illustrated in Fig. 2. Two traditional field-free
case systems H and H2

+ exist for all studied magnetic fields
B � 107 a.u. The first exotic molecular system H3

2+ appears
at B ∼ 102 a.u. and exists for larger magnetic fields. Another
exotic molecular system, H4

3+, appears at B ∼ 104 a.u.
and the last exotic molecular system, H5

4+, appears at B ∼
5 × 106 a.u. No other one-electron molecular hydrogenic
systems are seen for B � 107 a.u. For n > 1, the optimal
geometry of any molecular system is linear and aligned along
the magnetic field. Thus, such a system forms a finite chain.

042503-3
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TABLE I. Binding energies (in rydbergs) for the ground state 1σg of one-electron hydrogenic linear systems (finite chains) in a
magnetic field. Binding energies for the ground state 1s0 of the H atom at 0 � B � 102 a.u. are from [11].

B(a.u.)
System 0 1 10 102 104 106 107

H 1.0 1.662 3.495 7.564 27.10 73.96 108.86
H2

+ 1.2053 1.9499 4.3498 10.291 45.799 139.91 217.75
H3

2+ 8.639 45.408 160.17 263.80
H4

3+ 34.922 142.75 251.71
H5

4+ 206.15

It was checked that the configuration is stable with respect
to small deviations from linearity. All studied finite chains
are characterized by two features: with a magnetic field
growth, (i) their total energies increase and (ii) their lengths
decrease—each system becomes more bound and compact.

For all studied magnetic fields, the systems H and H2
+ are

stable: the H atom has no decay channels, although the total
energy of the H2

+ ion is always less than the total energy of the
H atom. Furthermore, for B <∼ 1.5 × 104 a.u., the H2

+ ion has
a smaller total energy then the H3

2+ ion when it exists; these
two finite chains are the only ones that exist in this domain. The
H3

2+ ion never dissociates to H + 2p but it always dissociates
to H2

+ + p. For higher magnetic fields (B >∼ 1.5 × 104 a.u.),
the H3

2+ ion becomes stable as well. It is characterized by
the smallest total energy for these magnetic fields. Another
exotic molecular system, H4

3+, never dissociates to H + 3p,
but it dissociates to H2

+ + p for 104 < B < 106 a.u. For
magnetic fields B >∼ 106 a.u., the total energy of H4

3+ is
smaller than that of H2

+ and the latter dissociation channel
does not exist. For all studied magnetic fields B � 107 a.u.,
the system H4

3+ can dissociate to H3
2+, although the energy

difference between such systems decreases gradually as the
magnetic field increases. A smooth extrapolation indicates
that, at the magnetic field B ∼ 2 × 108 a.u., there is a crossing
for which the total energies of H3

2+ and H4
3+ become equal.

The system H5
4+ can dissociate to all finite chains except

for the single-proton one: the H atom. Summarizing, one can
state that there are two one-electron finite hydrogenic chains
characterized by the lowest total energy for different magnetic
fields: it is the H2

+ system at 0 <∼ B <∼ 1.5 × 104 a.u. and the
H3

2+ ion at 1.5 × 104 <∼ B <∼ 107 a.u.

III. TWO-ELECTRON HYDROGENIC CHAINS

A. Generalities

Let us consider a system of two electrons and n infinitely
massive protons situated on a line that coincides with the

magnetic line (see Fig. 3). It is called a 2e linear finite chain of
size n. If for such a system a bound state can be found, it implies
the existence of the ion H(n−2)+

n in linear geometry. Sometimes,
we say that this system is “in the parallel configuration.” Also,
it implies that the corresponding finite chain exists. It can be
stable or metastable.

The Hamiltonian that describes the system of two electrons
and n protons when the magnetic field is oriented along the z

direction, B = (0, 0, B), is [12]

Hn =
2∑

�=1

(p̂� +A�)2 − 2
∑
�=1,2

i=1,n

Zi

r�i

+ 2

r12

+
∑
i �=j

i,j=1,n

ZiZj

Rij

+ 2B · S (5)

(see Fig. 3 for the geometrical setting and notation), where
Zi = Zj = 1 in the case of protons; p̂� = −i∇� is the
momentum of the �th electron; r�i is the distance from the �th
electron to the ith proton; Rij is the distance between ith and
j th proton; r12 = | �r1 − �r2| is the interelectron distance, where
�r1 ( �r2) is the position from the center of the chain (mid-point
with respect to the end-situated protons) of the first (second)
electron; and S = S1 + S2 is the operator of the total spin.
The vector potential A� corresponds to the constant uniform
magnetic field B written in the symmetric gauge (2). Finally,
the Hamiltonian can be written as

Hn =
2∑

�=1

(
−∇2

� + B2

4
ρ2

�

)
− 2

∑
�=1,2

i=1,n

Zi

r�i

+ 2

r12

+
∑
i �=j

i,j=1,n

ZiZj

Ri,j

+ B(L̂z + 2Ŝz), (6)

where L̂z = L̂z1 + L̂z2 and Ŝz = Ŝz1 + Ŝz2 are the z com-
ponents of the total angular momentum and total spin,
respectively, and ρ� =

√
x2

� + y2
� . All performed calculations

TABLE II. Interproton equilibrium distances (in a.u.) for the ground state 1σg of the one-electron hydrogenic linear systems (finite
chains) in a strong magnetic field. All configurations have center of symmetry; symmetric interproton distances are not displayed.

B(a.u.)
System 0 1 10 102 104 106 107

H2
+ (R) 1.997 1.752 0.957 0.448 0.118 0.045 0.032

H3
2+ (R,R) 0.579, − 0.130, − 0.044, − 0.029, −

H4
3+ (R1, R2, R1) 0.214, 0.138, − 0.056, 0.044, − 0.034, 0.028, −

H5
4+ (R1, R2, R2, R1) 0.053, 0.032, −, −
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FIG. 2. Binding energies Eb for the one-electron hydrogenic
linear molecular ions in parallel configuration vs a magnetic
field B.

indicated a symmetry property of a chain: in the optimal
geometry a chain has a center of symmetry. Hence, for
any proton there is a partner situated symmetrically with
respect to this center. We consider this property as intrinsic of
any chain.

The problem under study is characterized by three con-
served quantities: (i) the operator of the z component of
the total angular momentum (projection of the angular mo-
mentum on the magnetic field direction) giving rise to the
magnetic quantum number m; (ii) the spatial parity operator
P (�r1 → −�r1, �r2 → −�r2), which has eigenvalues p = 1 (−1)
for gerade (ungerade); and (iii) the operator of the z component

H
(n−2) +
n

B1

z

2 3
...

p p p p

n

e e

1n

2n

r r
r

r r

r

12r

11 12

21

22

FIG. 3. H(n−2)+
n linear molecular ion in parallel configuration with

a magnetic field B oriented along the z axis.

of the total spin (projection of the total spin on the magnetic
field direction) giving rise to the total spin projection ms .
Hence, any eigenstate has three explicit quantum numbers
assigned: the magnetic quantum number m, the total spin
projection ms , and the parity p. For the case of two electrons,
the total spin projection ms takes values 0,±1.

As a magnetic field increases, a contribution from the
Zeeman term (interaction of spin with magnetic field, B · S)
becomes more and more important. It seems natural to assume
that for small magnetic fields a spin-singlet state is the state of
lowest total energy, while for larger magnetic fields it should be
a spin-triplet state with ms = −1, where the electron spins are
antiparallel to the magnetic field direction B. The total space
of the eigenstates is split into subspaces (sectors), each of
which is characterized by definite values of m, p, and ms . It is
worth noting that the Hamiltonian Hn is invariant with respect
to reflections Pz: z1 → −z1 and z2 → −z2, with eigenvalues
σN = ±1, for a symmetric chain.

In order to classify eigenstates we follow the convention
widely accepted in molecular physics that uses the quantum
numbers m,p and the total spin S without indication of
the value of ms . Eventually, the notation is 2S+1Mp, where
2S + 1 is the spin multiplicity, which is equal to 1 for the
spin-singlet state (S = 0) and 3 for the spin-triplet state
(S = 1). For the label M , we use Greek letters 	, 
, and
�, which mark the states with |m| = 0, 1, 2, . . . , respectively,
but implying that m takes negative values and the subscript
p (the spatial parity quantum number) takes gerade g and
ungerade u labels describing positive p = +1 and negative
p = −1 parity, respectively. There exists a relation between
the quantum numbers corresponding to the z parity and the
spatial parity:

p = (−1)|m| σN.

The present consideration is limited to the states with magnetic
quantum numbers m = 0,−1 because the total energy of the
lowest energy state in any sector with m > 0 is always larger
than one with m � 0. A study of states with different values
for m is necessary to identify the state of lowest total energy.
For large magnetic fields for all studied two-electron chains,
this state was characterized by m = −1 in agreement with
Ruderman’s hypothesis.

B. Method

As a method to explore the problem, we use the variational
procedure. The recipe of choice of trial functions is based
on physical arguments [10]. As a result, the trial function for
the lowest energy state with magnetic quantum number m is
chosen in the form

ψ (trial) = (1 + σeP12)ρ|m|
1 eimφ1

K∑
k=1

Ak

{
e
− ∑

�=1,2
i=1,n

αk,�i r�i }
k

× e
γk r12−Bβk,1

ρ2
1

4 −Bβk,2
ρ2

2
4 , (7)

where σe = ±1 stands for spin-singlet (+) and spin-triplet
states (−), and {} indicates the symmetrization of identical
nuclei of the expression inside the brackets; P12 is the
permutation operator for the electrons (1 ↔ 2). The parameters
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αk,ij , βk,1−2, and γk as well as interproton distances Rij =
Rji are variational parameters. For each term with fixed k,
their total number is 2n + 4, including the linear parameter
Ak . In addition, we have n − 1 interproton distances. It is
worth emphasizing that in trial function (7) the interelectron
interaction is included explicitly in the exponential form eγ r12 .

Calculations are performed using the minimization package
MINUIT from CERNLIB. Multidimensional integration is
carried out using a dynamical partitioning procedure: a domain
of integration is manually divided into subdomains following
an integrand profile with a localization of domains of large
gradients of the integrand. Each subdomain is integrated
separately using a parallelization procedure (for details, see,
e.g., [3]). Numerical integration of subdomains is done with
a relative accuracy of ∼10−6–10−7 by use of the adaptive
D01FCF routine from NAG-LIB. A process of minimization
for each given magnetic field and for any particular state was
quite time-consuming due to the complicated profile of the
total energy surface in the parameter space; when a minimum
is found it takes several seconds of CPU time to compute a
variational energy.

1. n = 1

This case corresponds to the negative hydrogen ion H−

and is mentioned for the sake of completeness. It is known
that the negative hydrogen ion H− exists for any magnetic
field strength [13]. At zero and small magnetic fields B <

5 × 10−2 a.u., the spin-singlet state 10 is the ground state. If
B > 5 × 10−2 a.u., the spin-triplet state 3(−1), which does not
exist in the absence of a magnetic field, becomes bound and
the ground state. Although this result is checked quantitatively
for magnetic fields up to 4000 a.u. [13,14], it is quite likely that
it holds for higher magnetic fields. It is the least bound system
among two-electron systems made from protons. However, the
H− ion is stable for studied magnetic fields: the dissociation
H− → H + e is prohibited.

2. n = 2

In a domain of non-ultra-high magnetic fields, the H2

molecule was studied in detail in [7]. It was shown that
the lowest total energy state depends on the magnetic field
strength. It evolves from the spin-singlet state 1	g at 0 �
B <∼ 0.18 a.u. to a repulsive spin-triplet state 3	u (unbound
state) for 0.18 <∼ B <∼ 12.3 a.u. and, finally, to a strongly bound
spin-triplet state 3
u. Hence, there exists quite a large domain
of magnetic fields where the H2 molecule is unbound that are
represented by two hydrogen atoms in the same electron spin
state but situated at an infinite distance from each other. The
optimal geometry of the H2 molecule (when it exists) always
corresponds to the elongation along a magnetic line for the 1	g

state, thus forming a finite chain. It is assumed that the chain in
the 3
u state is stable toward the deviation from linearity. This
assumption seems well justified from a physics point of view
for large magnetic fields: any deviation from linearity leads
to a sharp increase in the total energy due to nonvanishing
rotational energy. This chain is stable (when it exists) for all
studied magnetic fields. However, this chain always has a total
energy higher than the H3

+ chain (see following discussion)
and thus is less preferable energetically. Calculations for the

3
u state of H2 using a single function of the form of Eq. (7)
for which all α parameters are different (general term) are
presented in Tables III and IV.

3. n = 3

In [8] it is shown that the H+
3 molecular ion exists in a

magnetic field as a bound state. For B >∼ 0.2 a.u., the ground-
state geometry is linearly realized, parallel to the magnetic field
line configuration. Thus, the three-proton finite chain occurs.
In the domain 0.2 <∼ B <∼ 20 a.u., the ground state is realized
by the 3	u state and it is weakly bound. However, at B >

20 a.u., the ground state 3
u is strongly bound and the chain
is stable.

4. n = 4

In the field-free case, the system 4p2e does not display
any binding. However, for magnetic fields B >∼ 2000 a.u., it
becomes bound in the linear configuration aligned along the
magnetic line with the 3
u state as the ground state. Hence,
the molecular ion H4

2+ begins to exist. Its total energy is
lower systematically than the total energy of H3

+. Hence, the
molecular ion H4

2+ is stable. With an increase of the magnetic
field strength, the total energy at the equilibrium position
decreases, and the system becomes more bound (in this case,
the double ionization energy is EI = −ET , which increases
with B) and more compact (the internuclear equilibrium
distance decreases with B). Eventually, we state that the finite
chain H4

2+ is always stable. For magnetic fields 1 <∼ B <∼
2000 a.u., the state 3
u is bound but the ground state
corresponds to an unbound system in the repulsive 3	u state:
it consists of two H2

+ ions at infinite distance from each other.

5. n = 5

In the field-free case the system 5p2e does not display
any binding. However, for magnetic fields B >∼ 5000 a.u., it
becomes bound in the linear configuration aligned along the
magnetic line with the 3
u state as the ground state; hence, the
molecular ion H5

3+ begins to exist. For 5000 <∼ B <∼ 106 a.u.,
the H5

3+ molecular ion decays to H4
2+ + p. At magnetic fields

B >∼ 106 a.u., the molecular ion H5
3+ becomes stable.

6. n = 6

No indication of the bound state of the 6p2e system is found
for even the highest magnetic field studied.

C. Results

The results of the calculations are presented in Tables III
and IV and illustrated in Fig. 4. Three traditional ions for
the field-free case systems, H−, H2, and H3

+, continue to
exist at magnetic fields of 102 � B � 107 a.u. The first exotic
molecular system, H4

2+, appears at ∼2 × 103 a.u. in linear
configuration and exists for all larger magnetic fields. Another
exotic molecular system, H5

3+, appears at a slightly larger
magnetic field, ∼5 × 103 a.u. No other two-electron molecular
hydrogenic system is seen in the domain B � 107 a.u. At
large magnetic fields the ground state of all studied systems is
the spin-triplet state with spin projection ms = −1 and total
magnetic quantum number m = −1, in agreement with the
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TABLE III. Double ionization energies EI in rydbergs (ET = −EI ) for the ground state 3
u of the two-electron
hydrogenic systems (finite chains) in a strong magnetic field. Energy in brackets means that the state 3
u is bound but
the ground state corresponds to an unbound state. The magnetic field BSchwinger = 4.414 × 1013 G = 1.878 × 104 a.u.
corresponds to the so-called nonrelativistic threshold for which the electron cyclotron energy equals the electron rest
mass.

B(a.u.)
System 102 103 104 4.414 × 1013 (G) 106 107

H− 8.35 16.95 30.1 35.4 82.5 121.4
H2 16.473a 35.632 71.42 85.00 219.9 330.3
H3

+ 18.915 44.538 95.21 115.19 324.2 529.8
H4

2+ (17.601) (43.917) 99.80 122.34 367.7 636.0
H5

3+ 91.70 114.34 383.2 687.7

aFrom [7].

Ruderman hypothesis. For n > 1, the optimal geometry of the
molecular system is linear, and the system is aligned along
magnetic field. Thus, each molecular system forms a finite
chain. It is checked that such a linear configuration is stable
with respect to small vibrations and its vibrational energies can
be calculated. However, we were not able to check the stability
of the configuration with respect to small deviations from lin-
earity and to calculate the rotational energies. All studied finite
chains are characterized by two features: with magnetic field
growth, (i) their binding energies increase and (ii) their lon-
gitudinal lengths decrease; each system becomes more bound
and compact. For all studied magnetic fields B >∼ 102 a.u.,
the systems H− and H2 are stable. They are characterized
by much smaller binding energies in comparison with other
systems. Thus, their significance for thermodynamics at a fixed
magnetic field seems limited.

It is worth emphasizing that among two-electron hydro-
genic finite chains the system H3

+ has the lowest total energy
in the domain 102 <∼ B <∼ 2 × 103 a.u.; at larger magnetic fields
2 × 103 <∼ B <∼ 106 a.u., the finite chain H4

2+ gets the lowest
total energy and eventually, at B >∼ 106 a.u., the molecular ion
H5

3+ (the longest hydrogenic chain) is characterized by the
lowest total energy. Interestingly, in the domain 106 <∼ B <∼
107 a.u., all two-electron finite hydrogen chains are stable.

IV. ONE-ELECTRON HELIUM AND HELIUM-HYDROGEN
CHAINS

A. Generalities

Let us now consider molecular systems composed of one
electron and a finite number n of infinitely massive protons

and/or α particles as charged centers, situated on a line which
coincides with the direction of a homogeneous magnetic field.
The geometrical arrangement is similar to that depicted in
Fig. 1, except for the fact that charged centers can be either
protons or α particles. If found, bound states of such systems
are called one-electron helium or helium-hydrogen chains.
In the present review, only one-electron helium or helium-
hydrogen chains with n = 1, 2, 3 were included.

Following similar considerations as for the case of hydro-
genic chains (see Sec. II), the Hamiltonian which describes the
one-electron helium (helium-hydrogen) chains in a magnetic
field oriented along the z direction, B = (0, 0, B), is given
by Hamiltonian (3) with Zi, Zj = 1 or 2, depending on each
particular system. Since we are interested in the ground state
for which m = 0 and ms = −1/2, the last term in Hamiltonian
(3) can be omitted and the reference point for energy becomes
equal to −B.

B. Method

The variational method is used for a study of the helium
(helium-hydrogen) chains described by Hamiltonian (3). Trial
functions are chosen following physics relevance arguments
[10]. Their explicit expressions are linear superpositions of K

terms given by functions of the class (4), where Ak and αk,i , βk

are linear and nonlinear parameters, respectively. Internuclear
distances R are considered as variational parameters as well. In
this case the notation {} in Eq. (4) indicates the symmetrization
of the expression inside the brackets with respect to the
permutations of the identical charged centers; for example,
for the system (HHeH)3+ it means permutation with respect to
the external protons. As for the case of hydrogenic chains,
each term in Eq. (4) has a certain physical meaning (see

TABLE IV. Interproton equilibrium distances (in a.u.) for the ground state 3
u of the two-electron hydrogenic linear systems (finite
chains) in a strong magnetic field. All configurations have center of symmetry and symmetric interproton distances are not displayed.
s from [7]. Distances in brackets indicate that the state 3
u is bound but the ground state corresponds to an unbound state.

B(a.u.)
System 102 103 104 4.414 × 1013 (G) 106 107

H2 (R) 0.38s 0.19 0.102 0.087 0.038 0.034
H3

+ (R, R) 0.395, − 0.183, − 0.093, − 0.078, − 0.030, − 0.023, −
H4

2+ (R1, R2, R1) (0.51, 0.38, −) (0.215, 0.174, −) 0.103, 0.086, − 0.092, 0.075, − 0.030, 0.018, − 0.020, 0.013, −
H5

3+ (R1, R2, R2, R1) – – 0.184, 0.134, −, − 0.160, 0.110, −, − 0.035, 0.025, −, − 0.023, 0.018, −, −
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FIG. 4. Ionization energies EI for the two-electron hydrogenic
linear molecular ions in parallel configuration vs magnetic field B.

Sec. II). In the following, we describe the different chains
studied.

1. n = 1

(αe). This case corresponds to the simplest one-electron
helium system. It is known that the positive atomic ion of
helium exists for any magnetic field strength. Furthermore, it
is the only one-electron helium system that exists for magnetic
fields of strength B <∼ 10 a.u. The following results presented
for the ground state 1s0 of the He+ atomic ion (see Table V)
were obtained with a seven-parameter variational trial function
introduced in [11] for a study of the H atom.

2. n = 2

(i) (ααe). Accurate variational calculations in equilibrium
configuration (parallel to the magnetic field) for the ground
state 1σg of the system He2

3+ were carried out in detail

in [3,15] for the range of magnetic fields 102 <∼ B <∼ BSchwinger

a.u.. A three-term trial function of the form of Eq. (4) which
depends on ten free parameters, including the internuclear
distance R, is used in the calculations. It is the same linear
superposition of the Heitler-London, Hund-Mulliken, and
Guillemin-Zener wave functions which was used to study the
H2

+ molecular ion (see Sec. II). It was found that for magnetic
fields 102 <∼ B <∼ 103 a.u., the system He2

3+ is unstable toward
the decay to He+ + α. Nonetheless, at B >∼ 104 a.u., this
compound becomes the system with the lowest total energy
among the one-electron helium (helium-hydrogen) chains.
In [15], the lowest vibrational and rotational energies for this
system were also calculated.

(ii) (αpe). The first indication of the existence of the
hybrid system (HeH)2+, for magnetic fields B >∼ 104 a.u., was
established in [3,15], where accurate variational calculations
for the ground state 1σ of the system (HeH)2+ were carried
out. Variational calculations are performed with a three-term
trial function of the type of Eq. (4). In [3,15] it was also
demonstrated that the equilibrium configuration corresponds
to the situation when the molecular axis (the line connecting
the proton and the α particle) is parallel to the magnetic field.
For the narrow range of magnetic fields 104 <∼ B <∼ BSchwinger

a.u., the system (HeH)2+ is found to be a long-lived metastable
state decaying to He+ + p. For magnetic fields larger than
BSchwinger, the system becomes stable toward the decay to
He+ + p.

3. n = 3

(i) (αααe). It seems it is for the first time we see an
indication of the possible existence of the exotic molecular
ion He3

5+ for magnetic fields B >∼ 106 a.u. For this system, a
three-term trial function of the form of Eq. (4) is used for its
variational study. It depends on 22 free parameters, including
two internuclear distances R1,2. This function is the same
linear superposition of the Heitler-London, Hund-Mulliken,
and a type of the Guillemin-Zener wave functions, which
was used to study the H2+

3 molecular ion (see Sec. II). It
is found that the system (αααe) begins to exist as a bound
state (i.e., displays a minimum in the corresponding potential
energy surface for finite internuclear distances) at magnetic
fields B >∼ 106 a.u. in the linear symmetric configuration (for
which the two internuclear distances are equal, R1 = R2)
parallel to the magnetic field direction. The ground state
is 1σg .

TABLE V. Binding energies (in rydbergs) for the ground state 1σg of the one-electron helium and helium-
hydrogenic linear systems (finite chains) in a magnetic field [the ground state for (HeH)2+ is 1σ ]. For He5+

3 : Eb =
86.76Ry, Req = 0.202 a.u. at B = 1014 G; while for BSchwinger there is no minimum.

B(a.u.)
System 1 10 102 104 4.414 × 1013 (G) 106 107

He+ 4.8820 8.7801 19.109 78.426 92.528 226.66 345.17
He2

3+ 16.516 86.233 105.121 305.11 507.31
He3

5+ 227.83 417.15
(HeH)2+ 77.303 92.858 251.32 402.10
(HHeH)3+ 64.747 79.69 233.71 392.47
(HeHHe)4+ 70.76 230.38 408.58
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TABLE VI. Internuclear equilibrium distances (in a.u.) for the ground state 1σg of the one-electron helium and
helium-hydrogenic linear systems (finite chains) in a strong magnetic field [the ground state for (HeH)2+ is 1σ ]. For
all configurations that have center of symmetry, symmetric internuclear distances are not displayed.

B(a.u.)
System 102 104 4.414 × 1013 (G) 106 107

He2
3+ (R) 0.779 0.150 0.126 0.049 0.032

He3
5+ (R, R) 0.070, − 0.041, −

(HeH)2+ (R) 0.142 0.119 0.048 0.032
(HHeH)3+ (R, R) 0.227, − 0.184, − 0.058, − 0.035, −
(HeHHe)4+ (R, R) 0.170, − 0.051, − 0.031, −

(ii) (pαpe). The first indications of the existence of the
exotic trilinear molecular ion (H-He-H)3+ for magnetic fields
B >∼ BSchwinger were given in [3,15]. For this system, a three-
term trial function of the form of Eq. (4), which depends
on 14 free parameters including two internuclear distances
R1,2, is used in the variational calculations. The results
clearly show the appearance of a minimum in the potential
energy surface of the (αppe) system for the symmetric
configuration of the charged centers (p-α-p) with R1 = R2.
The ground state is the type 1σg . An indication of the
existence of nonsymmetric configuration (α-p-p) was not
observed.

(iii) (αpαe). The first indications of the existence of the
exotic trilinear molecular ion (He-H-He)4+ for magnetic fields
B >∼ BSchwinger were given in [3,15]. For this system, a three-
term trial function of the form of Eq. (4), which depends on 14
free parameters including two internuclear distances R1, R2,
is used in the variational calculations. The results show the
appearance of a minimum in the potential energy surface of the
(ααpe) system for the symmetric configuration of the charged
centers (α-p-α) with R1 = R2. The ground state is 1σg . An
indication of the existence of nonsymmetric configuration
(α-α-p) was not observed.

4. n = 4

No binding is detected for systems (ααααe), (αppαe), or
(pααpe) for even the highest studied magnetic field, ∼107 a.u.

C. Results

The results of the ground-state calculations are presented in
Tables V and VI and illustrated in Fig. 5. The positive atomic
ion of helium, He+, is the only system that exists for all studied
magnetic fields 0 � B � 107 a.u. At B ∼ 102 a.u., the first
exotic molecular system He2

3+ appears, being unstable toward
decay to He+ + α in the range of magnetic fields 102 <∼ B <∼
2 × 104 a.u. For larger magnetic fields B >∼ 2 × 104 a.u., the
system He2

3+ becomes the most bound one-electron system
among the systems made from protons and/or α particles and it
is stable. Two exotic molecular systems begin to exist at about
the same magnetic field, B ∼ 104 a.u., namely, the hybrid
molecular ion (HeH)2+, followed by the trilinear symmetric
molecular system (H-He-H)3+, which are unstable toward
decay to He+ + p and He+ + 2p, respectively. Remarkably,
the system (HeH)2+ rapidly becomes stable for magnetic
fields B >∼ 2 × 104 a.u. The system (H-He-H)3+ becomes more

bound than He+ for magnetic fields B >∼ 5 × 105 a.u. but
remains unstable toward decay to (HeH)2+ + p in the range of
magnetic fields 5 × 105 <∼ B � 107 a.u. It never dissociates to
H+

2 + α. Another exotic symmetric molecular system, (He-
H-He)4+, appears at B ∼ BSchwinger, being unstable toward
decay to (HeH)2+ + α for magnetic fields BSchwinger <∼ B �
6.5 × 106 a.u., as well as toward decay to He2

3+ + p for
all magnetic fields studied. It is worth noting that, in spite
of the greater Coulomb repulsion, the system (He-H-He)4+
becomes more bound than (H-He-H)3+ for magnetic fields
B >∼ 1.8 × 106 a.u. The last exotic molecular system, He3

5+,
appears at B >∼ 106 a.u. This system is unstable with respect
to decay into He2

3+ + α. The present level of available
computational resources does allow a reliable conclusion to be
drawn about this molecular system at larger magnetic fields.
No more one-electron helium-hydrogenic systems are seen for
the range of magnetic fields studied at B � 107 a.u.
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FIG. 5. Binding energies Eb for the one-electron helium-
hydrogen linear molecular ions in parallel configuration vs a magnetic
field B.
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Concrete variational calculations for the chains He2
3+

and (HeH)2+ demonstrate that the optimal geometry of the
molecular systems is linear and aligned along the magnetic
field, and it is stable with respect to small deviations from
linearity. This is understood by simple argument since any
slight deviation from the magnetic field direction leads to a
large increase in the rotational energy. Therefore, it is natural
to assume that all other studied linear chains are also stable
with respect to small deviations from linearity.

All studied finite chains are characterized by two features:
with a magnetic field growth, (i) their total energies increase
and (ii) their equilibrium size decreases; each system becomes
more bound and compact.

Summarizing, one can state that among the one-electron
helium-hydrogen chains there are two helium systems charac-
terized by the lowest total energy for different magnetic fields:
the He+ ion at 0 <∼ B <∼ 2 × 103 a.u. and the He2

3+ chain at
2 × 103 <∼ B <∼ 107 a.u.

V. TWO-ELECTRON HELIUM AND HELIUM-HYDROGEN
CHAINS

A. Generalities

Let us consider systems of two electrons and n infinitely
massive α particles situated on a line that coincides with the
magnetic line. If a bound state is found, the system is called a
2e linear helium chain of length n, indicating the existence of
the ion He(2n−2)+

n in linear geometry.
The Hamiltonian that describes systems of two electrons

and a number of α particles with a magnetic field oriented
along the z direction, B = (0, 0, B), is given by Hamiltonian
(6) with Zi = Zj = 2.

All performed calculations show that in the optimal geom-
etry the chain possesses a symmetry property similar to that
for two-electron hydrogenic chains: for any α particle there is
a partner situated symmetrically with respect to the center of
the chain.

We also study mixed systems: out of n heavy centers, some
have the charge 2 (α particles) and some have the charge
1 (protons). If a bound state is found, the system is called a 2e

linear helium-hydrogen chain of length n.

B. Method

For these systems we follow a treatment similar to that for
the case of two-electron hydrogenic chains. The variational
procedure is used to explore the problem. Physical relevance
arguments are followed to choose the trial function (see, e.g.,
[10]), which is given by function (7).

1. n = 1

(αee). This case is only mentioned for the sake of
completeness. It is known that the helium atom exists for
any magnetic field strength [18]. At zero field and for small
magnetic fields B <∼ 0.75 a.u., the spin-singlet state 110+ is the
ground state. For B >∼ 0.75 a.u., the spin-triplet state 13(−1)+
becomes the ground state. The neutral helium atom is the least
bound system among two-electron Coulomb systems made
from α particles (see Tables VII and VIII).

2. n = 2

(i) (ααee). The He2
2+ molecule was studied in detail in [16]

in a magnetic field B = 0–4.414 × 1013 G. It was shown that
the lowest total energy state depends on the magnetic field
strength. Similarly to the case of ppee, it evolves from the
spin-singlet 1	g metastable state at 0 � B <∼ 0.85 a.u. to a
repulsive spin-triplet 3	u state (unbound state) for 0.85 <∼ B <∼
1100 a.u. and, finally, to a strongly bound spin-triplet 3
u state.
Hence, there exists quite a large domain of magnetic fields
where the He2

2+ molecule is unbound and represented by two
atomic helium ions in the same electron spin state but situated
at an infinite distance from each other. The optimal geometry
of the He2

2+ molecule (when it exists) always corresponds to
the elongation along a magnetic line forming a finite chain. It
is assumed that the chain in the 3
u state is stable toward the
deviation from linearity. This chain is stable (or metastable)
for all studied magnetic fields. However, this chain has a total
energy higher than the He3

4+ chain (see following discussion)
for B >∼ 3 × 104 a.u. and, thus, is less preferable energetically.

(ii) (αpee). This system is the simplest 2e mixed helium-
hydrogen system. A detailed study of the low-lying electronic
states 1	, 3	, 3
, and 3� of the HeH+ ion was carried out
in [17]. The ground state evolves from the spin-singlet 1	

state for small magnetic fields B <∼ 0.5 a.u. to the spin-triplet
3	 (unbound or weakly bound) state for intermediate fields

TABLE VII. Double ionization energies EI in rydbergs for the ground state 3
u of the two-electron helium and
helium-hydrogenic linear systems (finite chains) in a strong magnetic field [the ground state for (HeH)+ is 3
].

B(a.u.)
System 102 103 104 4.414 × 1013 (G) 105 106 107

He 25.65 54.37 106.4 126.0 191.4 319.7 494.3
He2

2+ 33.98 80.49 174.51 212.14 343.47 616.68 1016.75
He3

4+ 26.58 68.93 163.90 202.60 352.50 684.19 1212.40
He4

6+ 272.07 576.85 1089.89
HeH+ 28.36 64.24 133.49 160.50 253.22 440.24 709.65
(H-He-H)2+ 142.40 172.58 279.39 509.99 843.38
(He-H-He)3+ 153.62 190.22 320.63 603.91 1029.95
(H-He-He-H)4+ 275. 585.0 979.1
(He-H-H-He)4+ 223. 510.4 885.2
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TABLE VIII. Internuclear equilibrium distances (in a.u.) for the ground state 3
u of the two-electron helium linear systems (finite
chains) in a strong magnetic field [the ground state for (HeH)+ is the 3
 state]. All configurations [except for (HeH)+] have center of
symmetry, and symmetric internuclear distances are not displayed.

B(a.u.)
System 102 103 104 4.414 × 1013 (G) 105 106 107

He2
2+(R) 0.463 0.212 0.106 0.0902 0.060 0.0353 0.023

He3
4+(R, R) 0.67, − 0.27, − 0.122, − 0.116, − 0.063,− 0.0358,− 0.023,−

He4
6+(R1, R2, R1) 0.089,0.060,− 0.047, 0.037,− 0.030,0.023,−

HeH+ 0.440 0.203 0.104 0.092 0.0585 0.0356 0.0238
(H-He-H)2+(R1, R1) 0.105, − 0.092, − 0.059,− 0.035,− 0.022,−
(He-H-He)3+(R1, R1) 0.095, − 0.081, − 0.051,− 0.030,− 0.018,−
(H-He-He-H)4+

(R1, R2, R1) 0.07, 0.10,− 0.047, 0.030,− 0.027, 0.015,−
(He-H-H-He)4+

(R1, R2, R1) 0.08, 0.12,− 0.041, 0.025,− 0.025, 0.019,−

and to the spin-triplet strongly bound 3
 state for B >∼ 15 a.u.
When the HeH+ molecular ion exists, it is stable with respect to
dissociation. In the domain B >∼ 15 a.u., the optimal geometry
is linear and parallel: the ion is elongated along a magnetic line.
Hence, the chain is formed. With a magnetic field increase, the
chain gets more bound and more compact. At magnetic fields
B < 104 a.u., the double ionization energy EI of the HeH+ ion
is smaller but comparable to that of the He2

2+ ion. However,
for B > 104 a.u., EI gets, in fact, the smallest value among 2e

helium-contained molecular ions.

3. n = 3

(i) (αααee). In the field-free case, the system (αααee)
does not display any binding. However, for magnetic fields
B >∼ 100 a.u., the He3

4+ molecule becomes bound in the linear
configuration aligned along the magnetic line. For 100 <∼ B <∼
1000 a.u., the 3	u state is the ground state [19]. This state is
a metastable state for any magnetic field; its total energy lies
above the total energies of its lowest dissociation channel.
For B >∼ 1000 a.u., the state 3
u is the ground state. For
magnetic fields 1000 <∼ B <∼ 3 × 104 a.u., the total energy of
the dominant dissociation channel He3

4+ → He2
2+(3
u) + α

is lower than the total energy of the He3
4+ ion in the 3
u state.

Thus, in this range of magnetic fields, the ion He3
4+(3
u) is

a metastable state toward the lowest channel of decay. Hence,
for magnetic fields B >∼ 3 × 104 a.u., the molecular ion He3

4+

is stable in the 3
u state. With an increase of the magnetic field
strength, the total energy at the equilibrium position decreases,
and the system becomes more bound (in this case, the double
ionization energy is EI = −ET ; it increases with B) and
more compact (the internuclear equilibrium distance decreases
with B).

(ii) (pαpee). In the field-free case, the system (pαpee)
does not display any binding. However, for magnetic fields
B >∼ 104 a.u., the (H-He-H)2+ ion becomes bound in the linear
configuration aligned along the magnetic line with the 3
u

state as the ground state. This ion is stable.
(iii) (αpαee). In the field-free case, the system (αpαee)

does not display any binding. However, for magnetic fields
B >∼ 104 a.u., the (He-H-He)3+ ion becomes bound in the linear

configuration aligned along the magnetic line with the 3
u

state as the ground state. This ion is unstable toward a decay
to He2

2+(3
u) + p; however, at B > 106 a.u., the ion (He-H-
He)3+ becomes stable.

4. n = 4

(i) (4α2e). In the field-free case, the system (4α2e) does
not display any binding. However, for magnetic fields B >∼
105 a.u., the He4

6+ molecule becomes bound in the linear
configuration aligned along the magnetic line with the 3
u

state as the ground state. With an increase of the magnetic field
strength, the total energy at the equilibrium position decreases,
and the system becomes more bound (in this case, the double
ionization energy is EI = −ET ; it increases with B) and more
compact (the internuclear equilibrium distance decreases with
B). For magnetic fields B >∼ 105 a.u., the total energy of the

dominant dissociation channel He4+
3 (3
u) + α is lower than

the total energy of the He6+
4 (3
u) ion. Thus, the ion He6+

4 (3
u)
is a metastable state toward the lowest channel of decay. It is
also unstable toward decay to He2

2+(3
u) + 2α for magnetic
fields 105 <∼ B <∼ 2 × 106 a.u.

(ii) (pααp2e). In the field-free case, the system (pααp2e)
does not display any binding. However, for magnetic fields
B > 105 a.u., the (H-He-He-H)4+ molecule becomes bound
in the linear configuration aligned along the magnetic line
with the 3
u state as the ground state. With an increase of the
magnetic field strength, the system becomes more bound (the
double ionization energy increases with B) and more compact;
that is, both the internuclear equilibrium distance R1 between a
proton and the closest α particle, and the distance R2 between
the two α particles, decrease with B. For magnetic fields B >∼
105 a.u., the total energy of the dominant dissociation channel
He2

2+(3
u) + 2p is lower than the total energy of the (H-He-
He-H)4+ ion. Thus, the (H-He-He-H)4+ is a metastable state
toward the lowest channel of decay.

(iii) (αppα2e). In the field-free case, the system (αppα2e)
does not display any binding. However, for magnetic fields
B > 105 a.u., the (He-H-H-He)4+ molecular ion becomes
bound in the linear configuration aligned along the magnetic
line with the 3
u state as the ground state. With an increase of
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TABLE IX. Two-electron five-center molecular ions (finite chains) in a magnetic field in 3
u state-symmetric, spin-triplet configuration
parallel to the magnetic field direction. ET and EI are total and double ionization energy, respectively. For unbound states a characteristic
total energy is indicated.

ET = −EI (Ry)

Composition Configuration B = 106 a.u. B = 107 a.u.

1α 4p H-H-He-H-H Unbound Bound
∼ −450 −866.0

(R1 = 0.0228, R2 = 0.0203 a.u.)

2α 3p He-H-H-H-He Bound Bound
−414.5 −792.6

H-He-H-He-H Bound Bound
−485.3 −873.9

(R1 = 0.0306, R2 = 0.0189 a.u.)

3α 2p He-H-He-H-He Unbound “Bound”a

∼ −420 ∼−860.0
(R1 = 0.023, R2 = 0.018 a.u.)

H-He-He-He-H Unbound Unbound
∼ −620 ∼ −1055

4α 1p He-He-H-He-He Unbound Bound
∼ −380 −862.4

(R1 = 0.0356, R2 = 0.0195 a.u.)

a“Bound” means that the potential surface of the 3α 2p system has a local minimum which corresponds to the configuration α − p − α −
p − α where the global minimum corresponds to the configuration p − α − α − α − p.

the magnetic field strength, the system becomes more bound
(the double ionization energy increases with B) and more
compact; that is, both the internuclear equilibrium distance R1

between a proton and the closest α particle, and the distance R2

between the two protons, decrease with B. For magnetic fields
B >∼ 105 a.u., the total energy of the dominant dissociation
channel He2

2+(3
u) + 2p is lower than the total energy of the
(He-H-H-He)4+ molecular ion and, thus, is a metastable state
toward the lowest channel of decay.

5. n = 5

The results of the analysis of five-center, two-electron
systems are shown in Table IX. An indication of binding of
the proton-free systems (5α2e) is not found for the whole
domain of studied magnetic fields, whereas (4αp2e) becomes
bound at B ∼ 107 a.u. and is unstable, decaying toward many
different finite chains. The system (3α2p2e) is unbound,
although a particular configuration (αpαpα2e) displays a
minimum in the potential curve. The two α-contained systems
are bound in both symmetric configurations—(pαpαp2e) and
(αpppα2e)—while the latter one is more bound even for a
magnetic field B ∼ 106 a.u. This system is unstable with a
dominant decay mode to (αpα2e). One α-contained system
(ppαpp2e) is bound at ∼107 a.u. and it is stable. It is worth
noting that the system 5p2e is bound for magnetic fields
B >∼ 104 a.u. (see Table III and our earlier discussion).

6. n = 6

An indication of the bound state of any six-center system
is not found even for the highest magnetic field studied.

C. Results

The results of the calculations are presented in Tables VII–
IX and illustrated in Fig. 6. Three traditional systems, He,
He2

2+, and HeH+, exist for all studied magnetic fields
102 � B � 107 a.u. The first exotic molecular system, He3

4+,
appears at ∼100 a.u. in linear configuration and exists for
larger magnetic fields. For 100 <∼ B <∼ 5 × 104 a.u., the He3

4+
ground state is a metastable state with respect to its lowest
dissociation channel. For magnetic fields B > 5 × 104 a.u., the
ground state of system He3

4+ becomes a strongly bound state.
Another exotic molecular system, He4

6+, appears at ∼105 a.u.
as a metastable state. No other two-electron molecular helium
systems are seen for B � 107 a.u. At large magnetic field,
the ground state of all studied systems is the spin-triplet state
with spin projection ms = −1 and total magnetic quantum
number m = −1. For n > 1, the optimal geometry of the
molecular system is linear, and the system is aligned along
the magnetic field. Thus, each molecular system forms a finite
chain. Such a linear configuration is concluded to be stable
with respect to small vibrations, and its vibrational energies
can be calculated. However, we were not able to check the
stability of the configuration with respect to small deviations
from linearity or to calculate the rotational energies. All studied
finite chains are characterized by two features: with magnetic
field growth, (i) their binding energies increase and (ii) their
longitudinal lengths decrease; each system becomes more
bound and compact.

It is worth noting that, among two-electron helium finite
chains, the system He2

2+ in spin-triplet 3
u state has the
lowest total energy in the domain 102 <∼ B <∼ 3 × 104 a.u.,
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FIG. 6. Double ionization energies EI for the two-electron
helium-hydrogen linear molecular ions in parallel configuration vs
a magnetic field B.

whereas at larger magnetic fields of 3 × 104 <∼ B <∼ 107 a.u.,
the finite chain He3

4+ in spin-triplet 3
u state acquires the
lowest total energy. In the domain 2 × 106 <∼ B <∼ 107 a.u.,
all studied two-electron finite helium chains that were studied
become stable with the only exception of He4

6+.

VI. CONCLUSIONS

A complete nonrelativistic classification of one- and two-
electron finite molecular chains (polymers) made out of pro-
tons and/or α particles in a strong magnetic field is presented.
It is naturally assumed that the ground state of any one-electron
chain is 1σg (or 1σ for nonsymmetric systems), whereas for
any two-electron chain the ground state is spin-triplet 3
u (or
3
 for nonsymmetric systems). All calculations were carried
out in variational methods with state-of-the-art trial functions.
Protons and α particles are assumed to be infinitely massive
and situated along a magnetic line.

The existence of three magnetic field thresholds is clearly
seen:3

B
(1)
t ∼ 102 a.u., B

(2)
t ∼ 104 a.u., B

(3)
t ∼ 106 a.u.

3A notion of the existence of the molecule in the Born-Oppenheimer
approximation is ambiguous (for a discussion, see [12]). In one
definition it is enough for the existence if a potential curve has a
minimum; in the other one the existence of at least one vibrational
and one rotational state is required. We follow the first definition,
however, localizing a moment of the appearance of the minimum of
the potential curve very approximately.

At magnetic fields B <∼ 102 a.u., only the traditional ions,
atoms, and molecules can exist, and the chains are not well
pronounced—they are very short and contain at most two
heavy particles. However, at 102 < B < 104 a.u., several new
exotic ions appear in addition to the traditional ones. All ions
immediately form strongly bound linear chains aligned along
a magnetic field. At B ∼ 104 a.u., several more new exotic
ions appear, quickly forming linear chains. Then a similar
appearance of new exotic ions happens at B ∼ 106 a.u. It is
quite interesting that the ions which already appeared (existed)
below some magnetic field threshold, become stable above the
threshold. It is worth noting that for a fixed magnetic field the
neutral systems are always the least bound ones.

In conclusion we present a list of 1-2e proton and/or α

particle-contained ions for which certain magnetic fields exist
where they are stable: H, H2

+, H3
2+, He+, He2

3+, (HeH)2+,
and H−, H2, H3

+, H4
2+, H5

3+, He, He2
+, He3

4+, (HeH)+,
(HHeH)2+, (HeHHe)3+, (HHHeHH)4+. These are among the
25 Coulomb 1-2e systems which (can) exist in a magnetic field
(see Tables I–IX).

All presented results were obtained in a nonrelativistic way
with an assumption that masses of heavy particles are infinite.
They can be considered an indication of a new atom-molecular
physics in magnetic fields B >∼ 102 a.u. This study encourages
us to explore finite mass effects in a magnetic field. This issue
looks quite complicated technically due to the absence of
a separation of variables (see, e.g., [20]), especially in the
case of more than two particles and nonzero total charge
of the system. Those two cases are exactly the ones that
are the most important from the point of view of obtained
results: the most bound systems usually contain more than two
bodies and are charged. Another important issue is related to
relativistic corrections of our nonrelativistic results. Although
in our understanding the Duncan qualitative argument [9] is
physically sound, it should be improved and, eventually, it
needs to be checked quantitatively. The current authors plan
to study both issues in the near future.
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